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Abstract
In this paper, we prove new compression–expansion type fixed point theorems in
cones for the so-called decomposable maps, that is, compositions of two upper semi-
continuous multivalued maps. As an application, we obtain existence and localization
of positive solutions for a differential equation with φ-Laplacian and discontinuous
nonlinearity subject to multi-point boundary conditions. As far as we are aware, the
existence results are new even in the classical case of continuous nonlinearities.
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1 Introduction

We are concerned with the existence of positive solutions to the following multi–point
boundary value problem involving the φ-Laplacian

− (φ(u′))′ = f (t, u), u′(0) = 0, u(1) =
n∑

i=1

αi u(ηi ), (1.1)

where αi ∈ [0, 1), ηi ∈ (0, 1) (i = 1, 2, . . . , n), φ : (−a, a) → (−b, b) (0 < a, b ≤
+∞) is an odd increasing homeomorphism and f : [0, 1] × [0,∞) → [0,∞) may
be discontinuous with respect to both variables.
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In recent years, a lot of attention have been paid to the existence of solutions to
boundary value problems with φ-Laplacian (see, for instance, [5,9,16,18,19,27] and
the references therein). Here, we study in a unified way the classical homeomorphism
φ : R → R, the singular homeomorphism φ : (−a, a) → R and the bounded one
φ : R → (−b, b).

As usual in the related literature when f is discontinuous (see [18,19]), we consider
the following regularized problem

− (φ(u′))′ ∈ F(t, u), u′(0) = 0, u(1) =
n∑

i=1

αi u(ηi ), (1.2)

where F is an usc multivalued map with closed convex values. In order to prove the
existence of positive solutions to (1.2), by means of a fixed point approach, it appears
the fixed point problem

x ∈ (� ◦ �)(x),

where � is a nonlinear continuous map and � is an usc multivalued map with closed
convex values. Since the values of the composition�◦� can be non-convex, the classi-
cal generalization of Krasnosel’skiı̆’s fixed point theorem in cones for usc multivalued
maps [13] is not applicable here.

To overcome this difficulty we prove a new version of the compression–expansion
fixed point theorem in cones for decomposable maps, that is, compositions of two usc
multivalued maps which cover the fixed point problem above. Our approach is based
on a suitable computation of the fixed point index for this class of maps, which was
developed in [27]. Some previous results on fixed point theory for decomposable maps
can be found in the pioneering paper [24] and in [11].

Once the existence of positive solutions for the regularized problem (1.2) is estab-
lished, we wonder whether such solutions are also Carathéodory type solutions for
(1.1). This question is not new and was studied, for instance, in case of systems of
first-order equations in [10], second-order BVPs in [6] or reaction-diffusion equations
in [20]. Here a transversality condition on the discontinuities of f is imposed in order
to prove that all the solutions of (1.2) are in fact solutions of (1.1). Roughly speaking,
the function f may be discontinuous over the graphs of a countable number of the
so-called admissible curves.

To our best knowledge, the main existence result for problem (1.1) is new even
in the classical case of a continuous nonlinearity. It is based on a new Harnack type
inequality for supersolutions of (1.1), what enables us to include the boundary value
problem (1.1) between the class of problems which can be studied by means of the
general technique developed in [14].

Finally, we shall discuss the existence of positive solutions for problem (1.1) under
asymptotic conditions on f at 0 and/or infinity, which were inspired by those in [4].
If φ is singular, we prove that (1.1) has at least one positive solution provided that f
is superlinear at 0 with respect to φ, that is,
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lim
x→0+

f (t, x)

φ(x)
= +∞ uniformly with t ∈ [0, 1]. (1.3)

In the case of a classical φ, if (1.3) holds and, moreover, f is sublinear at infinity with
respect to φ, i.e.,

lim
x→∞

f (t, x)

φ(x)
= 0 uniformly with t ∈ [0, 1],

then the same conclusion is obtained. Note that, unlike [9] or [15], no monotonicity
assumptions on f are required.

2 Compression–Expansion Fixed Point Theorem for Decomposable
Maps

In the recent paper [27], the authors define a fixed point index theory for the compo-
sition of two multivalued maps. We recall here its definition and its main properties.

Let X and Y be Banach spaces and KX ⊂ X , KY ⊂ Y be closed convex sets.We are
interested into the class of decomposable maps, i.e., multivalued maps T : � → 2KX ,

where� ⊂ KX is open in KX ,which can be represented as a composition T = � ◦�

of two multivalued maps � and � with the following properties:

(i) � : � → 2KY is upper semicontinuous (usc, for short) with closed convex values
and relatively compact range;

(i i) � : KY → 2KX is usc with compact convex values.

Definition 2.1 Let � and � be two multivalued maps satisfying conditions (i), (i i)
and such that x /∈ (� ◦ �)(x) for all x ∈ ∂ KX �.

The fixed point index for the pair of maps (�,�) over � with respect to K :=
KX × KY is defined as

indK (�,�,�) := iK (	,� × KY ) ,

where 	 : � × KY → 2KX×KY is the multivalued map associated to the pair (�,�)

given by 	(x, y) = � y × �x .

Note that the fixed point index over � × KY with respect to K for the map 	,
iK (	,� × KY ), iswell–defined according to theFitzpatrick–Petryshyndegree theory
for multivalued maps [13].

Theorem 2.1 The fixed point index indK (�,�,�) has the following properties:

(1) (Additivity) If �1,�2 ⊂ KX are disjoint open in KX and � ◦ � is fixed point
free on ∂ KX �1 ∪ ∂ KX �2, then indK (�,�,�1 ∪ �2) = indK (�,�,�1) +
indK (�,�,�2).

(2) (Existence) If indK (�,�,�) 
= 0, then there exist x ∈ � and y ∈ KY with
x ∈ � y and y ∈ �x, consequently x ∈ (� ◦ �)(x) and y ∈ (� ◦ �)(y).
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(3) (Normalization) For every x0 ∈ �, one has indK (�, x0,�) = 1.
(4) (Homotopy) If φ : � × [0, 1] → 2KY is usc with closed convex values and

relatively compact range, ψ : KY × [0, 1] → 2KX is usc with compact convex
values, and x /∈ ψ (φ (x, λ) , λ) for all x ∈ ∂ KX � and λ ∈ [0, 1] , then the index
indK (φ (·, λ) , ψ (·, λ) ,�) does not depend on λ.

In the sequel we need the following definition. A closed convex subset K of a
Banach space X is a cone if it satisfies that K ∩ (−K ) = {0} and λx ∈ K for every
x ∈ K and for all λ ≥ 0.

Nowwe prove some sufficient conditions for guaranteeing that the fixed point index
for decomposable maps defined above is 0 or 1 in certain open subsets of a cone.

Proposition 2.1 Let X and Y be Banach spaces and KX ⊂ X, KY ⊂ Y cones in X and
Y , respectively. Let�bea relatively open subset of KX and let T = �◦� : � −→ 2KX

be a multivalued operator such that � and � fulfill conditions (i) and (i i).
If 0 ∈ � and λx /∈ T x for all x ∈ ∂KX � and all λ ≥ 1, then indK (�,�,�) = 1.

Proof Let φ : � × [0, 1] → 2KY and ψ : KY × [0, 1] → 2KX be defined by

φ (x, λ) = �x, ψ (y, λ) = λ� y.

The fact that λx /∈ (� ◦ �)(x) for all x ∈ ∂KX � and λ ≥ 1 implies that the homo-
topy given by φ and ψ is admissible and then indK (�, 0,�) = indK (�,�,�).
Since 0 ∈ �, the normalization property ensures that indK (�, 0,�) = 1 and so
indK (�,�,�) = 1. 
�
Proposition 2.2 Let X and Y be Banach spaces and KX ⊂ X, KY ⊂ Y cones in
X and Y , respectively. Let � be a relatively open and bounded subset of KX and
let T = � ◦ � : � −→ 2KX be a multivalued operator such that � and � fulfill
conditions (i) and (i i).

If there existsw ∈ KX\{0} such that x /∈ T x+μw for all x ∈ ∂KX � and allμ ≥ 0,
then indK (�,�,�) = 0.

Proof Assume that indK (�,�,�) 
= 0. Since �(�(�)) is relatively compact (as the
image of a relatively compact set by an usc map with compact values), there exists
μ0 > 0 such that ‖y‖ < μ0 for all y ∈ T (�). Define R := sup{‖x‖ : x ∈ �}, choose
μ > (R + μ0)/ ‖w‖ and consider the homotopy given by

φ (x, λ) = �x, ψ (y, λ) = � y + λμw.

This homotopy is admissible and thus indK (�,�,�) = indK (�,� + μw,�).
Hence, by the existence property, there exists x ∈ � such that x ∈ (� ◦ �)(x) + μw.
Then,

‖x − μw‖ ≥ μ ‖w‖ − ‖x‖ > (R + μ0) − ‖x‖ ≥ μ0 > ‖y‖

for all y ∈ (� ◦ �)(x), a contradiction. Therefore, indK (�,�,�) = 0. 
�
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As a consequence of the previous theory, we generalize to this context the Kras-
nosel’skiı̆’s compression–expansion fixed point theorem in cones, see [1,17].

Theorem 2.2 Let X and Y be Banach spaces and KX ⊂ X, KY ⊂ Y cones in X and
Y , respectively. Let �1 and �2 be two relatively open and bounded subsets of KX ,
with 0 ∈ �1 ⊂ �1 ⊂ �2, and let T = � ◦ � : �2 −→ 2KX be a multivalued
operator such that

(i) � : �2 → 2KY is usc with closed convex values and relatively compact range;
(i i) � : KY → 2KX is usc with compact convex values.

Assume that T satisfies either of the following two conditions:

(1) λx /∈ T x for all x ∈ ∂KX �1 and λ > 1; and there exists w ∈ KX\{0} such that
x /∈ T x + μw for all x ∈ ∂KX �2 and μ > 0.

(2) λx /∈ T x for all x ∈ ∂KX �2 and λ > 1; and there exists w ∈ KX\{0} such that
x /∈ T x + μw for all x ∈ ∂KX �1 and μ > 0.

Then T has at least a fixed point in �2\�1.

Proof Suppose that condition (1) holds. If x ∈ T x for some x ∈ ∂KX �1 ∪ ∂KX �2,
then we are done.

Otherwise, we have that λx /∈ T x for all x ∈ ∂KX �1 and λ ≥ 1, which based on
Proposition 2.1 implies indK (�,�,�1) = 1, and that x /∈ T x+μw for all x ∈ ∂KX �2
and μ ≥ 0, and thus by Proposition 2.2 we obtain that indK (�,�,�2) = 0.

Therefore, as a consequence of the additivity property, indK (�,�,�2\�1) = −1
and so the conclusion is deduced from the existence property of the fixed point index.
The reasoning is similar in case that (2) holds. 
�

We note that �1 and �2 are arbitrarily open bounded subsets of a cone instead
of just intersections of open balls and cones, which enlarges the applicability of the
previous result, cf. [11].

Remark 2.1 In particular, if X = Y , KX = KY and � = I , where I is the identity
map in KX , then Theorem 2.2 is the well–known compression–expansion fixed point
theorem in cones for usc maps, see [13].

Remark 2.2 In Theorem 2.2 we present an extension of the well–known Kras-
nosel’skiı̆’s fixed point theorem in cones, but clearly we can adapt much more fixed
point theorems (all those whose proof is just based on fixed point index properties) to
the context of decomposable maps. This is the case, for instance, of Leggett–Williams’
fixed point theorem [22] and its generalizations [2,3].

3 Positive Solutions to aMulti–point BVP Involving the �–Laplacian

Weconsider the following boundary value problemwithφ–Laplacian subject tomulti–
point boundary conditions

(φ(u′))′ + f (t, u) = 0, u′(0) = 0, u(1) =
n∑

i=1

αi u(ηi ), (3.1)



66 Page 6 of 18 J. Rodríguez–López

where n ∈ N,αi ≥ 0 (i = 1, 2, . . . , n) with
∑n

i=1 αi < 1, 0 < η1 < η2 < · · · < ηn <

1, φ : (−a, a) → (−b, b) (0 < a, b ≤ +∞) is an odd increasing homeomorphism
and the function f : [0, 1] × [0,∞) → [0,∞) is non necessarily continuous.

By a Carathéodory solution of (3.1) we mean a function u ∈ C1[0, 1] with u′(0) =
0 = u(1) − ∑n

i=1 αi u(ηi ) such that u′(t) ∈ (−a, a) for all t ∈ I := [0, 1], φ(u′) ∈
W 1,1(I ) and which satisfies the differential equation in (3.1) for a.a. t ∈ I .

In the sequel, the space of continuous functions C(I ) will be endowed with the
usual supremum norm ‖·‖∞ and the cone of nonnegative continuous functions will be
denoted by P .

Let us assume that the function f : I × [0,∞) → [0,∞) satisfies the following
basic conditions:

(H1) Compositions f (·, u(·)) are measurable whenever u ∈ P;
(H2) If b < +∞, for each r > 0 there exists cr < b such that f (t, u) ≤ cr on

I × [0, r ], and if b = ∞, there exist c1, c2 ≥ 0 and p ≥ 1 such that
f (t, u) ≤ c1u p + c2 for a.a. t ∈ I and all u ∈ [0,∞).

Now we present the integral formulation of problem (3.1). By integration of the
differential equation, u′(0) = 0 and φ(0) = 0 we have

φ(u′(t)) = −
∫ t

0
f (s, u(s)) ds.

Then, integrating from t to 1, we obtain

u(t) = u(1) +
∫ 1

t
φ−1

(∫ s

0
f (r , u(r)) dr

)
ds.

In particular, evaluating at t = ηi ,

u(ηi ) = u(1) +
∫ 1

ηi

φ−1
(∫ s

0
f (r , u(r)) dr

)
ds,

and so, taking into account the condition u(1) = ∑n
i=1 αi u(ηi ),

u(1) = 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1
(∫ s

0
f (r , u(r)) dr

)
ds.

Hence, we define the operator N : P −→ P by

Nu(t) = 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1
(∫ s

0
f (r , u(r)) dr

)
ds +

∫ 1

t
φ−1

(∫ s

0
f (r , u(r)) dr

)
ds,

whose fixed points correspond with solutions to (3.1).
Since f is discontinuous in both variables, the operator N is not continuous and

thus we transform (3.1) into a multi-point boundary value problem with a nonlinear
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differential inclusion

− (φ(u′))′ ∈ F(t, u) for a.a. t ∈ I , u′(0) = 0 = u(1) −
n∑

i=1

αi u(ηi ), (3.2)

where F : I × [0,∞) → 2[0,∞) is the multivalued map given by

F(t, x) =
⋂

ε>0

co f
(
t, Bε(x)

)
,

with Bε(x) := [x − ε, x + ε]. Equivalently, F can be rewritten as

F(t, x) =
[
min

{
f (t, x), lim inf

y→x
f (t, y)

}
,max

{
f (t, x), lim sup

y→x
f (t, y)

}]
.

Observe that F(t, x) = { f (t, x)} whenever f (t, ·) is continuous at x .
Note that the solutions of (3.2) are usually called Krasovskii solutions of (3.1).
To solve (3.2), it suffices to consider the operator inclusion u ∈ (� ◦ �)(u), with

�v(t) = 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1 (v(s)) ds +
∫ 1

t
φ−1 (v(s)) ds

and �(u) = 
 ◦ NF (u), where


v(s) =
∫ s

0
v(r) dr

and NF denotes the Nemytskii operator

NF (u) = {v ∈ L1(I ) : v(t) ∈ F(t, u(t)) for a.a. t ∈ I }.

We shall need the following result concerning the upper semicontinuity of the
Nemytskii operator (see [8,25], for details).

Lemma 3.1 Assume that the function f : I × [0,∞) → [0,∞) satisfies conditions
(H1) and (H2).

Then the Nemytskii operator NF : P → 2L
1(I ) is usc.

In order to apply the compression–expansion fixed point theorem in cones, we need
the following Harnack type inequality. Its proof is adapted from the ideas in [9,15].

Lemma 3.2 For every function u ∈ C1(I ) with u′(0) = 0 = u(1) − ∑
αi u(ηi ),

u′(t) ∈ (−a, a) for every t ∈ I , φ(u′) ∈ W 1,1(I ) and (φ(u′))′ ≤ 0 on I , one has the
following inequality:

min
t∈[0,ηi ]

u(t) ≥ 1 − ηi

1 − αi ηi
‖u‖∞ , (3.3)
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for each i ∈ {1, 2, . . . , n}.
Proof From (φ(u′))′ ≤ 0, we have that φ(u′) is nonincreasing and so is u′ =
φ−1(φ(u′)). Thus u is concave on I . On the other hand, since φ(u′) is nonincreas-
ing and vanishes at t = 0, we have that φ(u′) ≤ 0, and then u′ ≤ 0. Hence, u is
nonincreasing on I .

Now, to see that u ≥ 0, it suffices to show that u(1) ≥ 0. Since u is nonincreasing
on I , we have that u(ηi ) ≥ u(1) for all i ∈ {1, 2, . . . , n} and thus condition u(1) =∑

αi u(ηi ) implies that (1 − ∑
αi )u(1) ≥ 0. Then, by assumption

∑
αi < 1, we

obtain that u(1) ≥ 0. Therefore, u is a nonnegative, nonincreasing, concave function
and ‖u‖∞ = u(0).

Let us fix an arbitrary i ∈ {1, 2, . . . , n}. By its concavity, the graph of u restricted
to [0, ηi ] lies under the line containing the points (1, u(1)) and (ηi , u(ηi )). Thus,

u(0) ≤ u(1) + u(ηi ) − u(1)

1 − ηi
.

Since u(1) ≥ αi u(ηi ), we have

u(0) ≤ 1 − αi ηi

1 − ηi
u(ηi ).

Finally, (3.3) follows immediately from u(ηi ) = mint∈[0,ηi ] u(t). 
�
In the sequel, let us denote α := αn and η := ηn . We shall prove the existence of

positive solutions to (3.1) in the following subcone of P:

K =
{
u ∈ P : min

t∈[0,η] u(t) ≥ c ‖u‖∞
}

,

with c := (1 − η)/(1 − α η).
In order to apply Theorem 2.2, we let X = Y = C(I ), KX = K and

KY = {u ∈ P : u is nondecreasing, u(0) = 0} .

In the following result, we show that the operator T = � ◦ � is a multivalued
decomposable map, what justifies the application of the theory developed in Sect. 2.

Theorem 3.1 Assume that f satisfies conditions (H1) and (H2).
Then the operators

� : K → 2KY and � : KY → K

are well–defined; � is usc with closed convex values and maps bounded sets into
relatively compact sets; and � is a single–valued continuous operator.
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Proof It is clear that �(K ) ⊂ KY since � = 
 ◦ NF , f is nonnegative and 
v(t) =∫ t
0 v(r) dr . Let us show that �(KY ) ⊂ K . Take an arbitrary function v ∈ KY and
let u := �v, then u ∈ P . Moreover, φ(u′) = −v, and thus φ(u′) is nonincreasing.
Furthermore, u′(0) = 0 = u(1) − ∑

αi u(ηi ). By Lemma 3.2, we have

min
t∈[0,η] u(t) ≥ 1 − η

1 − α η
‖u‖∞

and, therefore, u ∈ K .
In addition, 
 as a linear operator from L1 (I ) to C (I ) is compact and, by Lemma

3.1, NF is usc from the topology of C(I ) to that of L1(I ). Hence, � is usc and maps
bounded sets into relatively compact sets. Also, � has closed and convex values, see
[26, Theorem 2].

Finally, the continuity and the compactness of the operator � are standard conse-
quences of Lebesgue’s dominated convergence theorem and Ascoli-Arzela’s theorem.


�
Now we present some sufficient conditions about f for guaranteeing the cone–

compression or cone–expansion conditions for the operator T = �◦�on the boundary
of two nested neighborhoods of the origin.

Let us introduce some notations. For r > 0 and ε ∈ (0, r), denote

mr ,ε := inf
t∈[0,η], x∈[r−ε,(r+ε)/c] f (t, x) and Mr ,ε := sup

t∈I , x∈[0,r+ε]
f (t, x).

We also make use of the following relatively open set of the cone K ,

Vr =
{
u ∈ K : min

t∈[0,η] u(t) < r

}
,

which is similar to that introduced in [21].
Notice that Br ⊂ Vr ⊂ Br/c, where Bρ := {u ∈ K : ‖u‖∞ < ρ}.

Lemma 3.3 Assume that f satisfies conditions (H1) and (H2). If there exist r > 0
and ε > 0 such that

φ−1 (
Mr ,ε

) ≤
(
1 −

n∑

i=1

αi

)
r , (3.4)

then we have that λu /∈ Tu for all u ∈ K, ‖u‖∞ = r , and all λ > 1.

Proof Let us show that

‖v‖∞ ≤ r for all v ∈ Tu and u ∈ K with ‖u‖∞ = r ,

which implies that

λu /∈ Tu for all λ > 1 and u ∈ K with ‖u‖∞ = r .
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Assume to the contrary that there exist v ∈ Tu and u ∈ K with ‖u‖∞ = r such
that r < ‖v‖∞. Observe that if w ∈ NF (u) and ‖u‖∞ = r , by the definition of the
regularized multivalued map F , we have

w(t) ≤ sup
t∈I , x∈[0,r+ε]

f (t, x) =: Mr ,ε for a.a. t ∈ I .

Hence, since v ∈ Tu = � ◦ 
 ◦ NF (u), we obtain

‖v‖∞ ≤ 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1
(∫ s

0
Mr ,ε dr

)
ds +

∫ 1

0
φ−1

(∫ s

0
Mr ,ε dr

)
ds

= 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1 (
Mr ,ε s

)
ds +

∫ 1

0
φ−1 (

Mr ,ε s
)
ds

and so, from ηi ∈ (0, 1) for all i ∈ {1, . . . , n}, it follows

‖v‖∞ ≤ 1

1 − ∑n
i=1 αi

∫ 1

0
φ−1 (

Mr ,ε s
)
ds ≤ 1

1 − ∑n
i=1 αi

φ−1 (
Mr ,ε

)
.

Finally, inequality (3.4) yields the contradiction r < ‖v‖∞ ≤ r . 
�
Remark 3.1 Of course, condition (3.4) holds for r large enough if φ is singular. There-
fore, in this case, problem (3.2) is always solvable under the basic assumptions (H1)
and (H2). Moreover, it is worth mentioning that if φ is singular and f is continu-
ous, then problem (3.1) has a nonnegative (maybe trivial) solution without additional
hypotheses, as a consequence of Proposition 2.1. This is similar to what happens for
the Dirichlet problem, see [5].

Lemma 3.4 Assume that f satisfies conditions (H1) and (H2). If there exist r > 0
and ε ∈ (0, r) such that

φ−1 (
ηmr ,ε

) ≥ 1 − ∑n
i=1 αi

1 − η
r , (3.5)

then u /∈ Tu + μw for all u ∈ ∂K Vr and all μ > 0 with w ≡ 1.

Proof Suppose that there exist u ∈ ∂K Vr and μ > 0 such that u ∈ Tu + μw. Since
by definition T = � ◦ 
 ◦ NF , then there exists v ∈ NF (u) such that

u(t) = 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

ηi

φ−1
(∫ s

0
v(r) dr

)
ds +

∫ 1

t
φ−1

(∫ s

0
v(r) dr

)
ds + μ.

Notice that if v ∈ NF (u) and u ∈ ∂K Vr , by the definition of the regularized multival-
ued map F , we have

v(t) ≥ inf
t∈[0,η], x∈[r−ε,(r+ε)/c] f (t, x) =: mr ,ε for a.a. t ∈ [0, η].
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Therefore, since 0 < ηi ≤ η < 1 for every i ∈ {1, . . . , n − 1}, we have for
t ∈ [0, η],

u(t) ≥ 1

1 − ∑n
i=1 αi

n∑

i=1

αi

∫ 1

η

φ−1
(∫ s

0
v(r) dr

)
ds +

∫ 1

η

φ−1
(∫ s

0
v(r) dr

)
ds + μ

≥ 1

1 − ∑n
i=1 αi

∫ 1

η

φ−1
(∫ η

0
mr ,ε dr

)
ds + μ

≥ 1

1 − ∑n
i=1 αi

∫ 1

η

φ−1 (
ηmr ,ε

)
ds + μ

= 1 − η

1 − ∑n
i=1 αi

φ−1 (
ηmr ,ε

) + μ.

Hence, condition (3.5) implies that u(t) ≥ r + μ for t ∈ [0, η]. Taking the infimum
in [0, η], we get the contradiction r ≥ r + μ. 
�

Nowwe are in a position to prove the existence of positive solutions to the inclusion
problem (3.2) based on the previous lemmas and the compression-expansion fixed
point theorem in Sect. 2.

Theorem 3.2 Assume that f satisfies conditions (H1) and (H2). Moreover, assume
that there exist r1, r2 > 0 and ε ∈ (0, r2) such that

φ−1 (
Mr1,ε

) ≤
(
1 −

∑
αi

)
r1 and φ−1 (

ηmr2,ε
) ≥ 1 − ∑

αi

1 − η
r2. (3.6)

• If r1 < r2, then problem (3.2) has one positive solution u such that r1 ≤ ‖u‖∞ ≤
r2/c.

• If r2/c < r1, then problem (3.2) has one positive solution u such that r2 ≤ ‖u‖∞ ≤
r1.

Proof By Lemmas 3.3 and 3.4 we obtain, thanks to condition (3.6), that

λu /∈ Tu for all u ∈ ∂K Br1 and all λ > 1,

and

u /∈ Tu + μ for all u ∈ ∂K Vr2 and all μ > 0.

First, if r1 < r2, it follows that 0 ∈ Br1 ⊂ Br1 ⊂ Vr2 and thus Theorem 2.2
ensures that the operator T has at least one fixed point in Vr2\Br1 . Now, the fact that
Vr2 ⊂ Br2/c gives the conclusion.

On the other hand, in case that r2/c < r1, we have that 0 ∈ Vr2 ⊂ Vr2 ⊂ Br1
and as a consequence of Theorem 2.2 we obtain that T has at least one fixed point in
Br1\Vr2 ⊂ Br1\Br2 . 
�
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Remark 3.2 We use the open set Vr in Lemma 3.4 to prove the index zero result in
Proposition 2.2. As explained in [17], the requirement about the growth condition of
f is less stringent than if the set Br/c is employed instead.

Remark 3.3 Observe that condition (3.6) holds if there exists two constants M1, M2 ∈
(0, b) such that M1 ≤ f (t, x) ≤ M2 for all (t, x) ∈ I × [0,∞), as required in [16].

The existence of positive solutions for the differential inclusion (3.2) is meaningful
itself when f is a discontinuous function, see [7,18,19]. However, we are concerned
with the existence of positive Carathéodory type solutions for (3.1) and so we need
some additional condition about f which implies that all the solutions of (3.2) are in
fact Carathéodory solutions of (3.1). It is given by the notion of admissible disconti-
nuity curves presented in the following definition, which can be traced back to [23]
(see also [12,25]).

Definition 3.1 A function γ ∈ C1(I ) with φ ◦ γ ′ ∈ W 1,1(I ) is called an admissible
discontinuity curve for the differential equation−(φ(u′))′ = f (t, u) on the subinterval
J ⊂ I if

{−(φ(γ ′(t)))′} ∩ F(t, γ (t)) ⊂ { f (t, γ (t))} for a.a. t ∈ J . (3.7)

Note that a sufficient condition for a curve γ : I → R to be admissible on a
subinterval J ⊂ I can be stated as follows: there exist δ, ε > 0 such that

− (φ(γ ′(t)))′ + δ ≤ f (t, y) for a.a. t ∈ J and all y ∈ [
γ (t) − ε, γ (t) + ε

]
, (3.8)

or

− (φ(γ ′(t)))′ − δ ≥ f (t, y) for a.a. t ∈ J and all y ∈ [
γ (t) − ε, γ (t) + ε

]
. (3.9)

Obviously, any Carathéodory solution for −(φ(u′))′ = f (t, u) on J is also an admis-
sible discontinuity curve.

The transversality condition (3.7) is the key ingredient to show that all solutions of
(3.2) are Carathéodory solutions of (3.1). The proof of this result can be looked up in
[27, Lemma 3.3].

Lemma 3.5 Assume that f : I × [0,∞) → [0,∞) satisfies conditions (H1), (H2)
and

(H3) There is a countable number of admissible discontinuity curves γn on the subin-
tervals Jn ⊂ I such that

f (t, ·) is continuous on [0,∞)\
⋃

{n: t∈Jn}
{γn(t)} for a.a. t ∈ I .

Then the set of solutions to problem (3.2) coincides with the set of solutions to (3.1).

Now, as a straightforward consequence of Theorem 3.2 and Lemma 3.5, we derive
the existence of positive solutions for problem (3.1).
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Theorem 3.3 Assume that f satisfies conditions (H1), (H2) and (H3). Moreover,
assume that there exist r1, r2 > 0 and ε ∈ (0, r2) such that

φ−1 (
Mr1,ε

) ≤
(
1 −

∑
αi

)
r1 and φ−1 (

ηmr2,ε
) ≥ 1 − ∑

αi

1 − η
r2.

(S1) If r1 < r2, then problem (3.1) has one positive solution u such that r1 ≤ ‖u‖∞ ≤
r2/c.

(S2) If r2/c < r1, then problem (3.1) has one positive solution u such that r2 ≤
‖u‖∞ ≤ r1.

We illustrate the applicability of our result with the following example.

Example 3.1 Consider the problem

−
(

u′
√
1 + |u′|2

)′
= f (t, u) for a.a. t ∈ I , u′(0) = 0, u(1) = 1

5
u

(
1

2

)
, (3.10)

with

f (t, x) = 1

4

(
1 + sin2

([
1

x + 1 − t

]))
for all x ∈ [0, 1],

where [x] denotes the integer part of x .
Note that the function f satisfies that

1

4
≤ f (t, x) ≤ 1

2
for t, x ∈ [0, 1].

Hence inequalities (3.6) hold, for instance, with r1 = 4/5, r2 = 1/20 and ε small
enough. Because of this localization, it suffices to define f in I × [0, 1].

Moreover, the function f is discontinuous over the graphs of a countable number
of lines, which are those given by

γn(t) = t − 1 + 1

n
, t ∈

[
1 − 1

n
, 1

]
, n ∈ N.

Theyare admissible discontinuity curves in the sense ofDefinition3.1 since (φ(γ ′
n))

′ ≡
0 for all n ∈ N and thus inequality (3.8) is trivially satisfied for any δ ∈ (0, 1/4) and
any ε > 0. This implies that f satisfies condition (H3).

Then Theorem 3.3 ensures that problem (3.10) has a positive solution u such that

1

20
≤ ‖u‖∞ ≤ 4

5
.

Wehighlight that, as far as we are aware, the previous existence result is new even in
the case of continuous nonlinearities. Note that in this case, since F(t, x) = { f (t, x)},
the positive number ε can be omitted in conditions (3.4) and (3.5).
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Corollary 3.1 Assume that f : I ×[0,∞) → [0,∞) is continuous. Moreover, assume
that there exist r1, r2 > 0 such that

φ−1
(

max
t∈I , x∈[0,r1]

f (t, x)

)
≤

(
1 −

∑
αi

)
r1 and φ−1

(
η min

t∈[0,η], x∈[r2,r2/c]
f (t, x)

)
≥ 1 − ∑

αi

1 − η
r2.

(S1) If r1 < r2, then problem (3.1) has one positive solution u such that r1 ≤ ‖u‖∞ ≤
r2/c.

(S2) If r2/c < r1, then problem (3.1) has one positive solution u such that r2 ≤
‖u‖∞ ≤ r1.

Remark 3.4 Obviously, from Theorem 3.3, one can obtain multiplicity results for
problem (3.1) provided that there exist several pairs of numbers (r1, r2) satisfying
conditions (3.4) and (3.5), respectively.

Finally, we show that problem (3.1) has at least one positive solution under suitable
asymptotic conditions. Next results are inspired by those in [4], but our arguments are
slightly different since they rely on Krasnosel’skiı̆’s type fixed point theorem in cones.

Proposition 3.1 Assume that f satisfies conditions (H1), (H2) and that

lim
x→0+

f (t, x)

φ(x)
= +∞ uniformly with t ∈ I (3.11)

and

lim sup
x→0

φ(τ x)

φ(x)
< +∞ for all τ > 0. (3.12)

Then there exists r > 0 such that u /∈ Tu + μw for all u ∈ ∂K Vr and all μ > 0 with
w ≡ 1.

Proof By (3.12), with τ = 2
(
1 − ∑

αi
)
/(1 − η), there exists L > 0 so that

η L > lim sup
x→0

φ
(
1−∑

αi
1−η

x
)

φ
( x
2

) ,

and thus there exists ρ > 0 (ρ < a) such that

η L φ
( x
2

)
≥ φ

(
1 − ∑

αi

1 − η
x

)
for all x ∈ (0, ρ). (3.13)

On the other hand, by (3.11), there is r > 0 (we may suppose r < 2cρ/3) such
that

f (t, x) ≥ Lφ(x) for all t ∈ I and all x ∈
(
0,

3r

2c

]
,
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so it follows that

inf
t∈[0,η], x∈[r/2,3r/(2c)] f (t, x) ≥ Lφ

( r
2

)
.

Now, inequality (3.13) implies that

inf
t∈[0,η], x∈[r/2,3r/(2c)] f (t, x) ≥ 1

η
φ

(
1 − ∑

αi

1 − η
r

)
.

Finally, the conclusion is derived from Lemma 3.4 with ε = r/2. 
�
If φ is singular (i.e., a < +∞, b = +∞), then problem (3.1) has at least one

positive solution provided that f is superlinear at 0 with respect to φ.

Theorem 3.4 Assume that conditions (H1)−(H3), (3.11) and (3.12) are fulfilled.
Then problem (3.1) has at least one positive solution if φ is singular.

Proof By Remark 3.1 and Proposition 3.1, problem (3.2) has at least one positive
solution. Finally, Lemma 3.5 implies that it is also a Carathéodory solution for (3.1).


�
A remarkable particular problem is that given by the relativistic operator, namely,

−
(

u′
√
1 − |u′|2

)′
= f (t, u) (t ∈ I ), u′(0) = 0, u(1) =

n∑

i=1

αi u(ηi ).(3.14)

Corollary 3.2 Assume that conditions (H1) − (H3) hold and

lim
x→0+

f (t, x)

x
= +∞ uniformly with t ∈ I . (3.15)

Then problem (3.14) has at least one positive solution.

Proof The conclusion follows from Theorem 3.4 with the homeomorphism φ :
(−1, 1) → R given by φ(x) = x/

√
1 − x2. Note that

lim
x→0

φ(τ x)

φ(x)
= τ for all τ > 0,

and that, in this case, condition (3.15) implies (3.11). 
�
Unlike the singular case, if φ is a classical homeomorphism (i.e., a = b = +∞),

then some additional condition to the asymptotic behavior of f at 0 is needed to ensure
the existence of a positive solution for (3.1). To this end, it is enough to assume that
f is sublinear at infinity with respect to φ.



66 Page 16 of 18 J. Rodríguez–López

Proposition 3.2 Assume that f satisfies conditions (H1), (H2) and that

lim
x→∞

f (t, x)

φ(x)
= 0 uniformly with t ∈ I (3.16)

and φ is a classical homeomorphism such that

lim sup
x→∞

φ(x)

φ(τ x)
< +∞ for all τ ∈ (0, 1). (3.17)

Then there exists R > 0 such that λu /∈ Tu for all u ∈ K, ‖u‖∞ = R, and all λ > 1.

Proof First, note that (3.17),with τ = 2
(
1 − ∑

αi
)
/3, implies that there exist positive

numbers ξ and ρ such that

φ

(
3

2
x

)
≤ ξφ

((
1 −

∑
αi

)
x
)

for all x > ρ. (3.18)

Next, by (3.16), for each L > 0 there exists m > 0 such that

f (t, x) ≤ m + Lφ(x) for all t ∈ I and all x ≥ 0.

We can choose L > 0 small enough such that 2 L ξ ≤ 1. Since φ : R → R is
an increasing unbounded homeomorphism, we can also take R > 0 large enough
(suppose R > ρ) so that m ≤ Lφ(3R/2). Hence, we have that

f (t, x) ≤ 2 Lφ

(
3

2
R

)
for all t ∈ I and all x ∈

[
0,

3

2
R

]
.

From the choice of L and inequality (3.18), we obtain that

f (t, x) ≤ φ
((

1 −
∑

αi

)
R
)

for all t ∈ I and all x ∈
[
0,

3

2
R

]
.

Therefore, condition (3.4) holds with r = R and ε = R/2, so the conclusion is
obtained by application of Lemma 3.3. 
�
Theorem 3.5 Assume that conditions (H1) − (H3), (3.11), (3.12), (3.16) and (3.17)
hold. Then problem (3.1) has at least one positive solution provided that φ is classical.

Proof Propositions 3.1 and 3.2 allow us to deduce, by application of Theorem 2.2,
that problem (3.2) has at least one positive solution which belongs to BR\Vr . Finally,
Lemma 3.5 implies that it is also a Carathéodory solution for (3.1). 
�

As a consequence, in the classical p-Laplacian case,

−
(∣∣u′∣∣p−2

u′)′ = f (t, u) (t ∈ I ), u′(0) = 0, u(1) =
n∑

i=1

αi u(ηi ), (3.19)
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the existence of one positive solution is ensured provided that f is superlinear at 0
and sublinear at infinity with respect to φp(x) = |x |p−2 x , p > 1.

Corollary 3.3 Assume that conditions (H1) − (H3) hold,

lim
x→0+

f (t, x)

x p−1 = +∞ and lim
x→∞

f (t, x)

x p−1 = 0 uniformly with t ∈ I .

Then problem (3.19) has at least one positive solution.

Proof It suffices to apply Theorem 3.5 with the homeomorphism φ(x) = φp(x) =
|x |p−2 x . Note that φp clearly satisfies conditions (3.12) and (3.17). 
�
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