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Abstract
We prove that each generalized (in the sense of Miculescu and Mihail) IFS consisting
of contractive maps generates the unique generalized Hutchinson measure. This result
extends the earlier result due to Miculescu and Mihail in which the assertion is proved
under certain additional contractive assumptions.
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1 Introduction

In the last decade, various aspects of the theory of classical iterated iterated function
systems (IFSs) has been extended to the framework of generalized IFSs (GIFSs for
short), which were introduced in 2008 by Miculescu and Mihail (see [13,15,16]).
Instead of selfmaps of a given metric space X , GIFSs consist of maps defined on
the finite Cartesian product Xm with values in X . It turned out that many classical
results for IFSs have natural counterparts in the GIFSs setting (see, e.g., [17,23,24]).
In particular,GIFSs consisting of contractivemaps generate unique compact setswhich
can be called as their attractors. On the other hand, the class of GIFSs’ attractors is
essentially wider than the class of IFSs’ attractors (see [10,22]).

One of a very important parts of the IFS theory bases on the existence of the so-
called Hutchinson measure, which is the unique measure invariant w.r.t. the so-called
Markov operator generated by the underlying IFS (see, e.g., [5]).

Miculescu and Mihail in [12,14] proved that a GIFS F generates a counterpart
of the Hutchinson measure, provided that the underlying maps from F satisfy some
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additional contractive assumptions (a bit different approach to the generalized IFSs
and their Hutchinson measures were considered in [19]). Using a completely different
approach, in the main result of our paper we will prove the same assertion but without
this additional requirements. We also give an example which shows that the original
proof from [14] cannot work in the general case. Presented reasonings are inspired by
the ones from [8] and they use the machinery of the code spaces for GIFSs from [24].

2 Preliminaries

2.1 Generalized IFSs and a counterpart of the Hutchinson–Barnsley theorem

Assume that (X , d) is ametric space andm ∈ N. Consider the Cartesian product Xm as
a metric space with the maximum metric dm . ByK(X) we will denote the hyperspace
of all nonempty and compact subsets of X , endowed with the Hausdorff–Pompeiu
metric h.

Definition 2.1 By a generalized iterated function system of order m (GIFS for short)
we will mean any finite family F of continuous maps defined on Xm and with values
in X .

Each GIFS F = { f1, . . . , fn} generates the map F : K(X)m → K(X) which
adjust to every m-tuple (K1, . . . , Km) ∈ K(X)m , the value

F(K1, . . . , Km) := f1(K1 × · · · × Km) ∪ · · · ∪ fn(K1 × · · · × Km).

The map F will be called the generalized Hutchinson operator for F (using the same
symbol as for a GIFS itself does not lead to confusions).

Definition 2.2 A map f : Xm → X will be called:

(i) a generalized Banach contraction, if its Lipschitz constant Lip( f ) < 1.
(ii) a generalized Matkowski contraction, if there is a nondecreasing function ϕ :

[0,∞) → [0,∞) such that the sequence of iterations ϕ(n)(t) → 0 for every
t ≥ 0, and additionally

∀x,y∈Xm d( f (x), f (y)) ≤ ϕ(dm(x, y))

Clearly, each generalized Banach contraction is Matkowski, but the converse is not
true. If m = 1 then we arrive to the classical notions of Banach contraction and
Matkowski contraction. As was proved by Matkowski [11], each Matkowski con-
traction satisfies the thesis of the Banach fixed point theorem (and this is one of the
strongest generalization of the Banach theorem; for example, it implies the ones due to
Browder, Rakotch or Edelstein—see [6] for a deep discussion on various contractive
conditions). This assertion can be extended to the considered “generalized” case (see
[4, Theorem 2.1] and also [13,16,23] for more restrictive cases).
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Proposition 2.3 [4, Theorem 2.1] Assume that f : Xm → X is a generalized
Matkowski contraction and the space X is complete. Then there exists the unique
point x∗ ∈ X such that

f (x∗, . . . , x∗) = x∗.

Moreover, for every x1, . . . , xm ∈ X, the sequence (xk) defined inductively by

xk+m := f (xk, . . . , xk+m−1), k ≥ 1

converges to x∗.

The following result is a counterpart of the classical Hutchinson result (see, e.g., [2]
and [5]) on generating attractors by IFSs (see [24, Theorem 1.4 and Remark 1.5],
[4, Theorem 2.16] and also [13,16,23] for more restrictive cases). It follows from
Proposition 2.3.

Theorem 2.4 Assume that F = { f1, . . . , fn} is a GIFS on a complete space X con-
sisting of generalized Matkowski contractions. Then there is the unique AF ∈ K(X)

such that

AF = F(AF , . . . , AF ) = f1(AF × · · · × AF ) ∪ · · · ∪ fn(AF × · · · × AF )

Moreover, for every sets K1, . . . , Km ∈ K(X), the sequence (Kk) defined by Kk+m :=
F(Kk, . . . , Kk+m−1), k ∈ N, converges to AF w.r.t. the Hausdorff–Pompeiu metric.

Definition 2.5 The set AF from the thesis of the above result will be called the attractor
of F .

As was remarked, the class of GIFSs’ attractors is essentially wider than the class of
IFSs’ attractors. In fact, there are sets (even subsets of the real line) which are attractors
of GIFSs of order 2 consisting of generalized Banach contractions, and which are not
homeomorphic to the attractor of IFS consisting of Matkowski contractions—see [9].

2.2 Code space for GIFSs and the projectionmap

Here we recall the notion of the code space from [24] (see [17] for alternative, yet
earlier, version) and the result which shows that the relationships between a GIFS and
its code space are similar as in the classical IFS case. Later we will use this machinery
in the proof of our main result.

Fix natural numbers n,m, and define sets �k , k ∈ N, in the following inductive
way:

�1 := {1, . . . , n}
�k+1 := �k × · · · × �k

m - times
, n ≥ 1 (1)

Then for every k ∈ N, define

k� := �1 × · · · × �k (2)
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and, finally,
� := �1 × �2 × · · · (3)

For every α = (αk), β = (βk) ∈ �, set

d(α, β) :=
∞∑

k=1

dk(αk, βk)

(m + 1)k

where dk is the discrete metric on �k . It turns out that d is a metric on � and (�, d)

is compact.
As the construction of � depends strongly on n and m, we should add these values

as indexes. For simplicity of notations, we will not do it—this will not lead to any
confusion.

Definition 2.6 The space (�, d) is called the code space. If F is a GIFS of order m
which consists of n maps, then (�, d) is called the code space for F .

Now for k ≥ 2, α = (α1, (α
1
2, . . . , α

m
2 ), . . . , (α1

k , . . . , α
m
k )) ∈ k� and i = 1, . . . ,m,

define
α(i) := (αi

2, . . . , α
i
k).

Clearly, α(i) ∈ k−1�.
In a similar way we define α(i) for every α ∈ � and i = 1, . . . ,m.
Now for every i = 1, . . . , n, we define τi : �m → � by setting to each α1 =

(α1
1, α

1
2, . . .), . . . , α

m = (αm
1 , αm

2 , . . .) ∈ �, the sequence

τi (α
1, . . . , αm) := (i, (α1

1, . . . , α
m
1 ), (α1

2, . . . , α
m
2 ), . . .).

The next result gathers basic properties of τi , i = 1, . . . , n (see [24, Proposition 2.4]):

Lemma 2.7 In the above framework:

(i) for every i = 1, . . . , n, α1, . . . , αm ∈ � and j = 1, . . . , n, it holds
τi (α

1, . . . , αm)( j) = α j ;
(ii) for every i = 1, . . . , n, Lip(τi ) ≤ m

m+1 ;
(iii) � = τ1(�

m) ∪ · · · ∪ τn(�
m), e.g., � is the attractor of T := {τ1, . . . , τm}.

Definition 2.8 The family T = {τ1, . . . , τn} is called the canonical GIFS on �.

Now if X is a metric space, then we define metric spaces Xk , k ∈ N, according to the
inductive formula:

X1 := X × · · · × X
m times

Xk+1 := Xk × · · · × Xk
m times

, k ∈ N

where, at each step, we consider Cartesian product as ametric spacewith themaximum
metric. Clearly, each Xk is isometric with Xmk

.
In a similar way, for a set D ⊂ X , we define the sequence Dk, k ∈ N, of subsets

of Xk , k ∈ N.
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Nowassume thatF = { f1, . . . , fn} is aGIFSon a space X of orderm. By induction,
we will define the families Fk = { fα : Xk → X : α ∈ k�}, k ∈ N.

The family F1 is simply the GIFS F itself. Now assume that we defined Fk . For
every α = (α1, . . . , αk+1) ∈ k+1� and x = (x1, . . . , xm) ∈ Xk+1, define

fα(x) := fα1( fα(1)(x1), . . . , fα(m)(xm))

and set Fk+1 := { fα : α ∈ k�}.
The following result shows the promised relationships between a GIFS and its

code space (see [4, Lemma 4.9] [24, Lemma 3.4, Theorem 3.7, Theorem 3.8 and The-
orem 3.11] and [4]).We just mention here the important, from the perspective of future
reasonings, ones.

Here and later on, if α = (αi ) is any sequence and k ∈ N, then by α|k we denote
the restriction of α to the first k elements, that is, α|k := (α1, . . . , αk).

Theorem 2.9 Assume that F is GIFS on a complete metric space X consisting of
generalized Matkowski contractions. Then the following conditions hold:

(i) for every compact set C ⊂ X, there is a closed and bounded set D ⊂ X so that
C ⊂ D and F(D, . . . , D) ⊂ D;

(ii) for every closed and bounded set D ⊂ X so that F(D, . . . , D) ⊂ D, and every
α ∈ �, the sequence ( fα|k (Dk)) satisfies the following conditions:

(iia) ( fα|k (Dk)) is a decreasing sequence of sets with diameter tending to 0;
(iib)

⋂
k∈N fα|k (Dk) is a singleton and its unique element does not depend on D;

denote it by π(α);

(iii) the mapping π : �F �→ X has the following properties:

(iiia) π is continuous;
(iiib) π(�) = AF ;
(iiic) for every i = 1, . . . , n, fi ◦ π1 = π ◦ τi , where π1 : �m �→ X1 is defined by

π1(α
1, . . . , αm) := (π(α1), . . . , π(αm)).

2.3 Space of probability measures, Monge–Kantorovichmetric and push-forward
measures

Let (X , d) be a metric space. By P(X) let us denote the space of all Borel probability
measuresμ on X with compact support, that is, for which the following set is compact:

supp(μ) := {x ∈ X : μ(U ) > 0 for any open set U  x}.

Note that the equivalent definition of the support is: supp(μ) = ⋂{H ⊂ X :
H is closed and μ(H) = 1}.

For μ, ν ∈ P(X), define

dMK (μ, ν) := sup

{∣∣∣∣
∫

X
g dμ −

∫

X
g dν

∣∣∣∣ : g : X → R, Lip(g) ≤ 1

}
.
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It turns out that dMK is metric (called the Monge–Kantorovich orHutchinsonmetric),
which generates the topology of weak convergence (see [3,7] or [8] for details; note
that we restrict our discussion to relatively restricted case of measures with compact
support).

Wewill also use the notion of push-forwardmeasure. Additionally, let Y be ametric
space and w : X → Y be continuous. For μ ∈ P(X), the push-forward measure
through w is the measure μ ◦ w−1 on Y by adjusting to each Borel set A ⊂ Y , the
value

(μ ◦ w−1)(A) := μ(w−1(A)).

The following lemma lists basic properties of push-forward measure. The proof can
be found in [3] or [8]:

Lemma 2.10 In the above frame, for every measures μ,μ1, . . . , μn ∈ P(X) and
p1, . . . , pn > 0 with p1 + · · · + pn = 1, we have

(i) μ ◦ w−1 ∈ P(Y );
(ii) supp(μ ◦ w−1) = w(supp(μ));
(iii) for a continuous map g : Y → R, it holds

∫
Y g d(μ ◦ w−1) = ∫

X g ◦ w dμ;
(iv) (p1 · μ1 + · · · + pnμn) ◦ w−1 = p1 · (μ1 ◦ w−1) + · · · + pn · (μn ◦ w−1).

Assume additionally that X1, X2, X3, . . . are metric spaces, μi ∈ P(Xi ) for i =
1, 2, . . . and let m ∈ N. Then by μ1 × · · · × μm and μ1 × μ2 × . . . we denote the
productmeasures ofμ1, . . . , μm on X1×· · ·×Xm , and ofμ1,μ2,…, on X1×X2×. . .,
respectively. They are unique measures in P(X1 × · · · × Xm) and P(X1 × X2 × . . .),
respectively, so that for any Borel sets Ai ⊂ Xi , i = 1, . . . ,m, it holds

(μ1 × · · · × μm)(A1 × . . . × Am) = μ1(A1) · · · μm(Am)

and for every k ∈ N and any Borel sets A1 ⊂ X1,…, Ak ⊂ Xk , we have

(μ1 × μ2 × . . .)(A1 × A2 × · · · × Ak × Xk+1 × . . .) = μ1(A1)) · · · μk(Ak).

We will also use the important Fubini theorem (we state here a version that we will
use later): if f : X1 × · · · × Xm → R is μ1 × · · · × μm-integrable (in particular,
if f is continuous—recall that our measures have compact supports), then for every
enumeration k1, . . . , kl , kl+1, . . . , km of the set {1, . . . ,m}, it holds

∫

X1×···×Xm

f (x1, . . . , xm) d(μ1 × · · · × μm)(x1, . . . , xm)

=
∫

Xk1

(∫

Xk2

(
. . .

(∫

Xkm

f (x1, . . . , xm) dμkm (xkm )

)
. . .

)
dμk2 (xk2 )

)
dμk1 (xk1 )

=
∫

Xk1×···×Xkl

(∫

Xkl+1×···×Xkm

f (x1, . . . , xm) d(μkl+1 × · · · × μkm )(xkl+1 , . . . , xkm )

)

d(μk1 × · · · × μkl )(xk1 , . . . , xkl ).
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2.4 Hutchinsonmeasure for GIFSs

Definition 2.11 By a probabilistic GIFS (pGIFS for short) we will mean a pair (F , �p),
whereF = { f1, . . . , fn} is aGIFSand �p = (p1, . . . , pn) is a probability vector,which
means that p1, . . . , pn > 0 and p1 + · · · + pn = 1.

If (F , �p) is a probabilistic GIFS, then for every μ1, . . . , μm ∈ P(X), define

M(F , �p)(μ1, . . . , μm) := p1 ·(μ1×· · ·×μm)◦ f −1
1 +· · ·+ pn ·(μ1×· · ·×μm)◦ f −1

n .

ThemapM(F , �p) : P(X)×· · ·×P(X) → P(X)will be called the generalizedMarkov
operator for (F , �p).

By Lemma 2.10 and basic properties of integrals, we see that for every continuous
g : X → R, it holds
∫

X
g dM(F, �p)(μ1, . . . , μm) = p1

∫

Xm
g◦ f1 d(μ1×· · ·×μm)+· · ·+ pn

∫

Xm
g◦ fn d(μ1×· · ·×μm).

(4)
Miculescu and Mihail in [14] proved that a certain class of probabilistic GIFSs admit
counterparts of the so-called Hutchinson measures, that is, measures invariant w.r.t.
the generalized Markov operators. By Lipa,b(X

2, X) let us denote the family of maps
f : X2 → X so that

∀(x1,x2),(y1,y2)∈X2 d( f (x1, x2), f (y1, y2)) ≤ ad(x1, y1) + bd(x2, y2).

Clearly, for f ∈ Lipa,b(X
2, X), we have Lip( f ) ≤ a + b.

Theorem 2.12 [14, Theorem 3.6] Fix a, b ≥ 0 so that a + b < 1 and assume that
(F , �p) is a probabilistic GIFS of order 2 on a complete space X such that each f ∈ F
belongs to Lipa,b(X

2, X).

(i) There is the unique measure μ(F , �p) ∈ P(X) such that

M(F , �p)(μ(F , �p), μ(F , �p)) = μ(F , �p).

(ii) For every measures μ1, μ2 ∈ P(X), the sequence (μk) defined by μk+2 :=
M(F , �p)(μk, μk+1) for k ≥ 1, converges to μ(F , �p) w.r.t. the Monge–Kantorovich
metric.

(iii) supp(μ(F , �p)) = AF , where AF is the attractor of F .

Definition 2.13 The uniquemeasureμ(F , �p) for a probabilisticGIFS (F , �p)which sat-
isfies the thesis of the above theorem will be called a generalized Hutchinson measure
for (F , �p).

In the proof of the above theorem there is shown that the generalized Markov
operator M(F , �p) ∈ Lipa,b(P(X)2,P(X)) provided that the elements of F belong to
Lipa,b(X

2, X). The proof can be extended to arbitrary m. On the other hand, as the
next example shows, there areGIFSs consisting of contractivemapswhose generalized
Markov operator is not contractive.
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Example 2.14 Let f , g : [0, 1]2 → [0, 1] be given by

f (x, y) := 2

3
max{x, y}, g(x, y) := 2

3
max{x, y} + 1

3
.

It is easy to see that Lip( f ) = Lip(g) = 2
3 (see [21]). Now if a, b ≥ 0 are such that

∀(x1,y1),(x2,y2)∈R2 | f (x1, y1) − f (x2, y2)| ≤ a|x1 − x2| + b|y1 − y2|,

then we have

2

3
=

∣∣∣∣
2

3
− 0

∣∣∣∣ = | f (1, 0) − f (0, 0)| ≤ a|1 − 0| = a

and similarly b ≥ 2
3 . Thus a + b ≥ 4

3 . Now we will show that M(F , �p) is not
a generalized Matkowski contraction, where F = { f , g} and �p = (p1, p2) is any
probability vector.

Define μ1 = μ2 = δ0, ν1 = δ 1
2
, ν2 = 1

2δ0 + 1
2δ1 (where δx is the Dirac measure

supported on x). At first we observe that dMK (μ1, ν1) = dMK (μ2, ν2) = 1
2 .

Choose any nonexpansive map h : [0, 1] → R. Then

∣∣∣∣
∫

[0,1]
h dμ1 −

∫

[0,1]
h dν1

∣∣∣∣ =
∣∣∣∣h(0) − h

(
1

2

)∣∣∣∣ ≤
∣∣∣∣0 − 1

2

∣∣∣∣ = 1

2
∣∣∣∣
∫

[0,1]
h dμ2 −

∫

[0,1]
h dν2

∣∣∣∣ =
∣∣∣∣h(0) − 1

2
h(0) − 1

2
h(1)

∣∣∣∣ = 1

2
|h(0) − h(1)| ≤ 1

2
|0 − 1| = 1

2
.

On the other hand, if h(x) = x for x ∈ [0, 1], then in the above computations all
inequalities became equalities. All in all, we get dMK (μ1, ν1) = dMK (μ2, ν2) = 1

2 .
Now we observe that M(F , �p)(μ1, μ2) = p1δ0 + p2δ 1

3
. Indeed, we have:

M(F , �p)(μ1, μ2) = p1(δ0 × δ0) ◦ f −1 + p2(δ0 × δ0) ◦ g−1 = p1δ(0,0) ◦ f −1 + p2δ(0,0) ◦ g−1

= p1δ f (0,0) + p2δg(0,0) = p1δ0 + p2δ 1
3
.

Similarly,

M(F , �p)(ν1, ν2) = p1

(
δ 1
2

×
(
1

2
δ0 + 1

2
δ1

))
◦ f −1 + p2

(
δ 1
2

×
(
1

2
δ0 + 1

2
δ1

))
◦ g−1

= p1

((
δ 1
2

× 1

2
δ0

)
+

(
δ 1
2

× 1

2
δ1

))
◦ f −1 + p2

((
δ 1
2

× 1

2
δ0

)
+

(
δ 1
2

× 1

2
δ1

))
◦ g−1

= p1
1

2
δ(

1
2 ,0

) ◦ f −1 + p1
1

2
δ(

1
2 ,1

) ◦ f −1 + p2
1

2
δ(

1
2 ,0

) ◦ g−1 + p2
1

2
δ(

1
2 ,0

) ◦ g−1

= 1

2
p1δ f

(
1
2 ,0

) + 1

2
p1δ f

(
1
2 ,1

) + 1

2
p2δg

(
1
2 ,0

) + 1

2
p2δg

(
1
2 ,1

)

= 1

2
p1δ 1

3
+ 1

2
p1δ 2

3
+ 1

2
p2δ 2

3
+ 1

2
p2δ1 = 1

2
p1δ 1

3
+ 1

2
δ 2
3

+ 1

2
p2δ1.
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Finally, setting h(x) = x for x ∈ [0, 1], we have

dMK (M(F , �p)(μ1, μ2), M(F , �p)(ν1, ν2)) ≥
∫

[0,1]
h dM(F , �p)(ν1, ν2) −

∫

[0,1]
h dM(F , �p)(μ1, μ2)

= 1

2
p1 · 1

3
+ 1

2
· 2
3

+ 1

2
p2 · 1 − p1 · 0 − p2 · 1

3
= 1

3
+ 1

6
(p1 + p2)

= 1

2
= max{dMK (μ1, ν1), dMK (μ2, ν2)}.

All in all, M(F , �p) is not a generalized Matkowski contraction.

Nevertheless, using completely different approach, in the main result of the paper
we will prove that the assertion of Theorem 2.12 holds for all probabilistic GIFSs
consisting of generalized Matkowski contractions.

3 Further notations and definitions

Our first aim is to get a full description of iterations of generalized Markov operator.
We will need more delicate constructions than those of k�, �k , Fk , Xk etc.

At first, setm ∈ N and define 
k , k
, k ∈ N, and 
 according to (1), (2) and (3), but
for the initial set 
1 := {0, 1}. Now, we will define particular sequences (γ k) ⊂ 
.
The definition will be inductive:

γ 1 = . . . = γm = (0, (0, . . . , 0), ((0, . . . , 0), . . . , (0, . . . , 0)), . . .)
γ k+m := τ(γ k, . . . , γ k+m−1), k ≥ 1,

where for every β1 = (β1
1 , β

1
2 , . . .), . . . , β

m = (βm
1 , βm

2 , . . .), we put

τ(β1, . . . , βm) := (1, (β1
1 , . . . , β

m
1 ), (β1

2 , . . . , β
m
2 ), . . .)

Then for every k ∈ N, put ck := � k
m � (where �a� is the ceiling of a). Clearly,

c1 = · · · = cm = 1 and ck = min{ck−m, . . . , ck−1} + 1 for k ≥ m + 1.
To understand the above definitions better, let’s see how they work for m = 2 and

m = 3:

Example 3.1 Assume that m = 2. Then:

γ 1 = γ 2 = (0, (0, 0), ((0, 0), (0, 0)), . . .),
γ 3 = (1, (0, 0), ((0, 0), (0, 0)), . . .), c1 = 1
γ 4 = (1, (0, 1), ((0, 0), (0, 0)), . . .), c2 = 1
γ 5 = (1, (1, 1), ((0, 0), (0, 1)), . . .), c3 = 2

γ 6 = (1, (1, 1), ((0, 1), (1, 1)), (((0, 0), (0, 0)), ((0, 0), (0, 1))), . . .), c4 = 2
γ 7 = (1, (1, 1), ((1, 1), (1, 1)), (((0, 0), (0, 1)), ((0, 1), (1, 1))), . . .), c5 = 3
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and for m = 3,

γ 1 = γ 2 = γ 3 = (0, (0, 0, 0), ((0, 0, 0), (0, 0, 0), (0, 0, 0)), . . .)
γ 4 = (1, (0, 0, 0), ((0, 0, 0), (0, 0, 0), (0, 0, 0)), . . .), c1 = 1
γ 5 = (1, (0, 0, 1), ((0, 0, 0), (0, 0, 0), (0, 0, 0)), . . .), c2 = 1
γ 6 = (1, (0, 1, 1), ((0, 0, 0), (0, 0, 0), (0, 0, 1)), . . .), c3 = 1

γ 7 = (1, (1, 1, 1), ((0, 0, 0), (0, 0, 1), (0, 1, 1)),
(((0, 0, 0), (0, 0, 0), (0, 0, 0)), ((0, 0, 0), (0, 0, 0), (0, 0, 0)), ((0, 0, 0), (0, 0, 0), (0, 0, 1))), . . .), c4 = 2

γ 8 = (1, (1, 1, 1), ((0, 0, 1), (0, 1, 1), (1, 1, 1)),
(((0, 0, 0), (0, 0, 0), (0, 0, 0)), ((0, 0, 0), (0, 0, 0), (0, 0, 1)), ((0, 0, 0), (0, 0, 1), (0, 1, 1))), . . .), c5 = 2.

The above suggests that the value ck is the biggest natural number so that the first ck

coordinates of γ k+m “consists only of 1’s”. We state this observation as a lemma.

Lemma 3.2 For every k ∈ N, γ k+m
|ck = (1, (1, . . . , 1), . . . , ((. . . ((1, . . . , 1),

. . . (1, . . . , 1)) . . .))).

Proof First extend the definition of τ for finite sequences. That is, for every j ≥ 1 and
β1 = (β1

1 , . . . , β
1
j ), . . . , β

m = (βm
1 , . . . , βm

j ) ∈ j
, set

τ(β1, . . . , βm) = (1, (β1
1 , . . . , β

m
1 ), . . . , (β1

j , . . . , β
m
j )) ∈ j+1
.

Clearly, for every β1, . . . , βm ∈ 
 and every j ∈ N,

τ(β1, . . . , βm)| j+1 = τ(β1| j , . . . , βm
| j ). (5)

Now observe that the assertion of lemma holds for k = 1, . . . ,m directly by definition.
Assume that it is the case for all i ≤ k, for some k ≥ m. If ck+1 = ck , then by (5),

γ k+1+m
|ck+1 = τ(γ k+1

|ck−1
, . . . , γ k+m

|ck−1
).

Hence, by the inductive assumption and a fact that ck − 1 = min{ck, . . . , ck−m+1},
we get the assertion.

Now if ck+1 = ck + 1, then by (5),

γ k+1+m
|ck+1 = τ(γ k+1

|ck , . . . , γ k+m
|ck ).

Hence, by the inductive assumption and a fact that ck = ck−1 = · · · = ck−m+1}, we
also get the assertion. ��
Now fix, additionally, a natural number n ∈ N and let �̃ be the code space defined
as earlier, but for starting set �̃0 = {0, 1, . . . , n}. For every k ∈ N, we will define
a certain family [γ k] ⊂ �̃. The definition will be, as usual, inductive:

[γ 1] = · · · = [γm ] := {(0, (0, . . . , 0), ((0, . . . , 0), . . . (0, . . . , 0)), . . .)}
[γ k+m ] := {τi (α1, . . . , αm) : i = 1, . . . , n, α1 ∈ [γ k ], . . . , αm ∈ [γ k+m−1]}, k ≥ 1.
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Roughly speaking, [γ k] consists of those sequences from �̃ which has zeros exactly
in the same places as γ k .

Nowfix a probability vector �p = (p1, . . . , pn). For every k ∈ N and everyα ∈ [γ k]
we will define pα:

pγ 1 = · · · = pγm = p(0,(0,...,0),((0,...,0),...,(0,...,0)),...) := 1
pα := pα1 pα(1) · · · pα(m), for α = (α1, α2, . . .) ∈ [γ k+m], k ≥ 1.

Note that we can rewrite the second part in the following way:

pτi (α
1,...,αm ) := pi pα1 · · · pαm , for i = 1, . . . , n, α1 ∈ [γ k], . . . , γm ∈ [γ k+m−1].

(6)
The next lemma shows that sums of pα’s among each [γ k] are equal to 1.
Lemma 3.3 In the above frame, for every k ∈ N,

∑
α∈[γ k ] pα = 1.

Proof For k = 1, . . . ,m, the assertion follows directly from definition. Now assume
that it is the case for all i < m + k, for some k ≥ 1. Then

∑

α∈[γm+k ]
pα =

n∑

i=1

∑

α1∈[γ k ]
. . .

∑

αm∈[γ k+m−1]
pτi (α

1,...,αm )

=
n∑

i=1

∑

α1∈[γ k ]
. . .

∑

αm∈[γ k+m−1]
pi pα1 · · · pαm =

(
n∑

i=1

pi

) ⎛

⎝
∑

α1∈[γ k ]
pα1

⎞

⎠ · · ·
⎛

⎝
∑

αm∈[γ k+m−1]
pαm

⎞

⎠ = 1.

��
Now, for a set (or metric space) X and k ∈ N, we will define the set (or a metric space)
X̃k :

X̃1 = · · · = X̃m := X
X̃k+m := X̃k × · · · × X̃k+m−1, k ≥ 1.

Finally, for a GIFS F = { f1, . . . , fn} on a metric space X of order m, we will
define families F̃k = { f̃α : X̃k → X : α ∈ [γ k]}, k ∈ N of certain maps. First we
define F̃1 = · · · = F̃m = {IdX }, where IdX is the identity function. Assume that we
have already defined F̃i = { f̃α : X̃i → X : α ∈ [γ i ]} for all i < k + m for some
k ≥ 1. Then for every α = (α1, α2, . . .) ∈ [γ k+m] and every x = (x1, . . . , xm) ∈
X̃k+m = X̃k × · · · × X̃k+m−1, we define

f̃α(x1, . . . , xm) := fα1( f̃α(1)(x1), . . . , f̃α(m)(xm)).

Finally, we put F̃k+m := { f̃α : α ∈ [γ k+m]}.
The following result shows a relationship between elements of Fk and F̃k (recall

notions from Sect. 2.2).

Lemma 3.4 In the above frame, assume that D ⊂ X satisfies F(D, . . . , D) ⊂ D.
Then for every k ∈ N and α ∈ [γ k+m],

f̃α(D̃k+m) ⊂ fα|ck (Dck ).



85 Page 12 of 21 F. Strobin

Proof First let k = 1 and α = (αi ) ∈ [γ 1+m]. Then α = (α1, (0, . . . , 0), . . .), c1 = 1
and hence

f̃α(D̃1+m) = fα1 ( f̃α(1)(D̃1)×· · ·× f̃α(m)(D̃m)) = fα1 (D×· · ·×D) = fα|1 (D1) = fα|c1 (Dc1 ).

Now assume that the inclusion holds for all 1 ≤ i ≤ k for some k < m and let
α = (αi ) ∈ [γ k+1+m]. Then α = (α1, (0, . . . , 0, α

m−k+1
2 , . . . , αm

2 ), . . .), c1 = · · · =
ck+1 = 1 and hence

f̃α(D̃k+1+m) = fα1( f̃α(1)(D̃k+1) × · · · × f̃α(m)(D̃k+m))

= fα1(D × · · · × D × f̃α(m−k+1)(D̃1+m) × · · · × f̃α(m)(D̃k+m))

⊂ fα1(D × · · · × D × fα(m−k+1)|c1 (Dc1) × · · · × fα(m)|ck (Dck ))

= fα1(D × · · · × D × f
αm−k+1
2

(D1) × · · · × fαm
2
(D1))

⊂ fα1(D × · · · × D × D × · · · × D) = fα|1(D1) = fα|ck+1 (Dck+1).

Now assume that the inclusion holds for all 1 ≤ i ≤ k for some k ≥ m, and let
α = (αi ) ∈ [γ k+1+m]. Then, setting c := min{ck−m+1, . . . , ck}, we have

f̃α(D̃k+1+m) = fα1( f̃α(1)(D̃k+1) × · · · × f̃α(m)(D̃k+m))

⊂ fα1( fα(1)|ck−m+1 (Dck−m+1) × · · · × fα(1)|ck (Dck ))

⊂ fα1( fα(1)|c (Dc) × · · · × fα(1)|c(Dc)) = fα|c+1(Dc+1) = fα|ck+1 (Dck+1).

This ends the inductive proof. ��
Now, for a fixed probability Borel measures μ1, . . . , μm ∈ P(X), define the

sequence of probability Borel measures μ̃1, μ̃2, . . . on X̃1, X̃2, . . ., respectively,
according to the inductive formula:

μ̃1 := μ1, . . . , μ̃m := μm

μ̃k+m := μ̃k × · · · × μ̃k+m−1, k ≥ 1.

At the end of this section we observe that the sequence (μ̃k) remains zero outside the
supports of μi s.

Lemma 3.5 In the above frame, letC beaBorel set so that supp(μ1)∪· · ·∪supp(μm) ⊂
C. Then for every k ≥ 1, μ̃k+m(C̃k+m) = 1.

Proof For k = 1 we have:

μ̃1+m(C̃1+m) = (μ̃1 × · · · × μ̃m)(C̃1 × · · · × C̃m)

= μ1(C̃1) · · · μm(C̃m) = 1,
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and if the assetion holds for k ≥ 1, then

μ̃k+1+m(C̃k+1+m) = (μ̃k+1 × · · · × μ̃k+m)(C̃k+1 × · · · × C̃k+m)

= μ̃k+1(C̃k+1) · · · μ̃k+m(C̃k+m) = 1.

��

4 Main results

4.1 Invariant measure on the code space

We use all notations from previous sections (in particular, we fix n,m ∈ N). Addi-
tionally, let �p = (p1, . . . , pn) be a probability map vector. We start by defining
a particular sequence of measures μk , k ∈ N. First, let μ1 be the measure on �1
defined by μ1({i}) := pi for i = 1, . . . , n. Assume that we defined μk on �k for
some k ∈ N. Then let

μk+1 := μk × · · · × μk
m - times

e.g., μk+1 is the product measure on �k+1. Finally, let

μ(�, �p) := μ1 × μ2 × · · ·

be the product measure on�. Thenμ(�, �p) is a probability Borel measure (we consider
the metric d on �). Next we observe that μ(�, �p) is invariant w.r.t. the canonical GIFS
T on �.

Theorem 4.1 In the above frame, the measure μ(�, �p) is M(T , �p) - invariant, that is

μ(�, �p) = p1(μ(�, �p)×· · ·×μ(�, �p))◦τ−1
1 +· · ·+ pn(μ(�, �p)×· · ·×μ(�, �p))◦τ−1

n . (7)

Proof For any k ∈ N and a sequence α ∈ k�, let Bα := {β ∈ � : β|k = α}. We first
show that (7) holds for sets Bα .Hence letα = (α1, (α

1
2, . . . , α

m
2 ), . . . , (α1

k , . . . , α
m
k )) ∈

k�. At first observe that if i �= α1, then τ−1
i (Bα) = ∅. On the other hand, for i = α1,

we have

τ−1
α1 (Bα) = {(β1, . . . , βm) ∈ �m : τi (β

1, . . . , βm) ∈ Bα}
= {((β1

1 , β
1
2 , . . .), . . . , (β

m
1 , βm

2 , . . .)) ∈ �m : (α1, (β
1
1 , . . . , β

m
1 ), . . . , (β1

k−1, . . . , β
m
k−1))

= (α1, (α
1
2, . . . , α

m
2 ), . . . , (α1

k , . . . , α
m
k ))}

= {((β1
1 , β

1
2 , . . .), . . . , (β

m
1 , βm

2 , . . .)) ∈ �m : (β1
1 , . . . , β

1
k−1)

= (α1
2, . . . , α

1
k ), . . . , (β

m
1 , . . . , βm

k−1) = (αm
2 , . . . , αm

k )}
= Bα(1) × · · · × Bα(m).
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Hence we have:

μ(�, �p)(Bα) = μ1({α1}) · μ2({(α1
2, . . . , α

m
2 )}) · · ·μk({(α1

k , . . . , α
m
k )})

= pα1 · μ1({α1
2}) · · · μ1({αm

2 }) · · · μk−1({α1
k }) · · · μk−1({αm

k })
= pα1(μ1({α1

2}) · · · μk−1({α1
k })) · · · (μ1({αm

2 }) · · · μk−1({αm
k }))

= pα1μ(�, �p)(Bα(1)) · · · μ(�, �p)(Bα(m)) = pα1(μ(�, �p) × · · · × μ(�, �p))(τ−1
α1

(Bα))

=
n∑

i=1

pi (μ(�, �p) × · · · × μ(�, �p)) ◦ τ−1
i (Bα).

Now, as each cylinder A1 ×· · ·× Ak ×�k+1 ×· · · is a disjoint union of finitely many
sets of the form Bα , we automatically get the equality (7) for such cylinderes. Hence
we also reach the full assertion. ��

4.2 Description of iterations of the Markov operator for GIFSs

In the main result of this section we give a full description of iterations of Markov
operators for GIFSs. We use the notations from earlier sections.

Theorem 4.2 Assume that (F , �p) is a probabilistic GIFS on a metric space X and
μ1, . . . , μm ∈ P(X). Define (μk) according to μk+m := M(F , �p)(μk, . . . , μk+m−1),
k ∈ N. Then for every k ∈ N and a continuous and bounded g : X → R, it holds:

∫

X
g dμk =

∑

α∈[γ k ]
pα

∫

X̃k

g ◦ f̃α dμ̃k .

Proof For simplicity, write M instead of M(F , �p).
For k = 1, . . . ,m, the desired equality follows directly from definitions. For k =

1 + m, by (4), we have

∫

X
g dμ1+m =

∫

X
g dM(μ1, . . . , μm) =

n∑

i=1

pi

∫

Xm
g ◦ fi d(μ1 × · · · × μm)

=
n∑

i=1

pi

∫

X̃1+m

g ◦ fi dμ̃1+m =
∑

α∈[γ 1+m ]
pα

∫

X̃1+m

g ◦ f̃α dμ̃1+m .

Now assume that the assertion holds for all 1 ≤ j ≤ k + m for some k < m. Then,
using the Fubini theorem, we have

∫

X
g dμk+1+m =

∫

X
g dM(μk+1, . . . , μm , μ1+m , .., μk+m )

=
n∑

i=1

pi

∫

Xm
g ◦ fi d(μk+1 × · · · × μm × μ1+m × .. × μk+m )

=
n∑

i=1

pi

∫

Xm−k

(∫

X

(
. . .

(∫

X
g ◦ fi (x1, . . . , xm ) dμk+m (xm )

)
. . .

)
dμ1+m (xm−k+1)

)
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d(μk+1 × · · · × μm )(x1, . . . , xm−k )

=
n∑

i=1

pi

∫

Xm−k

⎛

⎝
∫

X

⎛

⎝. . .

⎛

⎝
∑

α∈[γ k+m ]
pα

∫

X̃k+m

g ◦ fi (x1, . . . , xm−1, f̃α(ym )) dμ̃k+m (ym )

⎞

⎠ . . .

⎞

⎠ dμ1+m (xm−k+1)

⎞

⎠

d(μk+1 × · · · × μm )(x1, . . . , xm−k )

=
n∑

i=1

pi
∑

α∈[γ k+m ]
pα

∫

Xm−k

(∫

X

(
. . .

(∫

X̃k+m

g ◦ fi (x1, . . . , xm−1, f̃α(ym )) dμ̃k+m (ym )

)
. . .

)
dμ1+m (xm−k+1)

)

d(μk+1 × · · · × μm )(x1, . . . , xm−k )

= {proceeding similarly for remaining coefficients and using the Fubini theorem}

=
n∑

i=1

∑

αm−k+1∈[γ 1+m ]
. . .

∑

αm∈[γ k+m ]
pi · pαm−k+1 · · · pαm

∫

Xm−k

(∫

X̃1+m

(
. . .

(∫

X̃k+m

g ◦ fi (x1, . . . , xm−k , f̃αm−k+1 (ym−k+1), . . . , f̃αm (ym )) dμ̃k+m (ym )

)
. . .

)
dμ̃1+m (ym−k+1)

)

d(μk+1 × · · · × μm )(x1, . . . , xm−k )

=
n∑

i=1

∑

α1∈[γ k+1]
. . .

∑

αm∈[γ k+m ]
pi · pα1 · · · pαm

∫

X̃k+1×···×X̃k+m

g ◦ fi ( f̃α1 (y1), . . . , f̃αm (ym )) d(μ̃k+1 × · · · × μ̃k+m )

=
∑

α∈[γ k+1+m ]
pα

∫

X̃k+1+m

g ◦ f̃α dμ̃k+1+m .

Now assume that the assertion holds for all i ≤ k + m for some k ≥ m. Following
similar lines as above, we get:

∫

X
g dμk+1+m =

∫

X
g dM(μk+1, . . . , μk+m) =

n∑

i=1

pi

∫

Xm
g ◦ fi d(μk+1 × · · · × μk+m)

=
n∑

i=1

pi

∫

X

(
. . .

(∫

X
g ◦ fi (x1, . . . , xm) dμk+m(xm)

)
. . .

)
dμk+1(x1)

=
n∑

i=1

pi

∫

X

⎛

⎝. . .

⎛

⎝
∑

α∈[γ k+m ]
pα

∫

X̃k+m

g ◦ fi (x1, . . . , xm−1, fα(ym)) dμ̃k+m(ym)

⎞

⎠ . . .

⎞

⎠ dμk+1(x1)

= · · · =
n∑

i=1

∑

α1∈[γ k+1]
. . .

∑

αm∈[γ k+m ]
pi pα1 · · · pαm

∫

X̃k+1

(
. . .

(∫

X̃k+m

g ◦ fi ( fα1 (y1), . . . , fαm (ym)) dμ̃k+m(ym)

)
. . .

)
dμ̃k+1(y1)

=
∑

α∈[γ k+1+m ]
pα

∫

X̃k+1+m

g ◦ f̃α d(μ̃k+1 × · · · × μ̃k+m) =
∑

α∈[γ k+1+m ]
pα

∫

X̃k+1+m

g ◦ f̃α dμ̃k+1+m

(in fact, the above reasoning is also valid for the earlier case, but for the sake of
clarification we consider these two cases separately). ��

4.3 Hutchinsonmeasure for probabilistic GIFSs

We state here and prove the main result of the paper. It says that a probabilistic
GIFS consisting of generalized Matkowski contractions on a complete metric space
generates the Hutchinson measure.
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Theorem 4.3 Assume that (F , �p) is a probabilistic GIFS of order m on a complete
metric space X and let M(F , �p) : P(X) × · · · ×P(X) → P(X) be the corresponding
generalized Markov operator. Define

μ(F , �p) := μ(�, �p) ◦ π−1,

where � is the code space for F .
Then μ(F , �p) is the unique Hutchinson measure for (F , �p). In other words,
(i) μ(F , �p) is the unique measure which satisfies

M(F , �p)(μ(F , �p), . . . , μ(F , �p)) = μ(F , �p) (8)

(ii) for every measures μ1, . . . , μm ∈ P(X), the sequence (μk) defined by μk+m :=
M(F , �p)(μk, . . . , μk+m−1) for k ≥ 1, converges to μ(F , �p) with respect to the
Monge–Kantorovich metric;

(iii) supp(μ(F , �p)) = AF .

Proof For simplicity, we will write μ∗ instead of μ(F , �p), μ instead of μ(�, �p) and M
instead of M(F , �p).

In view of Theorem 2.9(iii), Theorem 4.1 and the simple fact that (μ × · · · × μ) ◦
π−1
1 = (μ ◦ π−1) × · · · × (μ ◦ π−1), we get for every Borel set B ⊂ X ,

M(μ∗, . . . , μ∗)(B) :=
n∑

i=1

pi · (μ∗ × · · · × μ∗)( f −1
i (B)) =

n∑

i=1

pi · ((μ × · · · × μ) ◦ π−1
1 )( f −1

i (B))

=
n∑

i=1

pi · (μ × · · · × μ)(π−1
1 ( f −1

i (B)))

=
n∑

i=1

pi · (μ × · · · × μ)(( fi ◦ π1)
−1(B)) =

n∑

i=1

pi · (μ × · · · × μ)((π ◦ τi )
−1(B))

=
n∑

i=1

pi · (μ × · · · × μ)(τ−1
i (π−1(B)))

= μ(π−1(B)) = μ∗(B).

Hence we proved that the measure μ∗ satisfies (8). Its uniqueness will follow from
part (ii), which we will show later.

By Lemma 2.10(ii) and Theorem 2.9(iii), we easily see that supp(μ∗) = AF , which
gives us (iii). Hence it remains to show (ii).

By Lemma 2.10(ii) and Theorem 2.9(iii), we easily see that supp(μ∗) = AF , which
gives us (iii). It remains to show (ii).

It is enough to prove that for every measures μ1, . . . , μm, ν1, . . . , νm ∈ P(X) and
ε > 0, there is k0 ∈ N such that for k ≥ k0 and a function g : X → Rwith Lip(g) ≤ 1,
it holds ∣∣∣∣

∫

X
g dμk −

∫

X
g dνk

∣∣∣∣ < ε.
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Indeed, taking ν1 = · · · = νm = μ∗ and using point (i), the above shows that
dMK (μk, μ∗) → 0.

Take any ε > 0 and define

C := AF ∪ supp(μ1) ∪ · · · ∪ supp(μm) ∪ supp(ν1) ∪ · · · ∪ supp(νm).

By Theorem 2.9(i), we can find closed and bounded set D ⊃ C so that
F(D, . . . , D) ⊂ D. Now for j ∈ N, put

A j :=
{
α ∈ � : diam( fα| j (Dj )) <

ε

2

}
.

Clearly, each A j is open and by Theorem 2.9(ii), the family A j , j ∈ N is a cover of�.
By compactness of � and the fact that the sequence (A j ) is increasing (which again
follows from Theorem 2.9(ii)), there is j0 ∈ N such that � = A j0 . Now let k0 be such
that ck0 ≥ j0. Then, in wiev of Lemma 3.4, for every k ≥ k0 and α ∈ [γ k+m],

diam( f̃α(D̃k+m)) ≤ diam( fα|ck (Dck )) ≤ diam( fα| j0 (Dj0)) ≤ ε

2
.

Hence if x0 is any element of f̃α(D̃k+m), then for every g : X → R with Lip(g) ≤ 1
and every x ∈ D̃k+m , we have

|g( f̃α(x)) − g(x0)| ≤ ε

2
.

Now choose any α ∈ [γ k+m]. Taking any x0 ∈ f̃α(D̃k+m), we have

∣∣∣∣
∫

X̃k+m

g ◦ f̃α dμ̃k+m −
∫

X̃k+m

g ◦ f̃α d ν̃k+m

∣∣∣∣

≤
∣∣∣∣
∫

X̃k+m

g ◦ f̃α dμ̃k+m − g(x0)

∣∣∣∣ +
∣∣∣∣g(x0) −

∫

X̃k+m

g ◦ f̃α d ν̃k+m

∣∣∣∣

=
∣∣∣∣
∫

X̃k+m

g ◦ f̃α dμ̃k+m −
∫

X̃k+m

g(x0) dμ̃k+m

∣∣∣∣

+
∣∣∣∣
∫

X̃k+m

g(x0) d ν̃k+m −
∫

X̃k+m

g ◦ f̃α d ν̃k+m

∣∣∣∣

≤
∫

X̃k+m

|g ◦ f̃α − g(x0)| dμ̃k+m +
∫

X̃k+m

|g(x0) − g ◦ f̃α| d ν̃k+m

=
∫

D̃k+m

|g ◦ f̃α − g(x0)| dμ̃k+m +
∫

D̃k+m

|g(x0) − g ◦ f̃α| d ν̃k+m

≤
∫

D̃k+m

ε

2
dμ̃k+m +

∫

D̃k+m

ε

2
d ν̃k+m = ε.
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Note that in the first inequality in the above line we used Lemma 3.5. Finally, using
the above, Theorem 4.2 and Lemma 3.3, for every k ≥ k0, we have

∣∣∣∣
∫

X
g dμk+m −

∫

X
g dνk+m

∣∣∣∣

=
∣∣∣∣∣∣

∑

α∈[γ k+m ]
pα

∫

X̃k+m

g ◦ f̃α dμ̃k+m −
∑

α∈[γ k+m ]
pα

∫

X̃k+m

g ◦ f̃α d ν̃k+m

∣∣∣∣∣∣

≤
∑

α∈[γ k+m ]
pα

∣∣∣∣
∫

X̃k+m

g ◦ f̃α dμ̃k+m −
∫

X̃k+m

g ◦ f̃α d ν̃k+m

∣∣∣∣

≤
∑

α∈[γ k+m ]
pαε = ε.

��
Remark 4.4 Note that in the above reasoning, we can give a simpler proof that� = A j

for some j . Indeed, taking an appropriate function ϕ (see definition of a Matkowski
contraction), for every α ∈ � and j ∈ N, we have

diam( fα| j (Dj )) ≤ ϕ( j)(diam(D)).

Hence there exists j so that for every α ∈ �, diam( fα| j (Dj )) ≤ ε
2 . However, as we

will see later in Sect. 5.1, the presented reasoning will be also used when considering
a bit different class of GIFSs.

5 Further remarks, related results and open questions

5.1 Generalized Hutchinsonmeasure for topologically contracting pGIFSs

Here we show that the proof of Theorem 4.3 proves also a bit different version of it.
Motivating by the notion of a topologically contracting IFS (TIFS for short, see

[1] and [18]), in [4] we defined and studied the GIFSs’ counterpart of this setting.
Let us recall its particular version (we restrict here to finite case, see [4, Defini-
tion 4.1 and Remark 4.7]).

Definition 5.1 Let X be a Hausdorff topological space, m ∈ N and F = { f1, . . . , fn}
be a finite family of maps defined on Xm and with values in X . We say that F is a
topologically contracting GIFS of order m (TGIFS for short), if the following hold:

(i) for every set K ∈ K(X), there is D ∈ K(X) so that K ⊂ D and F(D, . . . , D) ⊂
D;

(ii) for every set D ∈ K(X) with F(D, . . . , D) ⊂ D and α ∈ �, the set⋂
k∈N fα|k (Dk) is a singleton.
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Roughly speaking, TGIFSs are GIFSs on topological spaces so that the assertion The-
orem 2.9(iib) for compact sets and strengthening of Theorem 2.9(i) hold. As was
proved in [4, Theorem 4.14 and Proposition 5.2], TGIFSs satisfy also (iii) from The-
orem 2.9 and also the assertion of Theorem 2.4 (where the convergence w.r.t. the
Hausdorff–Pompeiu metric is replaced by the convergence w.r.t. the Vietoris topol-
ogy). In particular, TGIFSs generate attractors.Also, in [4, Proposition 4.11]weproved
that GIFSs consisting of generalized Matkowski contractions on compact spaces or
Euclidean spaces are topologically contracting.

Following almost the same lines as in the proof of Theorem 4.3, we can get its
version for TGIFSs on metric spaces.

Theorem 5.2 Assume that (F , �p) is a probabilistic TGIFSof orderm onametric space
X and let M(F , �p) : P(X) × · · · × P(X) → P(X) be the corresponding generalized
Markov operator. Define

μ(F , �p) := μ(�, �p) ◦ π−1,

where � is the code space for F .
Then μ(F , �p) is the unique Hutchinson measure for (F , �p).

The only difference in the proof is that the family A j , j ∈ N, is a cover of �. Choose
α = (αk) ∈ �. Then, by definition of a GIFS, the intersection

⋂
j∈N f|α j

(Dj ) is
singleton (as here we choose D to be compact). Since the sequence ( fα| j (Dj )) is

decreasing and consists of compact sets, we can easily show that diam
(
fα| j (Dj )

)
→

0, and hence α ∈ A j for some j ∈ N.

5.2 Open questions and problems

In the paper we restricted to most natural GIFSs’ setting, e.g., for probabilistic GIFSs
consisting of finitely many maps, defined on metric spaces and consisting of general-
ized Matkowski contractions or topologically contracting. In the literature, there have
been discussed also wider classes of GIFSs.

Miculescu in [12] extended Theorem 2.12 for GIFSs with place dependent proba-
bilities. The difference between standard probabilistic GIFSs is that we assume that
probabilities p1, . . . , pn are real functions on Xm so that p1(x) + · · · + pn(x) = 1
for every x ∈ Xm . Making additional contractive assumptions (both on maps from
a GIFS and probabilities, analogous to those from Theorem 2.12), Miculescu proved
the existence of the Hutchinson measure for such GIFSs. Hence the problem arises

Problem 5.3 Can Theorem 4.3 (and Theorem 5.2) be extended to GIFSs with place
dependent probabilities?

Note that it is not clear if we can use our methods without some additional detailing—
for example, invariant measure on the code space depends strongly on constant
numbers p1, . . . , pn .

Secelean in [20] extended Theorem 2.12 for GIFSs consisting of infinite number
of maps. Hence we can ask:
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Problem 5.4 Can Theorem 4.3 (and Theorem 5.2) be extended to GIFSs consisting of
infinite number of maps?

It seem that this can be the case—for example, the code space for such GIFSs were
investigated in [4]. However, the technicalities can be harder.

As we saw, topologically contracting GIFSs are defined for topological spaces
which are not necessarily metrizable. It is known, that the Hutchinson measure exists
for any probabilistic topologically contracting IFS (see, e.g., [8]). However, in such a
general framework, we have to restrict to special families of Borel measures (Radon
measures) and replace the convergence w.r.t. the Monge–Kantorovich metric by weak
convergence. Hence the problem arises:

Problem 5.5 CanTheorem5.2be extended toTGIFSs onHausdorff topological spaces
(consisting of infinitely many maps)?

It seem that this can be the case, but, probably under some mild additional assump-
tions related with problems with properties of measures in nonmetrizable spaces. On
the other hand, even if the underlying space X is nonmetrizable, then the attractor
of a topologically contracting GIFS is always metrizable. Hence, looking just on the
Hutchinson measure, the “metric” case seems to be sufficient.

In recent papers [9,21], the theory of GIFSs was extended to “infinite order”, that
is, to maps defined on spaces of bounded sequences of elements of a given space X .
In particular, in [9] we defined and studied the code space for such kind of GIFSs and
proved counterparts of Theorems 2.4 and 2.9. Hence the question arises:

Problem 5.6 Can Theorem 4.3 be extended to GIFSs of infinite order?

Again, we believe that our methods should work, but technicalities can be much much
harder.
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