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Abstract
In this note we present variants of Kostov’s theorem on a versal deformation of a
parabolic point of a complex analytic 1-dimensional vector field. First we provide
a self-contained proof of Kostov’s theorem, together with a proof that this versal
deformation is indeed universal. We then generalize to the real analytic and formal
cases, where we show universality, and to the C∞ case, where we show that only
versality is possible.

Keywords Normal forms of analytic vector fields · Unfolding of singularities ·
Versal deformations
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1 Introduction

Let us consider a singular point of a germ of analytic vector field X on (C, 0). If the
singular point is simple, then the germ of vector field is analytically linearizable. If the
singular point is multiple, also called parabolic, then the vector field is analytically
conjugate to any one of the following normal forms:
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X(x) =
(

xk+1 − μx2k+1
) ∂

∂x
, (1.1)

X(x) = xk+1

1 + μxk

∂

∂x
, (1.2)

where μ = Resx=0X−1 is the residue of the dual form. The first normal form is
more frequent in the older works of the Russian school. The second one is easier to
manipulate, for instance, the rectifying coordinate (time coordinate)

∫
X−1 is simple

to calculate. The next natural question is to consider normal forms for unfoldings of
germs of analytic vector fields at a singular point. When the singular point is simple
the normal form of an unfolding is linear, and hence unique. When the singular point
is parabolic, Kostov proved that the following standard deformation of (1.1) is versal
[7]:

X1(x, y) =
(

xk+1 + yk−1xk−1 + · · · + y1x + y0 − (μ + y2k+1)x2k+1
) ∂

∂x
.

(1.3)

The proof uses that (1.3) is an infinitesimal deformation of (1.1), and then calls for
the machinery of Martinet’s Reduction Lemma (see for instance [2]). The philosophy
behind this normal form is two-fold. First, a parabolic point of codimension k is the
merging of k + 1 simple singular points, each having its own eigenvalue, which is
an analytic invariant. Hence it is natural that a full unfolding would involve k + 1
parameters. Second, the geometry of an unfolding of a parabolic point is simple,
hence the convergence to the normal form.

Kostov’s normal form is very important for many bifurcation problems. For
instance, when one studies the unfolding of a parabolic point of a germ of 1-
diffeomorphism of (C, 0) (i.e. a multiple fixed point), then a formal normal form is
given by the time one map of a vector field of the form (1.3). The change of coordinate
to this normal form diverges and the obstruction to the convergence is the classify-
ing object of the unfoldings (an extension of the Écalle–Voronin modulus to sectors
in parameter space, see for instance [10,15], and [11,12]). The same normal form is
used to classify germs of unfoldings of 2-dimensional vector fields in (C2, 0) with
either a saddle-node or a resonant saddle point: indeed the vector fields are orbitally
analytically equivalent if and only if the holonomy map of the separatrices (the strong
separatrices in the case of a saddle-node) are conjugate (see [13] and [14]).

Very soon, other normal forms equivalent to (1.3) appeared in the literature without
proof:

X2(x, y) =
(

xk+1 + yk−1xk−1 + · · · + y1x + y0
)(

1 − (μ + y2k+1)xk
) ∂

∂x
,

(1.4)

X3(x, y) = xk+1 + yk−1xk−1 + · · · + y1x + y0
1 + (μ + y2k+1)xk

∂

∂x
, (1.5)

and they are all called Kostov’s theorem. In practice, most authors use the normal form
(1.5), which is much more suitable for computations.
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The paper [14] indirectly suggests that the normal form (1.5) is universal by showing
that the normal form (1.5) associated to a generic k-parameter unfolding of a parabolic
point of codimension k is unique up to the action of the group Z/kZ of rotations of
order k. This uniqueness property is extremely important in all classification problems
of unfoldings under conjugacy or analytic equivalence: it shows that the parameters of
the normal forms are essentially unique and hence analytic invariants of the unfoldings.
Hence, to show that twounfoldings are analytically equivalent, thefirst step is to change
to the canonical parameters and it then suffices to study the equivalence problem for
fixed values of the parameters. In this paper, we provide self-contained proofs that the
three normal forms (1.3), (1.4) and (1.5) are unique up to the action of the groupZ/kZ,
and universal. These self-contained proofs are useful for further generalizations, for
instance when the vector field has some symmetry or reversibility property, and also
for the formal case, the C∞-case, and mixed cases where the variable is analytic and
the dependence on the parameters is only real-analytic: this mixed case occurs when
one considers bifurcations of antiholomorphic parabolic fixed points (i.e. f (x) =
x̄ ± x̄ k+1 + o(x̄ k+1)).

As a second part of the paper, we briefly address the real analytic, formal, and
smooth cases. In the first two cases, each of the corresponding unfoldings is universal.
In the smooth case, we give an explicit example showing that the unfolding is only
versal and cannot be universal, namely the two vector fields X(x, λ) = (x2 + λ2) ∂

∂x ,
and X ′(x, λ) = (x2 + (λ + ω(λ))2) ∂

∂x are C∞-conjugate when ω(λ) is infinitely flat
at λ = 0. Let us explain one difference with the analytic case. In the latter case the
eigenvalues at the singular points are complex C1-invariants and for a given set of k +1
eigenvalues at the singular points, there are only a finite number of solutions for the
y j in any of the normal forms (1.3), (1.4) and (1.5) with the prescribed eigenvalues.
In the smooth case, only the eigenvalues at the real singular points are C1-invariants
and we can smoothly glue anything at the complex singular points. The two systems
of our counterexample have purely imaginary singular points. An open question is to
know if we have universal unfoldings in the smooth case when all the singular points
are real.

The original articles [7,8] ofKostov cover amuchmore general case of deformations
of differential forms of real power α. However, our goal is not to redo what has been
done well by Kostov, but to provide an elementary and self-contained proof in the case
of vector fields, that is power α = −1, which is why we do not discuss the other cases.
Nevertheless, we believe that our proof of the uniqueness in the formal/analytic case,
which is missing in Kostov’s article, could be well adapted to general α.

2 The Analytic Theory

The following definitions are classical: see for instance [1].

Definition 2.1 (1) Two germs of analytic (resp. real analytic, formal, C∞) parametric
families of vector fields X(x, λ), X ′(x ′, λ) depending on a same parameter λ are
conjugate if there exists an analytic (resp. real analytic, formal, C∞) invertible



80 Page 4 of 13 M. Klimeš, C. Rousseau

change of coordinate

x ′ = φ(x, λ), (2.1)

changing one family to the other. We write X = φ∗X ′ as a pullback of X ′. In the
analytic, real analytic or C∞ cases, what is meant is a change of coordinate defined
on a fixed neighborhood of the origin in x-space for all values of the parameter
in a fixed neighborhood of the origin in parameter space. In the formal case, the
invertible change of coordinate is an invertible series in x with coefficients given
by power series in λ.

(2) Let λ �→ λ′ = ψ(λ) be a germ of analytic (resp. real analytic, formal, C∞) map
(not necessarily invertible), then X(x, λ) = X ′(x, ψ(λ)) is a family induced from
X ′.

(3) A parametric family of vector fields X(x, λ) is a deformation of X(x, 0). Two
deformations X(x, λ), X ′(x, λ)of the same initial vectorfield X(x, 0) = X ′(x, 0)
with the same parameter λ are equivalent (as deformations) if the two families
are conjugate by means of an invertible transformation (2.1) with φ(x, 0) ≡ x .

(4) A deformation X ′(x, λ′) of X ′(x, 0) is versal if any other deformation X(x, λ)

of X ′(x, 0) = X(x, 0) is equivalent to one induced from it. It is universal if the
inducing map λ′ = ψ(λ) is unique.

In this section we provide a self-contained proof of the following theorem:

Theorem 2.2 In the analytic case, for k ≥ 1, the deformation (1.5) of (1.2) is
universal.

Corollary 2.3 In the analytic case, for k ≥ 1, the deformations (1.3) and (1.4) of
(1.1) are universal.

As explained in the introduction, the proof of the versality is due toKostov (for (1.3)
see [7], while for (1.5) it has been often stated in literature without explicit proof, see
e.g. [3, p.116]), and the uniqueness comes from [14]. Theorem 2.2 can be rephrased
in more precise terms as the following theorem of which it is a direct consequence.

Theorem 2.4
(i) (Variant of Kostov’s theorem [7]) Any analytic germ of a family of vector fields

X̃(x, λ) depending on a multi-parameter λ unfolding X̃(x, 0) = xk+1 1
ω(x)

∂
∂x ,

ω(0) 	= 0, k ≥ 0, is analytically conjugate to a family of the form

X(x, λ) = c(λ)x
∂

∂x
, k = 0, (2.2)

X(x, λ) = xk+1 + yk−1(λ)xk−1 + · · · + y0(λ)

1 + μ(λ)xk

∂

∂x
, k ≥ 1, (2.3)

with y0(0) = · · · = yk−1(0) = 0, where

μ(λ) = −Resx=∞X(x, λ)−1

is the sum of the residues of X̃(x, λ)−1 over its local polar locus around the origin.
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(ii) (Rousseau, Teyssier [14, Theorem 3.5], [6, Theorem 7.2]) The normal forms (2.2)
for k = 0 and (2.3) for k = 1 are unique, while the normal form (2.3) for k > 1

is unique up to the action of x �→ e2π i l
k x , l ∈ Zk ,

y j (λ) �→ e−2π i ( j−1)l
k y j (λ), j = 0, . . . , k − 1.

More precisely, if (x, λ) �→ (φ(x, λ), λ) is a transformation between two vector
fields (2.3), then

φ(x, λ) =
{

et(λ)x, if k = 0,

e2π i l
k exp(t(λ)X)(x, λ), if k ≥ 1,

for some l ∈ Zk and some analytic germ t(λ).

The first step in proving Theorem 2.4 is the following “prenormal form”, which
can be also found for example in [11, Proposition 5.13].

Proposition 2.5 (Prenormal form) Any germ of a family of vector fields X̃(x, λ)

depending on a multi-parameter λ unfolding X̃(x, 0) = (cxk+1 + · · · ) ∂
∂x , k ≥ 1, is

analytically conjugate to a family of the form

X(x, λ) = xk+1 + yk−1(λ)xk−1 + · · · + y0(λ)

1 + u0(λ) + · · · + uk−1(λ)xk−1 + μ(λ)xk

∂

∂x
, (2.4)

where y j (0) = 0 = u j (0), j = 0, . . . , k − 1, and

μ(λ) = −Resx=∞X(x, λ)−1.

Proof First, let us transform X̃(x, 0) = xk+1 1
ω(x)

∂
∂x to a form X(x, 0) = xk+1

1+μ(0)xk
∂
∂x .

Up to a linear change x �→ ax , a ∈ C � {0}, we can assume ω(0) = 1. Write
ω(x) = 1 + ω1x + · · · + ωk xk + xk+1r(x), let μ(0) := ωk , and let

α(x) : =
∫ (

X̃(x, 0)−1 − X(x, 0)−1
)

= − ω1
k−1 x1−k − · · · − ωk−1

1
x−1 +

∫ x

0
r(x)dx .

Then α is a meromorphic germ with pole of order at most k − 1 at the origin, and the
desired transformation is provided by Lemma 2.6 below.

By Weierstrass preparation and division theorem, any family X̃(x, λ) can be writ-
ten in the form X̃(x, λ) = P(x,λ)

Q(x,λ)+P(x,λ)R(x,λ)
∂
∂x , for some Weierstrass polynomials

P(x, λ) = xk+1 + yk−1(λ)xk−1 + · · · + y0(λ), Q(x, λ) = 1 + u0(λ) + · · · +
uk−1(λ)xk−1+μ(λ)xk , and some analytic germ R(x, λ). Let α(x, λ) = ∫

R(x, λ)dx ,
then

X̃(x, λ) = X(x, λ)

1 + X(x, λ).α(x, λ)

for X(x, λ) = P(x,λ)
Q(x,λ)

∂
∂x of the form (2.4). The result follows from Lemma 2.6. ��
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The following lemma is classical (see for example [16, Proposition 2.2] to which
it is essentially equivalent).

Lemma 2.6 Let X0, X1 be two germs of analytic families of vector fields vanishing at
the origin, and assume there exists an analytic germ α(x, λ) such that X1 = X0

1+X0.α
.

Then the flow map of the vector field Y(x, t, λ) = ∂
∂t − αX0

1+tX0.α

φ1(x, λ) = x ◦ exp(Y)

∣∣∣
t=0

,

conjugates X1 with X0 = φ∗
1X1.

The statement is also true if α is meromorphic such that X0.α and αX0 are analytic
and vanish for (x, λ) = 0 (so that the flow of Y is defined for all t ∈ [0, 1]).
Proof On the one hand, if X t := X0

1+tX0.α
and Y = ∂

∂t − αX0
1+tX0.α

are vector fields in
x, t, λ, then [Y , X t ] = 0, whichmeans that the flow exp(sY) : (x, t) �→ (	s(x, t), t+
s) of Y preserves X t = 	∗

s X t+s . In particular φs(x) := 	s(x, 0) is such that φ∗
s Xs =

X0. ��
The following proposition shows how to find a change of coordinates allowing to

get rid of the quantities ui (λ) in (2.4).

Proposition 2.7 Consider two families of vector fields X0 and X1 of the form

X t = xk+1 + yk−1xk−1 + · · · + y0
1 + t(u0 + · · · + uk−1xk−1) + μxk

∂

∂x
, (2.5)

depending on parameters (y, u, μ). Then there exists an analytic transformation
(x, y) �→ (

φ(x, y, u, μ), ψ(y, u, μ)
)

tangent at identity at (x, y) = 0 that conju-
gates X1 to X0.

Proof Let X t = P(x,y)
Q(x,t,u,μ)

∂
∂x be as above (2.5). We want to construct a family of

transformations depending analytically on t ∈ [0, 1] between X0 and X t , defined by
a flow of a vector field Y of the form

Y = ∂

∂t
+

k−1∑
j=0

ξ j (t, y, u, μ)
∂

∂ y j
+ H(x, t, y, u, μ)

Q(x, t, u, μ)

∂

∂x
,

for some ξ j and H , such that [Y , X t ] = 0, that is

−U P

Q2 + �

Q
+ H

Q

∂

∂x

(
P

Q

)
− P

Q

∂

∂x

(
H

Q

)
= 0,

where U (x, u) = u0 + · · · + uk−1xk−1 and �(x, ξ) = ξ0 + · · · + ξk−1xk−1, which is
equivalent to

H ∂
∂x P − P ∂

∂x H + Q� = U P. (2.6)
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We see that we can choose H as a polynomial in x :

H = h0(t, y, u, μ) + · · · + hk(t, y, u, μ)xk .

Write U P = b0(y, u) + · · · + b2k(y, u)x2k , then the equation (2.6) is equivalent to
saying that two polynomials of degree 2k in x are identical. Identifying the coefficients
of samedegree yields a non-homogeneous linear systemof 2k+1 equations for the 2k+
1 coefficients (ξ, h) = (ξ0, . . . , ξk−1, h0, . . . , hk) as functions of b = (b0, . . . , b2k):

A(t, y, u, μ)

(
ξ

h

)
= b(y, u).

For y = u = 0 the equation (2.6) is

(k + 1)xk H − xk+1 ∂
∂x H + (1 + μxk)� = 0,

hence

A(t, 0, 0, μ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
. . .

. . .

1 0 0
μ k + 1 0

. . .
. . .

μ 2 0
0 . . . 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This means that A(t, y, u, μ) is invertible for (t, μ) from any compact in C × C

if |y|, |u| are small enough. Since b(0, 0) = 0, the constructed vector field
Y(x, t, y, u, μ) is such that Y(0, t, 0, 0, μ) = ∂

∂t and its flow is well-defined for
all |t | ≤ 1 as long as |y|, |u| are small enough. ��

Proof of Theorem 2.4 (i) The existence of an analytic normalizing transformation to
(2.3) when k ≥ 1 follows directly from Propositions 2.5 and 2.7. For k = 0 it
follows from Lemma 2.6.

(ii) Let us prove the uniqueness. For k = 0 it is obvious. For k > 0, let φ(x, λ) be
a transformation between X = P(x,λ)

1+μ(λ)xk
∂
∂x and X ′ = P ′(x,λ)

1+μ′(λ)xk
∂
∂x , preserving

the parameter λ, and such that φ∗X = X ′. By the invariance of the residue,
μ(λ) = μ′(λ).
Let φ(x, 0) = cx + . . . for some c 	= 0, necessarily c = e2π i l

k for some l ∈ Zk .
Up to precomposition with a map x �→ cx , we can assume that c = 1 and that
φ(x, 0) = x + . . . is tangent to identity. Let

G(x, t, λ) = exp(−tX) ◦ φ(x, λ),
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and

K (t, λ) = ∂k+1G

∂xk+1

∣∣
x=0.

The map K is analytic and ∂K
∂t (t, 0) = −(k + 1)! 	= 0. For λ = 0, there exists

t0 such that K (t0, 0) = 0 (in fact t0 = 1
(k+1)!

∂k+1φ

∂xk+1 (0, 0) since exp(tX(x, 0)) =
x + t xk+1 + . . .). By the implicit function theorem, there exists a unique function
t(λ) such that K (t(λ), λ) ≡ 0. Then considering the new transformation ψ =
exp(−t(λ)X) ◦ φ, it suffices to prove that ψ ≡ id. This is done by the infinite
descent.
Let ψ(x, λ) = x + f (x, λ), where ∂k+1 f

∂xk+1 ≡ 0. Denote Iλ the ideal of analytic
functions of (x, λ) that vanish when λ = 0. To show that ψ(x, 0) ≡ x it suffices
to show that f ∈ In

λ for all n. For λ = 0 both vector field X(x, 0) and X ′(x, 0) are

equal to xk+1

1+μ(0)xk
∂
∂x , and it is easy to verify that ψ(x, 0) ≡ x (for instance using

power series), which gives us the induction base f ∈ Iλ.
Suppose now that f ∈ In

λ . Developing the right side of the transformation equation

P
1+μxk

∂
∂x ψ = P ′◦ψ

1+μψk ,

we have

P
1+μxk · ∂

∂x (x + f ) = P ′
1+μxk + f · ∂

∂x
P ′

1+μxk mod In+1
λ ,

from which

P − P ′ = −xk+1 ∂
∂x f + f · (

(k + 1)xk − kμ(0)x2k

1+μ(0)xk

)
mod In+1

λ .

The left side being a polynomial of order ≤ k − 1 in x , this means that both sides
vanish modulo In+1

λ . Therefore on the left side P = P ′ mod In+1
λ , while the

right side can be rewritten as

−(1 + μ(0)xk)x ∂
∂x f + f · ((k + 1) + μ(0)xk) ≡ 0 mod In+1

λ ,

Putting f = ∑∞
j=0 f j x j , yields

k−1∑
j=0

(k + 1 − j) f j x j +
∞∑
j=k

(k + 1 − j)( f j + μ(0) f j−k)x j ≡ 0 mod In+1
λ ,

from which we get that all f j ∈ In+1
λ since fk+1 ≡ 0. ��
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Proof of Corollary 2.3 Consider the two families (1.3) and (1.5)

X1(x, y) = xk+1 + yk−1xk−1 + · · · + y1x + y0 − (μ + y2k+1)x2k+1 ∂

∂x
,

X3(x ′, y′) = x ′k+1 + y′
k−1x ′k−1 + · · · + y′

1x ′ + y′
0

1 + (μ + y′
2k+1)x ′k

∂

∂x ′ .

By Theorem 2.4 we know that there exists a map

x ′ = φ(x, y), y′
j = ψ j (y), j = 0, . . . , k − 1, 2k + 1,

such that X1(x, y) = φ∗X3(x, ψ(y)), that is, such that

φk+1 + ψk−1φ
k−1 + · · · + ψ1φ + ψ0

1 + (μ + ψ2k+1)φk

=
(

xk+1 + yk−1xk−1 + · · · + y1x + y0 − (μ + y2k+1)x2k+1
) ∂

∂x
φ.

We want to show that ψ is invertible.
For y = 0 we have

φ(x, 0)k+1

1 + μφ(x, 0)k
=

(
xk+1 − μx2k+1

) ∂

∂x
φ(x, 0),

and (up to apre-composition with a flow map of X1 killing the term in xk+1) we can
assume that

φ(x, 0) = x + μ2 1
k x2k+1 + O(x2k+2).

Write φ(x, y) = φ(x, 0)+ f (x, y), with f (x, y) = ∑∞
l=0 fl(y)xl , and denote Iy the

ideal of functions that vanish when y = 0. Then calculating modulo I2
y :

φ(x, 0)k+1 + ψk−1φ(x, 0)k−1 + · · · + ψ1φ(x, 0) + ψ0

1 + (μ + ψ2k+1)φ(x, 0)k

+ (k + 1)φ(x, 0)k + μφ(x, 0)2k

(1 + μφ(x, 0)k)2
f (x, y)

=
(

xk+1 + yk−1xk−1 + · · · + y1x + y0 − (μ + y2k+1)x2k+1
) ∂

∂x
φ(x, 0)

+
(

xk+1 − μx2k+1
) ∂

∂x
f (x, y) mod I2

y .

Comparing the coefficients of x j , j = 0, . . . , k − 1, on both sides we have

ψ j = y j mod I2
y , j = 0, . . . , k − 1,
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for j = k + 1

−ψ1μ + (k + 1) f1(y) = f1(y) mod I2
y ,

and for j = 2k + 1

− μ − ψ2k+1 + μ2 1
k ψ1 − (2k + 1)μ f1 + (k + 1) fk+1 =

= −μ − y2k+1 + μ2 2k+1
k y1 + (k + 1) fk+1 − μ f1 mod I2

y ,

from which

ψ2k+1 = y2k+1 − 4μ2y1 mod I2
y .

This means that the transformation (x, y) �→ (φ(x, y), ψ(y)) is invertible for small
x, y.

Similarly for the families (1.4) and (1.5) ��

3 Real Analytic, Formal and Smooth Theory

Theorem 3.1 (Real analytic theory) The statement of Theorem 2.4 is also true in the
real analytic setting, with the exception that (2.3) needs to be replaced by

Xreal(x, λ) = xk+1 + yk−1(λ)xk−1 + · · · + y0(λ)

(±1)k+1 + μ(λ)xk

∂

∂x
. (3.1)

Consequently, the real analytic parametric family

X3,real(x, y) = xk+1 + yk−1xk−1 + · · · + y0
(±1)k+1 + (μ + y2k+1)xk

∂

∂x
, (3.2)

is a universal real analytic deformation for X3,real(x, 0).

Proof Assuming that the initial vector field X̃ is real analytic then so are all the trans-
formations of Propositions 2.5 and 2.7 with the only exception: the leading coefficient
of X̃(x, 0) = (

cxk+1 +· · · ) ∂
∂x can be brought to either c = ±1 if k is even, and c = 1

if k is odd. ��

Corollary 3.2 If we consider deformations which are symmetric (resp. antisymmetric
(also called reversible)) with respect to the real axis, then their associated universal
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deformations

X ′
1(x, y) = c

(
xk+1 + yk−1xk−1 + · · · + y1x + y0 − c (μ + y2k+1)x2k+1

) ∂

∂x
,

X ′
2(x, y) = c

(
xk+1 + yk−1xk−1 + · · · + y1x + y0

)(
1 − c (μ + y2k+1)xk

) ∂

∂x
,

X ′
3(x, y) = xk+1 + yk−1xk−1 + · · · + y1x + y0

c + (μ + y2k+1)xk

∂

∂x
,

y0, . . . yk−1, cy2k+1 ∈ R, cμ ∈ R, with c = (±1)k+1 (resp. c = i (±1)k+1), have the
same property, and the conjugacy commutes with the symmetry.

Theorem 3.3 (Formal theory)

(1) The statement of Theorem 2.4 and therefore of Theorem 2.2 is also true in the formal
setting, of formal parametric germs of vector fields and formal transformations
(2.1), where by formal we mean a formal power series in (x, λ). In the formal real
case (i.e. the series have real coefficients), then the normal form is given by (3.1).

(2) (Ribon [11, Proposition6.1])Two analytic germs of vector fields X, X ′ are formally
conjugate if and only if they are analytically conjugate.
Moreover, denoting Îλ the ideal of formal series that vanish when λ = 0, if φ̂(x, λ)

is a formal conjugating transformation, then for any n > 0 there exists an analytic
conjugacy φn(x, λ), φ∗

n X
′ = X , such that φn = φ̂ mod În

λ .

The second statement is an analogue of the Artin approximation theorem.

Proof (1) The proof follows exactly the same lines. The key fact is that a formal flow
map of a formal vector field

Ŷ = ∂

∂t
+

k−1∑
j=0

ξ̂ j (t, y, u, μ)
∂

∂ y j
+ F̂(x, t, y, u, μ)

∂

∂x
,

which is analytic in t and the parameters (u, μ) is well defined: see Lemma 3.4
below.

(2) This is a consequence of the uniqueness of the normal form (2.3): each analytic
germof parametric vector field is analytically conjugate to a normal form (2.3), and
two such normal forms are formally conjugate if and only if they are conjugate by

a rotation x �→ e2π i l
k x , l ∈ Zk , which is analytic. Moreover, the formal conjugacy

is a composition of the rotation and of a formal time t̂(λ)-flow map of the vector
field. Replacing t̂(λ) with an analytic tn(λ) = t̂(λ) mod În

λ does the trick. ��

Lemma 3.4 Let Ŷ = ∂
∂t + Ẑ(z, t), where Ẑ(z, t) be a formal vector field in z ∈ C

p

with coefficients entire in t ∈ C, that vanishes at z = 0: Ẑ(0, t) = 0. Then Ŷ has a
well-defined flow z ◦ exp(sŶ) = ∑+∞

n=0
sn

n! Ŷ
n
.z, which is a formal power series in z

with coefficients analytic in (s, t) for all (s, t) ∈ C
2.
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Proof For any n ∈ Z≥0, the n-jet with respect to the variable z of Ŷ is an entire vector
field jn

z Ŷ(z, t) in C
p × C with well defined flow z ◦ exp(s jn

z Ŷ) fixing the origin
in z. For any m ≤ n, the m-jet of this flow agrees with the m-jet of the one for m:
jm
z

(
z ◦ exp(s jn

z Ŷ)
) = jm

z

(
z ◦ exp(s jm

z Ŷ)
)
, meaning that they converge in the Krull

topology as n → +∞ to a well-defined formal flow map z ◦ exp(sŶ). See also [5,
Theorem 3.9]. ��
Theorem 3.5 (C∞-smooth theory, Kostov [8]) In real C∞-smooth setting, the defor-
mation X3,real(x, y) (3.2) is a versal deformation of the normal form vector field
X3,real(x, 0).

Proof The only purely analytic tools used in the proof of the existence of a normal-
izing transformation were the Weierstrass preparation and division theorems (used in
the proof of Proposition 2.7), which have their counterparts in the C∞-setting in the
Malgrange preparation and division theorems [4,9]. ��

The deformation (3.2) is not universal in the C∞-setting in general. The issue is the
non-uniqueness in the Malgrange division and the lack of control over the potential
non-real singularities in the family.

Example 3.6 The deformations X(x, λ) = (x2 + λ2) ∂
∂x , and X ′(x, λ) = (

x2 + (λ +
ω(λ))2

)
∂
∂x , where ω(λ) is infinitely flat at λ = 0 (i.e.

(
∂
∂λ

)n
ω

∣∣
λ=0 = 0, for all n ∈

Z≥0), are C∞-equivalent bymeans of a conjugacyφ(x, λ)with�(x, λ) := φ(x, λ)−x
infinitely flat along λ = 0.

Indeed we first apply the change x �→ λ+ω(λ)
λ

x =: C(λ)x to X ′, thus transforming

it into X ′′(x, λ) = 1
C(λ)

X(x, λ). Note that C(λ) = 1 + ω(λ)
λ

= 1 + μ(λ), with
μ(λ) infinitely flat. We then apply Lemma 2.6. We look for a germ α(x, λ) such that
1+ X .α = C(λ), which is equivalent to (x2 + λ2) ∂

∂x α = μ(λ). This equation has the
odd solution

{
α(x, λ) = μ(λ)

λ
arctan x

λ
, λ 	= 0,

0, λ = 0.

The function α is obviously C∞ since arctan x
λ
is bounded, and each derivative of

arctan x
λ
grows no faster than (x2 + λ2)−n < λ−2n for some n depending on the

derivative. The flow of the vector field

Y = ∂

∂t
− αX

1 + tX .α
= ∂

∂t
− α(x, λ)(x2 + λ2)

1 + tμ(λ)

∂

∂x

is well defined and C∞-smooth for t ∈ [0, 1] as long as |μ(λ)| < 1.

Remark 3.7 The deformations X(x, λ) = (x2 − λ2) ∂
∂x , and X ′(x, λ) = (

x2 − (λ +
ω(λ))2

)
∂
∂x , where ω(λ) is infinitely flat at λ = 0, are not C∞-conjugate. Indeed, the

eigenvalues at the singular points are C1 invariants.
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Problem 3.8 Can we expect uniqueness of the induced coefficients in (3.1) in the
special case when the deformation is such that it has k + 1 merging real singularities
when counted with multiplicity?
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