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Abstract
This paper concerns the investigation of the stability properties of relative equilibria
which are rigidly rotating vortex configurations sometimes called vortex crystals, in
the N-vortex problem. Such a configurations can be characterized as critical point of
the Hamiltonian function restricted on the constant angular impulse hyper-surface in
the phase space (topologically a pseudo-sphere whose coefficients are the circulation
strengths of the vortices). Relative equilibria are generated by the circle action on the
so-called shape pseudo-sphere (which generalize the standard shape sphere appearing
in the study of the N-body problem). Inspired by the planar N-body problem, and after
a geometrical and dynamical discussion of the problem, we investigate the relation
intertwining the stability of relative equilibria and the inertia indices of the central
configurations generating such equilibria. In the last section we applied our main
results to some symmetric three and four vortices relative equilibria.
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1 Introduction and Description of the Problem

The study of vortex dynamics can be traced back to Helmholtz’s work on hydro-
dynamics in 1858 [1] and it plays an important role in the study of superfluids,
superconductivity, and stellar systems. Its Hamiltonian formulation could be dated
back to Kirchhoff in the plane, and later on generalized by Routh [2] and then Lim [3]
to general domains in the plane. In this paper, we are interested to the problem in the
first order Hamiltonian system of the form

�i żi (t) = J∇zi H(z(t)) i ∈ 1, . . . , N . (1.1)

Here J :=
[
0 1
−1 0

]
is the standard symplectic matrix in the Euclidean plane. The

Hamiltonian function H is

H(z) = −
N∑

i, j=1
i< j

�i� j log
∣∣zi − z j

∣∣ .

Here �1, . . . �N ∈ R \ {0} are the vorticities or vortex strengths. The Hamiltonian it
is defined on the configuration space

FN (R2) :=
{
z ∈ R

2N
∣∣zi �= z j for i �= j

}

of the N (coloured) points in the plane. It is clear by the definition that H(z1, . . . , zN )

becomes singular if
∣∣zi − z j

∣∣ → 0 for some i �= j . Setting G(w1,w2) =
− log |w1 − w2| then the Hamiltonian can also be written as H(z) = ∑

i< j �i� j G
(zi , z j ) and it is usually called hydrodynamic Green’s function. As already observed,
theHamiltonian system inEq. (1.1) appear as singular limit equations in problems from
physics. More precisely in fluid dynamics is derived from the Euler equation and for
instance in superconductivity H appears as renormalized energy for Ginzburg-Landau
vortices. Concerning the existence and stability properties of periodic solutions of the
N-vortex problem given in Eq. (1.1), the literature is quite broad and we refer the inter-
ested reader to [4] and references therein. Among the simplest periodic orbits of the
planar N -vortex problem are the relative equilibria. These configurations of vortices
rotates rigidly about their center of vorticity and sometimes are referred to as vortex
crystals and are frequently observed in natural phenomena (e.g. the hurricanes).

Relative equilibria are crucial in deeply understanding the intricate dynamics of
this singular Hamiltonian problem and as the name suggested are rest-points in a
suitable rotating coordinate system. As we’ll discuss in Sect. 2, relative equilibria can
be characterized as critical points (or more precisely critical orbits) of the restriction
of the Hamiltonian to the angular impulse unitary (pseudo-)sphere of the phase space.
Otherwise stated such a rigid configurations are generated through a rotation with
angular velocity ω of a special critical configuration of the system usually called
central configuration. (Cfr. Sect. 2 for further details).
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A natural and classical problem is to understand how the spectral properties of
these central configurations or more precisely the inertia indices of the Hessian of
H at these configurations reflect on the dynamical properties of the generated vortex
crystal (through rotation) like, for instance, spectral or linear stability properties etc.
This problem is very classical in the gravitational N -body problem in which central
configurations are characterized as critical points of the self-interacting potential on
the shape sphere (which is the base space of the circle bundle) whose total space
is the inertia ellipsoid. There is a long standing conjecture due to Moeckel stating
that a linearly stable relative equilibrium must be a nondegenerate minimum of the
Newtonian potential restricted to the shape sphere. The other direction is false even
for other class of weakly attracting singular potentials. (Cfr., for instance, [5,6]).

The investigation of the relation between the stability properties of a relative equi-
librium and the spectral properties of the central configuration generating such an
equilibrium in the N-vortex problem is pretty different. Despite of the fact that the cir-
culation strengths could have any sign (in the classical gravitational N -body problem
they correspond to the masses which are all positive), the Hessian of the Hamiltonian
computed at a central configuration has some commutativity properties with respect to
the Poissonmatrix K induced by J that greatly simplify the problem. (Cfr. Lemma 2.6,
for further details). Such a property was observed by Roberts in its interesting paper of
Roberts [7,8]. In the aforementioned papers, in fact, the author was able among others
to prove in the case of positive circulation strengths, the relation between the Morse
index of a relative equilibrium z and the spectrum of the so-called stability matrix, i.e.
the matrix which determines the linear stability of z. (Cfr. [8, Theorem 3.5] and refer-
ences therein). As direct consequence he proved (always under the assumption of all
positive circulations) that a relative equilibrium z of the N -vortex problem is linearly
stable if and only if it is generated by a nondegenerate minimum of the Hamiltonian
H restricted to the level surface of the angular impulse.

This result was the starting point of our analysis and the main motivation to inves-
tigate about the effect of mixed sign circulation strengths. Last but not least comment
before describing our main results is to observe that this indefinite case, the stability
analysis is much more delicate. This situation, as we’ll try to clarify, reflects somehow
the difficulties and it is the paradigm of the difference between the Riemannian and
the Lorentzian world.

1.1 Main Results

Our first result, provides a characterization of the spectral stability of a relative equi-
librium z in terms of a spectral condition on the central configuration ξ , no matter
how the signs of the circulations are. Before stating and describing our first result, we
pause by recalling what stability notion we are talking about. Being the Hamiltonian
H invariant under translations and rotations this implies, among others, that 0 (having
algebraic multiplicity 2) as well as±ωi are Floquet characteristic multipliers, arising
precisely from these symmetries.

What is natural to do is to define the linear stability properties of a relative equi-
librium by ruling out the eigenvalues coming from these conservation laws. We set
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M� := �i I2δi j (where I2 denotes the 2 × 2 identity matrix and δi j is the Kro-
necker delta) and we denote by B the so-called stability matrix, namely the matrix
which is responsible of the stability of the relative equilibrium which is defined by
B = K

[
M−1

� D2H(ξ) + ωI2N
]
where K is the Poisson matrix, i.e. a 2 × 2 block

diagonal matrix in which each non-vanishing block is given by J .

Definition 1.1 A relative equilibrium z will be termed non-degenerate provided the
remaining 2n − 4 eigenvalues of the matrix B are not vanishing. A non-degenerate
relative equilibrium is

• Spectrally stable if the nontrivial eigenvalues are purely imaginary
• Linearly stable if, in addition, the restriction of the stability matrix B to W⊥ has

a block-diagonal Jordan form with blocks

[
0 βi
−βi 0

]
.

Remark 1.2 Otherwise stated a relative equilibrium z is spectrally stable if all Floquet
multipliers (the eigenvalues of the monodromy matrix) belongs to the unit circle (cen-
tered at the origin) U in the complex plane. Furthermore if the monodromy matrix is
also diagonalizable, then z is linearly stable. In this last case, in fact, the monodromy
matrix can be factorized as direct symplectic sum of rotations or which is the same, it
belongs to the maximal compact Lie subgroup of Sp(2N − 4).

Theorem 1 A non-degenerate relative equilibrium z (with angular velocity ω) gener-
ated by the central configuration ξ is spectrally stable if and only if for every eigenvalue
μ of M−1

� D2H(ξ) one of the following alternative holds

• μ ∈ iR
• μ ∈ R and μ ∈ [−|ω|, |ω|].

In particular it is non-degenerate if and only if μ �= ±ω.

The idea for proving this result is essentially based on the relation between the matrix
M−1

� D2H(ξ) and B. It is worth to observe that, no matter how the signs of the cir-
culations are, the matrix appearing in Theorem 1 i.e. M−1

� D2H(ξ) is M�-symmetric
namely is symmetric with respect to the scalar product induced by M� (cfr. Defini-
tion 2.12 for further details). However, if the circulations are all positive such a scalar
product is positive definite and this implies that the spectrum ofM−1

� D2H(ξ) is diago-
nalizable in the orthogonal group and its spectrum is real. For mixed signs circulations,
this is not true anymore, and in fact the spectrum of M−1

� D2H(ξ) will be, in general,
not real anymore. This reflects the indefinite Krein structure behind and among others
responsible of the presence of Jordan blocks that are intimately related to the spectral
stability properties of the relative equilibrium. In conclusion Theorem 1 represents the
generalization of [7, Theorem 3.1] in the case of mixed signs circulations. The matrix
B is M�-Hamiltonian, namely is Hamiltonian with respect to the symplectic form ω�

which is represented by K with respect to the M�-scalar product.
Our second main result relates the spectrally stability properties of a relative equi-

librium and the inertia indices of the central configuration generating it.

Theorem 2 Let z be non-degenerate relative equilibrium generated by the central
configuration ξ and let Â(ξ) := D2H(ξ) + ωM� . We assume that z is spectrally
stable. Then the following result holds.
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• Case of positive angular velocity ω

{
n−( Â(ξ)) = n−(M�), if 〈M�ξ , ξ 〉 is positive definite
n−( Â(ξ)) = n−(M�)− 1, if 〈M�ξ , ξ 〉 is negative definite .

• Case of negative angular velocity ω

{
n−( Â(ξ)) = n+(M�)− 1, if 〈M�ξ , ξ 〉 is positive definite
n−( Â(ξ)) = n+(M�), if 〈M�ξ , ξ 〉 is negative definite .

Furthermore, we have

{
n−( Â|W⊥(ξ)) = n−(M�|W⊥), i f ω > 0,

n−( Â|W⊥(ξ)) = n+(M�|W⊥), i f ω < 0

where W⊥ is the M�-orthogonal complement of W = span(ξ , K ξ).

Remark 1.3 Theorem 2, in the case of mixed-sign circulations, was quite unexpected.
This fact, as already confirmed by [8, Remark 4.10] in which author guess is that no
connections seems existing between the Morse index of a central configuration and
the stability of the arising relative equilibrium.

However, in Theorem 2, irrespective on what the signs of circulations are and by
using a M�-orthogonal decomposition, we were able to point out the deep relationship
between the inertia indices of M� and the stability.

Given N -vortices in the plane, we define total vortex angular momentum L as L :=∑
i< j �i� j . Thus, if the vortex strengths are all positive, then L > 0. However,

when vorticities are different in signs, then L could be of any sign or even vanishes.
Analogously to the moment of inertia in the N -body problem, it is possible to define
the so-called angular-impulse of the N-vortex problem as follows

I (z) := 1

2

N∑
i=1

�i ‖zi‖2

and, as we will see in the sequel, it will be crucial in order to give a variational
interpretation to the central configurations, miming the analogous interpretation in the
N -body problem. As already observed, for a relative equilibrium z generated by ξ ,
the angular velocity is constant and it is given by

L = ω 〈∇ I (ξ), ξ 〉 = 2ω I (ξ) ⇒ ω = L/
(
2 I (ξ)

)
.

Thus in the case of mixed signs circulations the angular velocity could have any sign
what that cannot happen in the case of constant sign circulations.

The proof of Theorems 1 and 2 will be given in Sect. 4.
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In the last section, we analyze some interesting symmetric central configuration;
more precisely, the equilateral triangle and the rhombus (sometimes called kite) central
configuration.

The equilateral triangle central configuration in the three-vortex problem is obtained
by placing three vortices of any strength at the vertices of an equilateral triangle. Synge
in his celebrated paper published in 1949 (cfr. [9]), proved that the corresponding
relative equilibrium is linearly stable if and only if L > 0.

Starting from this we get information on the a central configuration knowing the
stability of the induced relative equilibrium. More precisely, let us given three circu-
lations �1, �2, �3 placed at the following points

ξ̂1 = (1, 0), ξ̂2 =
(
−1

2
,

√
3

2

)
, ξ̂3 =

(
−1

2
,−
√
3

2

)
,

and we let ĉ = ∑3
i=3 �i ẑi . Assuming that L > 0 and setting ξ = (ξ1, ξ2, ξ3), for

ξ i = ξ̂ i − ĉ then we conclude that

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
0 if �1, �2, �3 have the same sign

1 if there is only one �i < 0

2 otherwise

.

About the kite central configuration, it is know (cfr. [7,8] for further details) that
there exist two families of relative equilibria where the configuration is a rhombus. Set
�1 = �2 = 1 and �3 = �4 = m,wherem ∈ (−1, 1] is a parameter. Place the vortices
at z1 = (1, 0), z2 = (−1, 0), z3 = (0, y) and z4 = (0,−y), forming a rhombus with
diagonals lying on the coordinate axis. This configuration is a central configuration
provided that

y2 = 1

2

(
β ±

√
β2 + 4m

)
, β = 3(1− m). (1.2)

The angular velocity is given by

ω = m2 + 4m + 1

2(1+ my2)
= 1

2
+ 2m

y2 + 1
.

Taking plus sign in Eq. (1.2) yields a solution for m ∈ (−1, 1] that always has ω > 0.
We refer to this solution as rhombus A. Taking − in Eq. (1.2) yields a solution for
m ∈ (−1, 0) havingω > 0 form ∈ (−2+√3, 0), butω < 0 form ∈ (−1,−2+√3).
We refer to this solution as rhombus B. Assuming that z is the relative equilibrium
generated by the rhombus central configuration ξ . Then

1. if the central configuration is rhombus A, then we have

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
0 if 0 < m ≤ 1,

3 if − 2+√3 < m < 0,

4 if − 1 < m < −2+√3.
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2. if the central configuration is rhombus B, then we have

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
2 if − 2+√3 < m < 0,

4 if m∗ < m < −2+√3,

3 if − 1 < m < m∗.

where m∗ is the only real root of the cubic 9m3 + 3m2 + 7m + 5.

Notation

At last, let us introduce some notation that we shall use henceforth without further
reference. We have already mentioned that I stands for the angular impulse , however,
the similar symbol IX or just I will denote the identity operator on a space X and we
set for simplicity Ik := IRk for k ∈ N. We denote throughout by the symbol #T (resp.
#-T) the transpose (resp. inverse transpose) of the operator #.

Mat(m, n;K) stands for the space ofm×n matrices in the fieldK and ifm = n we
just use the short-hand notation Mat(m;K). σ(#) denotes the spectrum of the linear

operator #. We denote throughout by J the standard symplectic matrix J :=
[
0 1
−1 0

]
.

U denotes the unit circle in the complex plane namely the set of all complex numbers
of modulus 1.

If Z is a finite dimensional vector space. We denote by L (Z) the vector space of
all linear operators on Z .

2 The Geometric and Dynamical Framework

This section essentially focus on describing the geometric and dynamical framework as
well as to fix our basic definitions and notation. A similar description already appears
in [8, Sect. 2] and references therein. However, since the setting is slightly general,
we decided to do an effort and to include here for the sake of the reader.

In theEuclidean plane (V , 〈·, ·〉) equippedwith coordinates z = (p, q), we consider
the standard symplectic form ω defined as follows

�(·, ·) = 〈J ·, ·〉 where J :=
[
0 1
−1 0

]
.

For i ∈ {1, . . . , N }, let �i ∈ R \ {0} representing the vortex strength of the N -point
vortex zi ∈ V . We will assume throughout that the total circulation � := ∑N

i=1 �i

is nonzero. The center of vorticity is then well-defined as c := �−1
∑N

i=1 �i zi . Let
H : V N → R be the function defined as follows

H(z) = −
∑
i< j

�i� j log ri j where ri j :=
∣∣zi − z j

∣∣ (2.1)
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for z = (z1, . . . , zN ) ∈ V N . In what follows we refer to H as the N -vortex Hamil-
tonian function. Denoting by IN the N × N identity matrix, we define the matrix of
circulations as the real 2N × 2N matrix given by

M� :=
⎡
⎢⎣

�1
. . .

�N

⎤
⎥⎦⊗ I2 =

⎡
⎢⎣

�1 I2
. . .

�N I2

⎤
⎥⎦ ∈ Mat(2N ;R)

and the symplectic matrix K := IN ⊗ J ∈ Mat(2N ;R). Let FN (V ) be the space of
all N (colored) points in V ; in symbols

FN (V ) :=
{
z ∈ V N

∣∣i �= j �⇒ zi �= z j
}
= V N\�.

Its complement in V N is the collision set

� :=
{
z ∈ V N

∣∣∃ (i, j), i �= j : zi = z j
}
=

⋃
1≤i< j≤N

�i j

where �i j :=
{
z ∈ V N |zi = z j

}
. It is immediate to check that the restriction of H to

FN (V ) is indeed a smooth function.

2.1 Central Configurations

Given two vectors v,w in V N , then we let

〈v,w〉� :=
N∑
i=1

�ivi · wi

denote the circulation scalar product of v and w, where vi · wi denotes the standard
Euclidean product in V of the i-th component of v and w. We observe that, if the
vortex strengths are all positive, then 〈·, ·〉� is, actually, an inner product equivalent
to the Euclidean one; otherwise, is an indefinite (non-degenerate) scalar product.1 We
also notice that 〈v,w〉� = wTM�v where ·T denotes the transpose with respect to the
Euclidean product. Given I0 ∈ R, we define the pseudo-sphere SN (V ) and we’ll refer
to as circulation (pseudo)-sphere or circulation sphere for short as

S := SN (V ) :=
{
z ∈ FN (V )

∣∣ ‖z‖2� = I0
}

.

1 This indefinite scalar product appears very often in mathematical physics; e.g. the Minkowski scalar
product.
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In particular the circulation sphere is equal to the sphere (with respect to the cir-
culation scalar product) in V N with collisions removed; thus SN (V ) = SN (V ) \ �

where

SN (V ) :=
{
z ∈ V N

∣∣ ‖z‖2� = I0
}

.

Remark 2.1 It is worth noticing that if vortex strengths are all positive, then the pseudo-
sphere is in general an ellipsoid (thus, topologically a sphere) and if are all equal it
reduces to the round sphere. In the general case, however, it is a (non-compact) quadric.
(Cfr. [8, Sect. 2.2] for an exhaustive discussion in the positive definite case).

A central configuration for the the N-vortex problem is a (non-collision) configu-
ration ξ ∈ FN (V ) with the property that exists ω ∈ R such that

∇H(ξ)+ ω∇ I (ξ) = ∇H(ξ)+ ωM�(ξ) = 0. (2.2)

Let C : V N → V N be the isometry defined by C(ξ) = ξ ′, with

ξ ′j = ξ j − 2c

for each j = 1, . . . , N . It is easy to check that C is an isometry with respect to the
〈·, ·〉� . In fact, it holds

∥∥ξ ′∥∥2
�
=

N∑
i=1

∥∥ξ i − 2c
∥∥2

�
=

N∑
i=1

〈
�iξ i , ξ i

〉
�
− 4

N∑
i=1

〈
�iξ i , c

〉
�
+ 4

N∑
i=1

�i ‖c‖2�

= ‖ξ‖2� − 4 ‖c‖2� � + 4 ‖c‖2� � = ‖ξ‖2� . (2.3)

We observe that H(Cξ) = H(ξ) and by the computation performed in Eq. (2.3), we
conclude immediately that I (ξ ′) = I (ξ). By these two fact readily follows that if ξ is a
central configuration then also Cξ is a central configuration. Now, by using Eq. (2.2),
we can conclude that Cξ = ξ and hence ξ = 0. Thus, if ξ is a central configuration,
then its center of vorticity c = 0. As consequence of this discussion and without
leading in generalities in the sequel we’ll restrict to the reduced phase space which is
the 2(N − 1)-dimensional subspace of V N defined by

X :=
{
z = (z1, . . . , zN ) ∈ V N

∣∣∣∣
N∑
i=1

�i zi = 0

}
.

By using once again Eq. (2.2) it follows in fact, that a central configuration can be
seen as a critical point of the Hamiltonian function restricted to a level surface of the
angular impulse in which ω acts as a Lagrangian multiplier. Note that, if z̄ is a central
configuration, so is λ z̄ for any scalar λ. In this case, the parameter ω must be scaled
by a factor 1/λ2.



76 Page 10 of 39 X. Hu et al.

We observe that by the invariance property of the Hamiltonian function as well as
of the angular-impulse, we get that central configurations are not isolated and appears
in a continuous family. To eliminate such a degeneracy, it is customary to fix a scaling
(e.g. I = I0) and to identify central configurations that are identical under rotations.

Remark 2.2 It is also worth noticing that the linear stability properties of such rigid
motions are not affected by such rotation.

We also define the following sets

S
c
N := SN ∩ X and ScN := SN ∩ X .

By the above discussion, in particular we get that if z is a central configuration then z ∈
X . However, in principle, a critical point of the restriction of H |ScN is not necessarily
a critical point of H |SN . However since the Hamiltonian function is C-invariant and
being X the space fixed by the action of the (compact Lie) orthogonal group of V N ,
it follows that any critical point of the restriction of H |ScN is indeed a critical point
of H |SN (cf. [10], for further details). However, as already observed critical points of
H |ScN are not isolated. In fact, if z0 is a critical point of H |ScN , then eϑK z0 is, for every
ϑ . In order to eliminate this further degeneracy, we consider the orbit spaces

Ŝ
c
N := S

c
N/SO(2) and ŜcN := ScN/SO(2)

and we’ll refer to the shape sphere without collision and the shape sphere respectively.
It is worth noticing that both are the orbit space of the circle action on the spheres
S
c
N and ScN , respectively. In what follows, we’ll refer to a central configuration as the

critical point of H
Ŝ
c
N
in order to distinguish from critical points of HS

c
N
usually called

relative equilibria.

Remark 2.3 As already observed by author in [8, Sect. 2.2] since SO(2) ≡ S1 acts
freely on ScN , we get that Ŝ

c
N is also a manifold. For the case of three vortices (having

positive circulations), it is actually diffeomorphic to the 2-dimensional sphere minus
three points corresponding to the binary collisions (triple collision being a priori elim-
inated by the normalization condition induced by restricting to the level set of the
angular impulse).

2.2 Relative Equilibria

A system of N point vortices (in the plane) with vortex strength �i �= 0 and positions
zi ∈ V evolves according to the phase flow induced by the following Hamiltonian
system

�i żi = J∇i H
(
z(t)

) = J
N∑
j �=i

�i� j

r2i j
(z j − zi ), i ∈ {1, . . . , n} (2.4)

where the Hamiltonian function H is defined in Eq. (2.1), and ∇i denotes the two-
dimensional partial gradient with respect to zi . We will assume throughout that
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(H) the total circulation � = ∑N
i=1 �i is nonzero and that the center of vorticity

c = 0.

In short-hand notation Eq. (2.4), could be rewritten in the following form

M� ż(t) = K∇H
(
z(t)

)
, t ∈ [0, 2π ] (2.5)

where K is the real 2N × 2N matrix given by

K := IN ⊗ J =
⎡
⎢⎣
J

. . .

J

⎤
⎥⎦ ∈ Mat(2N ;R).

A special class (maybe the easiest) of periodic solutions for this problem is given by
the rigid motions of the system around its center of mass. Such a motions are termed
relative equilibria. More precisely we introduce the following definition.

Definition 2.4 We term relative equilibrium (RE, for short) any T := 2π/|ω| periodic
solution of Eq. (2.5), namely

z(t) := e−ωKtξ , where ω ∈ R \ {0}, t ∈ [0, T ] and ξ ∈ FN (V ). (2.6)

Remark 2.5 By this definition, as alreadyobserved, it follows that a relative equilibrium
is a periodic solution inwhich each point vortex uniformly rotateswith angular velocity
ω �= 0 around (its common center of vorticity represented by) the origin.

By a direct computation and by using Eq. (2.6), it follows that the central configuration
ξ generating a relative equilibrium satisfy the following equation

−ω �iξ i = ∇i H
(
ξ
) =

N∑
j �=i

�i� j

r2i j (0)

(
ξ j − ξ i

)
, for each i ∈ {1, . . . , n}.

Otherwise said, for every i ∈ {1, . . . , n}, ∇i H
(
ξ
)+ω �iξ = 0 which is equivalent to

claim that ξ is a solution of Eq. (2.2) hence a central configuration. Thus in a properly
rotating frame a relative equilibrium is nothing but a central configuration.

The following result points out some crucial properties of the Hamiltonian function
H that will be useful later on and we refer the interested reader to [7, Lemma 2.3] for
the proof.

Lemma 2.6 The Hamiltonian H has the following three properties:

(i) ∇H(z) · z = −L,

(ii) ∇H(z) · (K z) = 0,
(iii) D2H(z) K = −K D2H(z).

Remark 2.7 Aswewill see later on, property (iii) plays a crucial role in the investigation
of the linear stability for relative equilibria. For all of the same sign vorticity strengths,
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such a condition reduces the problem to the investigation of the spectrum to a 2 ×
2 symmetric matrix or equally well a complete factorization of the characteristic
polynomial into even quadratic factors.

This property doesn’t hold for relative equilibria of the N -body problem and in
fact a challenging longstanding still open problem is to establish a precise relation
between the dynamical properties of the relative equilibria and the spectral properties
of central configurations originating them.

Differentiating with respect to z the equality appearing at first item in Lemma 2.6, we
get

〈D2H(ξ)[u], z〉 + 〈∇H(ξ), u〉 = 〈D2H(ξ)[z], u〉 + 〈∇H(ξ), u〉 = 0, ∀ u ∈ Tξ Ŝ
c
N

⇒ D2H(ξ)[z] + ∇H(ξ) = 0.

Since ξ is a central configuration and by using once again Eq. (2.2), we immediately
get ∇H(ξ) = −ωM�ξ and by summing up we get the equality

M−1
� D2H(ξ) ξ = ω ξ . (2.7)

Equation (2.7) together with property (iii) Lemma 2.6 shows that B(ξ)K ξ = 0. The
equation of motions given in Eq. (2.5), in a uniformly rotating frame with angular
velocity ω reduces to

M�ẇ(t) = K
(∇H(w(t))+ ωMw(t)

)
, t ∈

[
0,

2π

|ω|
]

. (2.8)

In fact, let w(t) := eωKt z(t); thus by a direct computation, we get

M�ẇ(t) = ωKM�e
ωKt z(t)+ M�e

ωKt∇H(z(t)) = K
[∇H

(
w(t)

)+ ωM�w(t)
]

where the commutativity properties of M� with respect to K and eK were tacitly used.
In particular, a rest point of the Hamiltonian vector field appearing in Eq. (2.8) is a
relative equilibrium, as expected.

Remark 2.8 We observe that if the circulations have mixed sign thenω could be of any
sign (meaning that the vortices can rotate clockwise or counterclockwise with respect
to the center of vorticity). In fact, by taking the scalar product with respect to ξ in Eq.
(2.2) as well as invoking the first claim in Lemma 2.6, we get that

L = ω 〈∇ I (ξ), ξ 〉 = 2ω I (ξ) ⇒ ω = L/
(
2 I (ξ)

)
. (2.9)

where the last equality directly follows by using the Euler theorem on positively
homogeneous functions after observing that I is homogeneous of degree 2. Now, the
claim follows by observing that a priori L could be of either positive or negative.
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Remark 2.9 In a more geometrical way the Hamilton equations in the uniformly rotat-
ing frame are nothing but the Hamilton equation on the cotangent bundle T ∗ScN with
the symplectic form induced by the standard symplectic form whose Hamiltonian
vectorfield (i.e. the symplectic gradient) is defined by

XH (w) := K
[∇H(w)+ ωM�w

]
.

The variational equation associated to the Hamiltonian system given in Eq. (2.8) is

M� ξ̇(t) = K
[
D2H(w(t))+ ωM

]
ξ(t)

)
, t ∈

[
0,

2π

|ω|
]

.

In particular if w(t) = eωKtξ is a relative equilibrium solution at the central config-
uration ξ , and the admissible variations belongs to the tangent along the fibers of the
principal S1-bundle, then

D2H(w(t)) = D2H(ξ).

In fact, since H is invariant under rotation, it follows that H
(
z(t)

) = H
(
ξ
)
. Now, by

differentiating twice this last equality forw(t) = eωKtξ (here the admissible variations
are of the form eωKtu for u ∈ TScN ), we get

e−ωKt D2H
(
w(t)

)
eωKt = D2H (z0) . (2.10)

Inserting the expression given in Eq. (2.10) into Eq. (2.8) and setting η = eωKtξ , we
get

η̇(t) = K
[
M−1

� D2H(ξ)+ ωI
]
η(t).

Following Roberts [7] we introduce the following definition.

Definition 2.10 The matrix

B(ξ) := K A�(ξ) where A�(ξ) := [
M−1

� D2H(ξ)+ ωI
]

is termed the stability matrix of the relative equilibrium z generated by ξ . Borrowing
the definition introduced by author in [8, Sect. 2.2], we sometimes, refer to A�(ξ) as
modified Hessian.

Notation 2.11 When no confusion may occur, in shorthand notation we denote by B
(resp. A�) the matrices B(ξ) (resp. A(ξ)).

Definition 2.12 Let (Rk, N ) be a (maybe indefinite) non-degenerate scalar product
space on the real vector space Rk and let G ∈ Mat(k,R). The matrix G is termed a
N -symmetric matrix if

NG = GTN ,
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where ·T denotes the transpose with the respect to the Euclidean product. The matrix
R ∈ Sp(2n,�) is termed N -Hamiltonian, if

RTPN + N PR = 0

where P represents the symplectic form � with respect to the Euclidean product.

Remark 2.13 It is worth noticing that if N = I then the definitions of N -symmetric
(resp. N -Hamiltonian) matrix, reduces to the standard definition of symmetric (resp.
Hamiltonian) matrix with respect to the Euclidean scalar product (resp. canonical
symplectic structure).

By a direct calculation follows thatM−1
� D2H(ξ)(ξ) is aM�-symmetric matrix (what-

ever the sign of each circulation is) and B(ξ) is M�-Hamiltonian, meaning that

BT(ξ)KM� + M�K B(ξ) = 0.

This last claim directly follows by Eq. (2.7). Otherwise stated, the matrix B(ξ) is
Hamiltonian with respect to the vortex symplectic form defined by

ω�(·, ·) = 〈K ·, ·〉� = 〈M� K ·, ·〉.

Remark 2.14 Wepause the exposition by introducing the following remark that explain
why the mixed sign circulations case is really completely different from the con-
stant sign circulations. It is well-known that the product of two symmetric matrices
is symmetric as soon as the two matrices commute. Thus, in general, the matrix
M−1

� D2H(ξ)(ξ) whatever ξ is, and no matter how the signs of �i arem not be sym-
metric. Clearly, if all circulations are equal then M� is just a multiple of the identity
and, of course, M−1

� D2H(ξ) is symmetric. However, if the circulations strengths �i

are all positive, then the matrix M� is positive definite and in particular its spectrum is
real. For mixed signs circulation strengths, however, M�-is (nondegenerate) but indef-
inite and its spectrum [11, Theorem 5.1.1, p.74] is not necessarily real, anymore and
this fact is responsible among others of some technicalities as well as a deep change
in the dynamics of the problem.

We conclude this section by showing a nice and important block matrix structure of
the Hessian matrix D2H(ξ). This property comes from item (iii) in Lemma 2.6. Let ξ
be a central configuration; thus ξ = (ξ1, ξ2, . . . , ξn) ∈ R

2n and let ξ i j = (ξ i−ξ j )/ri j .
A direct computation shows that

D2H(ξ) =
⎡
⎢⎣
A11 A12 · · · A1n
...

...

An1 An2 · · · Ann

⎤
⎥⎦
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where Ai j is the 2× 2 symmetric matrix

⎧⎪⎨
⎪⎩
Ai j := �i� j

r2i j
[I − 2ξ i jξ i j

T] if i �= j

Aii := −∑
j �=i Ai j otherwise.

(2.11)

Note that Ai j = A ji and, for i �= j

Ai j = �i� j

r4i j

[
(yi − y j )2 − (xi − x j )2 −2(xi − x j )(yi − y j )
−2(xi − x j )(yi − y j ) (xi − x j )2 − (yi − y j )2

]

where ξ = (x, y). The fact that J commutes with each Ai j gives another proof of the
fact that D2H(ξ) and K anti-commute.

Lemma 2.15 The following facts hold:

1. s = [1, 0, 1, 0, . . . , 1, 0], K s ∈ ker D2H(ξ) ,
2. For every relative equilibrium z generated by the central configuration ξ , we have

that K ξ ∈ ker B.

Proof From the conservation of the center of vorticity, by using Eq. (2.11) and by a
straightforward calculation we get that

n∑
i=1

A ji

(
1
0

)
=

∑
i �= j

A ji

(
1
0

)
+ A j j

(
1
0

)
=

∑
i �= j

A ji

(
1
0

)
−

∑
i �= j

A ji

(
1
0

)
= 0.

This implies that

D2H(ξ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
...

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎝
A11 A12 · · · A1n
...

...

An1 An2 · · · Ann

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
...

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

∑n
i=1 A1i

(
1
0

)

...∑n
i=1 Ani

(
1
0

)

⎞
⎟⎟⎟⎟⎟⎠
= 0.

Thus s ∈ ker D2H(ξ).
Furthermore, by the last claim in Lemma 2.6, we have D2H(ξ)K s = −K D2H(ξ)s

= 0 which implies that also K s ∈ ker D2H(ξ).
The proof of the second claim directly follows by Eq. (2.7) together with property

(iii) Lemma 2.6. In fact, by a direct computation we get

Bξ = K [M−1
� D2H(ξ)ξ + ω ξ ] = K [ωξ + ωξ ] = 2ωK ξ

BK ξ = K [M−1
� D2H(ξ)K ξ + ω K ξ ] = K [−KM−1

� D2H(ξ)ξ + ω K ξ ]
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= K [−ω K ξ + ω K ξ ] = 0.

This concludes the proof. ��
By the first claim in Lemma 2.15 it then follows that the restriction of the stability

matrix to the spectrum of B is precisely {±ωi}. For a given relative equilibrium z with
corresponding central configuration ξ , let W = span{ξ , K ξ}. As already proved in
Lemma 2.15 this is an invariant subspace for B and the restriction of B to W is given
by

B
∣∣∣
W
=

[
0 0
2ω 0

]

Notation 2.16 In what follows, we denote byW⊥ ⊂ V N the M�-orthogonal comple-
ment of W , that is,

W⊥ =
{
w ∈ R

2n : 〈w, v〉� = wTM�v = 0,∀v ∈ W
}

.

Lemma 2.17 The vector space W⊥ has dimension 2n − 2 and is invariant under B.
If L �= 0, then W ∩W⊥ = {0}.
Proof For the proof of this result, we refer the interested reader to [7, Lemma 2.6]. ��

As long as L �= 0, Lemma 2.17 allows us to define the linear stability with respect
to the M�-orthogonal complement of the subspace W . Thus, a relative equilibrium is
spectrally (resp. linearly) stable if the restriction of the matrix B ontoW⊥ is spectrally
(resp. linearly) stable according to Definition 1.1. However instead of working on
a reduced phase space (eliminating the rotational symmetry), it is more convenient
to work on the full phase space we investigate the linear stability properties of the
orbits in the full space. However, in this case, by the invariance properties of H , it
readily follows that 4 is the minimal possible nullity (or kernel dimension) of the
corresponding linear differential operator.

3 Spectral Properties and Canonical Forms of the Stability Matrix

This section is devoted to collect several linear algebraic results on the spectrum of
the stability matrix B that we will need in order to prove our main result. In fact, as
already observed, the eigenvalues of B determine the spectral and linear stability of
the corresponding periodic solution.

3.1 Spectral Properties of the Stability Matrix

The aim of this subsection is to study the relation intertwining the spectrum of the
stability matrix B and the spectrum of M−1

� D2H(ξ) (and hence of Â). The first result,
that we recall here for the sake of the reader, was proved by Roberts in [7].
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Lemma 3.1 The characteristic polynomials of M−1
� D2H(ξ) and D2H(ξ) are even.

Moreover, for each on of the above matrices, v is an eigenvector with eigenvalue
μ if and only if Kv is an eigenvector with eigenvalue −μ.

Proof The proof of this result follows by a direct computation. (Cf. [7, Lemma 2.4],
for further details). ��

The following result relates the spectrum of B with the spectrum of the matrix
M−1

� D2H(ξ) and will be a key ingredient for the stability analysis.

Lemma 3.2 Under the above notation, λ ∈ σ(B) if and only if μ± := ±
√

λ2 + ω2 ∈
σ(M−1

� D2H(ξ)), where
√· denotes the the square root of the (maybe real negative

or complex number λ2 + ω2). More precisely, the following facts hold:

1. λ ∈ σ(B) ∩ iR) iff μ ∈ σ(M−1
� D2H(ξ)) ∩ iR or μ ∈ σ(M−1

� D2H(ξ)) ∩R and
|μ| ∈ [− |ω|, |ω|].

2. λ ∈ σ(B) ∩ R) iff μ ∈ σ(M−1
� D2H(ξ)) ∩ R and |μ| ≥ |ω|.

3. λ ∈ σ(B) ∩ C \ (R ∪ iR
)
iff μ ∈ σ(M−1

� D2H(ξ)) ∩ C \ (R ∪ iR
)
.

Proof Since K 2 = −I and KM−1
� D2H(ξ) = −M−1

� D2H(ξ)K (as direct follows by
applying Lemma 2.6), then by a direct computation, we get:

B − λ2 I = (B − λ)(B + λ) = [
K (M−1

� D2H(ξ)+ ωI )− λI
][
K (M−1

� D2H(ξ)+ ωI )+ λI
]

= K (M−1
� D2H(ξ)+ωI )K (M−1

� D2H(ξ)+ωI )− λ2 I =(KM−1
� D2H(ξ)+ KωI )2−λ2 I

= M−1
� D2H(ξ)2 + KM−1

� D2H(ξ)Kω + KωKM−1
� D2H(ξ)− λ2 I − ω2 I

= M−1
� D2H(ξ)2 + M−1

� D2H(ξ)ω − ωM−1
� D2H(ξ)− λ2 I − ω2 I

= M−1
� D2H(ξ)2 − (λ2 + ω2)I . (3.1)

By the calculation performed in Eq. (3.1) we get that

0 = det(B − λ2 I ) iff det[M−1
� D2H(ξ)2 − (λ2 + ω2)I ]

= det[M−1
� D2H(ξ)2 − μ2 I ] = 0,

where μ2 := λ2 + ω2.
In order to prove the first claim, we start to observe that if λ ∈ σ(B) ∩ iR then

λ2 = μ2 − ω2 < 0. By this last inequality we can conclude that either μ2 < 0 or
0 < μ2 ≤ ω2 or which is equivalent to state that μ ∈ σ(M−1

� D2H(ξ)) ∩ iR or μ ∈
σ(M−1

� D2H(ξ))∩R and |μ| ∈ [−|ω|, |ω|]. Viceversa, ifμ ∈ σ(M−1
� D2H(ξ))∩iR,

in particularμ2 < 0. Beingμ2 = λ2+ω2 < 0 and ω2 > 0 (being ω ∈ R) this implies
that λ2 < 0. Thus λ ∈ iR and by Eq. (3.1) λ ∈ σ(M−1

� D2H(ξ)). This conclude the
proof of the first item . The proof of items 2 and 3 can be proved by arguing precisely
as above and we leave the proof to the interested reader. ��



76 Page 18 of 39 X. Hu et al.

3.2 Canonical Forms and Invariant Splitting of the Phase Space

This subsection is devoted to study the relation between the invariant subspaces of B
(which are crucial for reducing the operator B and the generalized eigenspaces of A�).
Lemma 3.3 that we state below for the sake of the reader, was proved in [7, Lemma
2.5].

Lemma 3.3 Let p(λ) := det(B−λI ) be the characteristic polynomial of the stability
matrix B.

(a) Suppose that v is a real eigenvector of M−1
� D2H(ξ) corresponding to the eigen-

value μ. Then the span of the two vectors {v, Kv} is a real invariant subspace of
B and the restriction of B to this subspace is given by

[
0 μ− ω

μ+ ω 0

]
.

Consequently, p(λ) has a quadratic factor of the form λ2 + ω2 − μ2.
(b) Suppose that v = v1+ i v2 is a complex eigenvector of M

−1
� D2H(ξ) correspond-

ing to the complex eigenvalue μ = α + i β. Then the span of the four vectors
{v1, v2, Kv1, Kv2} is a real invariant subspace of B and the restriction of B to
this subspace is given by

⎡
⎢⎢⎣

0 0 α − ω β

0 0 −β α − ω

α + ω β 0 0
−β α + ω 0 0

⎤
⎥⎥⎦ .

Consequently, p(λ) has a quartic factor of the form (λ2+ω2−μ2)(λ2+ω2−μ 2).

Proof The proof of this result follows by a direct computation by using Lemma 3.1.
(Cf. [7, Lemma 2.5]). ��

In the case of mixed signs circulations, the matrix M−1
� D2H(ξ) is M�-symmetric

with respect to an indefinite scalar product and this, among others, in particular implies
that the spectrum is not real and M−1

� D2H(ξ) and hence A� are not semi-simple.

Remark 3.4 In the case of positive circulations the symmetry property ofM−1
� D2H(ξ)

has already been observed in [8, Sect. 2.2].

In order to decompose the full space into B invariant subspaces it is then crucial
to understand in which manner Lemma 3.3 can be carried over in this more gen-
eral situation we are dealing with. This is essentially the content of Lemma 3.5 and
Proposition 3.7, below.

Lemma 3.5 Let {vi }li=0 be a Jordan chain of A� with eigenvalue ν, namely

{
A� vi+1 = ν vi+1 + vi

v0 = 0.
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Then, the set {Kvi }li=0 is a Jordan chain of A� with eigenvalue 2ω − ν; thus

{
A�Kvi+1 = (2ω − ν) Kvi+1 − Kvi

v0 = 0.

Proof Since KM−1
� D2H(ξ) = −M−1

� D2H(ξ)K (as directly follows by the third
item in Lemma 2.6), then by a direct computation, we get

[
M−1

� D2H(ξ)+ ωI
]
Kvi+1 = K (−M−1

� D2H(ξ)+ ωI )vi+1
= K (−M−1

� D2H(ξ)− ωI + 2ωI )vi+1
= −K A�vi+1 + 2ωKvi+1
= (2ω − ν)Kvi+1 − Kvi .

This concludes the proof. ��
Remark 3.6 Lemma 3.5 provides a constructive way to reduce the operator B (by
decomposing the whole space into B-invariant subspaces).

Similar relation between eigenvectors of A� relative to the eigenvalues ν and 2ω−ν

already appeared in [8, Lemma 3.3].

Proposition 3.7 Let {vi }li=0 be a Jordan chain of A� with eigenvalue ν. Then the span
of {vi , Kvi }li=1 is an invariant space for B.
Proof Since M−1

� D2H(ξ) and K anti-commutes, namely KM−1
� D2H(ξ) =

−M−1
� D2H(ξ)K , by a direct computation of Bvi+1 and BKvi+1 and by taking

advantage of Lemma 3.5, we immediately get

{
Bvi+1 = ν Kvi+1 + Kvi

BKvi+1 = (ν − 2ω)vi+1 + vi .

These two last equalities imply that the subspace generated by {vi , Kvi }li=1 is an
invariant space of B. This concludes the proof. ��
Notation 3.8 We introduce the following

Γp(a, s) :=

⎡
⎢⎢⎢⎢⎢⎣

a s · · · 0 0
0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a s
0 0 · · · 0 a

⎤
⎥⎥⎥⎥⎥⎦

,

where p denotes by the order of this matrix.
If ν ∈ σ(A�)we denote by Eν the (real) generalized spectral space corresponding
to the eigenvalue ν.
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Directly fromProposition 3.7 and by using notation above,we get that the restriction
of B onto the subspace Ẽν := Eν⊕Eν−2ω can be represented by the following 2l×2l
matrix that in block matrix form can be written as follows

B
∣∣∣
Ẽν

=
[

0l �l(ν, 1)
�l(ν − 2ω,−1) 0l

]
.

3.3 A0-InvariantM0-Orthogonal Decomposition

Let us start to introduce the following symmetric matrix

Â� := M�A� = D2H(ξ)+ ωM�.

The rest of this section a bit technical in its own and the basic idea behind is to establish
the behavior of the restriction of Â onto some subspaces constructed through the spec-
tral subspaces (maybe generalized spectral subspaces) of A� which, as consequence

of Corollary 3.10, are Â�-orthogonal.
The next result provide a sufficient condition in order the generalized spectral

subspaces relative to different and not conjugated eigenvalues to be M�-orthogonal.

Lemma 3.9 Suppose that ν1, ν2 ∈ σ(A�). If ν1 �= ν2, then for every v1 ∈ Eν1 and
v2 ∈ Eν2 we have

〈v1, v2〉M�
= 〈M�v1, v2〉 = 0.

Proof We split the proof into two steps.
First step. We assume that v1, v2 are eigenvectors relative to the eigenvalues ν1 and

ν2 respectively; thus, we have A�vi = νivi , i = 1, 2. So, we have

〈
Â�v1, v2

〉 = 〈M�A�v1, v2〉 = 〈M�ν1v1, v2〉 = ν1 〈M�v1, v2〉 and〈
Âv1, v2

〉 = 〈v1, M�A�v2〉 = 〈v1, ν2M�v2〉 = ν2 〈v1, M�v2〉 ,

since ν1 �= ν2, we get desired result.
Second step. We assume that v1, v2 are generalized eigenvectors and we consider

the Jordan chains

A�vi+11 = ν1v
i+1
1 + vi1, ∀ i ∈ {0, 1, . . . , p}

A�v
j+1
2 = ν2v

j+1
2 + v

j
2, ∀ j ∈ {0, 1, . . . , q}

where v01 = v02 = 0. By arguing as above, we get that

〈
M�A�vi+11 , v

j+1
2

〉
=

〈
M�ν1v

i+1
1 + M�vi1, v

j+1
2

〉

= ν1

〈
M�vi+11 , v

j+1
2

〉
+

〈
M�vi1, v

j+1
2

〉
. Moreover
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〈
vi+11 , M�A�v

j+1
2

〉
= ν2

〈
M�vi+11 , v

j+1
2

〉
+

〈
M�vi1, v

j+1
2

〉
. (3.2)

So, taking the difference between the two equalities in Eq. (3.2), we get

0 =
〈
M�A�vi+11 , v

j+1
2

〉
−

〈
vi+11 , M�A�v

j+1
2

〉

= (ν1 − ν2)
〈
M�vi+11 , v

j+1
2

〉
+

〈
M�vi1, v

j+1
2

〉
−

〈
M�vi1, v

j+1
2

〉

= (ν1 − ν2)
〈
M�vi+11 , v

j+1
2

〉
(3.3)

where the first equality follows by the fact that A� is M�-symmetric and M�
T = M� .

Since ν1 − ν2 �= 0, it follows that

〈
M�vi+11 , v

j+1
2

〉
= 0 ∀ i ∈ {0, 1, . . . , p} and ∀ j ∈ {0, 1, . . . , q}. (3.4)

To conclude the proof we argue by induction. Let i + j = k. So Eq. (3.4) is trivially
true fork = 0. Now, we suppose Eq. (3.4) holds true for i + j = k ≤ l and we want to
prove that it is true for i + j = k = l + 1. Now, by taking into account Eq. (3.3) and
being ν1 �= ν2, it readily follows that Eq. (3.4) holds true. This concludes the proof. ��

In particular generalized eigenspaces relative to different and not conjugated eigen-
values are Â� orthogonal.

Corollary 3.10 Suppose that ν1, ν2 ∈ σ(A�). If ν1 �= ν2, then we have
〈
Â�v1, v2

〉 = 0
for all v1 ∈ Eν1and v2 ∈ Eν2 .

For ν ∈ σ(A�), we set

Iν :=
{
Eν ⊕ Eν̄ if ν /∈ R

Eν otherwise.

Notation 3.11 Given any subspace X ⊂ C
2n, we denote by n−( Â�|X ) (resp.

n+( Â�|X )), the dimension of the maximal negative (resp. positive) spectral subspace
of the restriction of the quadratic form

〈
Â�·, ·

〉
onto X .

By the previous discussion, we can decompose the C
2n = R

2n ⊗C C into A�-
invariant , M�-orthogonal subspaces; thus we have C2n = Iν1 ⊕ · · · ⊕ Iνl , where νi
are all distinct eigenvalues of A� with �νi ≥ 0.

Lemma 3.12 Let ν ∈ σ(A�) and assume ν �= 0. Then the restriction

〈
Â�·, ·

〉 |Iν
is non-degenerate.
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Proof We start to observe that ker Â� ⊆ E0 = ker A� .2 Now, arguing by contradic-
tion, we assume that

〈
Â�·, ·

〉 |Iν is degenerate for some ν �= 0. Thus there exists u ∈ Iν
and u0 �=, such that

〈
Â�u, v

〉 = 0 for all v ∈ Iν .

Since C
2n is the direct sum of all different Iν′ , where ν′ ∈ σ(A�), this implies (by

invoking by Lemma 3.9) that
〈
Â�u, v

〉 = 0 for all v ∈ C
2n . So u ∈ ker Â� and in

hence u ∈ ker A� = E0. Thus ν = 0 which is a contradiction. This concludes the
proof. ��

The next result shed some light on the relation between the dimension of Iν and
the Morse index .

Lemma 3.13 Let ν ∈ σ(A�), �ν > 0 and let mν ∈ N be its algebraic multiplicity.
Then

n−
[
Â�|Iν

] = mν.

Proof By using Lemma 3.9, the quadratic form
〈
Â�·, ·

〉
on Iν = Eν ⊕ Eν̄ can be

represented in the block matrix form by

[
0 Y
Y T 0

]
for some Y ∈ Mat(ν;C). Moreover,

by Lemma 3.12 we infer that Y is non-degenerate and by this fact the conclusion
readily follows. ��

By taking into account Corollary 3.10 as well as the additivity property of the
inertia indices of Â with respect to the direct sum decomposition of the space into
Â�-orthogonal subspaces, it follows that

n−( Â�) =
l∑

i=1
n−

(
Âνi

�

)
(3.5)

where we set Âνi
� :=

[
D2H(ξ)+ ωM�

]|Iνi . Let {vi }li=0 be a Jordan chain for for the
generalized eigenspace Eν ; thus

{
A�vi+1 = νvi+1 + vi

v0 = 0.

By invoking Lemma 3.5, {Kvi }li=0 is a Jordan chain for the generalized eigenspace
E2ω−ν relative to 2ω − ν. More explicitly, the restriction of A� into the subspace
generated by {Kvi }li=0 is given by �l(2ω − ν,−1).

The next two results, Lemmas 3.14 and 3.15 will be very useful later on for com-
puting the inertia indices of Âν

� in terms of that of Mν
� . In Lemma 3.14 we investigate

such a relation by restricting on a single Jordan block. In Lemma 3.15 we assume that
there exists two different Jordan blocks corresponding to the same eigenvalue.

2 Actually if M� is positive definite it can be proved that also the converse inclusion holds.
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Lemma 3.14 Let 0 �= ν ∈ σ(A�) ∩ R and let {vi }li=0 be a Jordan chain for for the
generalized eigenspace Eν . Under the previous notation we get that

〈
M�vi , v j+1

〉 = 〈
M�vi+1, v j

〉
and

〈
M�vi , v j

〉 = 0 for 1 ≤ j ≤ l − i and i = 1, . . . , l − 1.

Proof By direct computation we infer that

〈
Â�vi+1, v j+1

〉 = 〈
M�A�vi+1, v j+1

〉 = 〈
M�(νvi+1 + vi ), v j+1

〉
= ν

〈
M�vi+1, v j+1

〉+ 〈
M�vi , v j+1

〉
. Moreover〈

Â�vi+1, v j+1
〉 = 〈

vi+1, Â�v j+1
〉 = 〈

vi+1, M�A�v j+1
〉

= ν
〈
M�vi+1, v j+1

〉+ 〈
M�vi+1, v j

〉
.

By taking the difference of the first and last members in the previous equations, we
get

〈
M�vi , v j+1

〉 = 〈
M�vi+1, v j

〉
. Being v0 = 0, we infer also that

〈
M�vi , v j

〉 = 0
for every 1 ≤ j ≤ l − i and i = 1, · · · , l − 1. This concludes the proof. ��
Lemma 3.15 Let 0 �= ν ∈ σ(A�) ∩ R and we assume that {vi }pi=0 and {w j }qj=0 are
two Jordan chains for the generalized eigenspaces relative to the same eigenvalue
ν and such that v0 = w0 = 0; furthermore we assume that p ≤ q. Then we have〈
M�vi ,w j+1

〉 = 〈
M�vi+1,w j

〉
and

〈
M�vi ,w j

〉 = 0 f or 1 ≤ i + j ≤ q.

Proof By a direct computation we get
〈
M�vi ,w j+1

〉 = 〈
M�vi+1,w j

〉
. Since v0 =

w0 = 0 and being p ≤ q, then we have
〈
M�vi ,w j

〉 = 0 for 1 ≤ i + j ≤ q. This
concludes the proof. ��

4 Proof of Main Results

This section is devoted to prove the main results of this paper. The first result provides
a characterization of the spectral stability of a relative equilibrium z in terms of a
spectral condition on the central configuration ξ .

Proof of Theorem 1 The proof of this result result direct follows by the first claim in
Lemma 3.2. In fact, μ is an eigenvalue of M−1

� D2H(ξ) if and only if λ = √
μ2 − ω2

is an eigenvalue of B. By definition, z is spectrally stable if and only if the spectrum
of B is purely imaginary or which is the same that μ2 − ω2 ≤ 0. This concludes the
proof. ��

The next result shed provides a cler relation intertwining the spectral condition on
the central configuration generating the relative equilibrium seen as critical point of
the Hamiltonian on the shape pseudo-sphere and the dynamical (stability) properties
of it. Roberts in Theorem 3.3 of [7] characterizes linearly stable relative equilibria in
terms of the minimality properties that the central configuration (originating such an
equilibrium) possesses.
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Theorem 4.1 [7] We assume that for every j , � j > 0. Then a relative equilibrium z
is linearly stable if and only if it is a non-degenerate minimum of H restricted to the
shape-pseudo-sphere.

Thus, by Theorem 4.1, the linear stability of a relative equilibrium is equivalent to
the fact that the central configuration generating it has a vanishingMorse index and it is
non-degenerate (meaning that the kernel dimension of the Hessian of the Hamiltonian
restricted to the shape pseudo-sphere vanishes identically). However this result is valid
only under the assumption that all circulations have the same sign. In Theorem 2, by
using the analysis performed in the previous sections, we are able to remove the
condition on the circulations’ sign admitting any kind of (non-vanishing) circulation
and we provide a relation between the spectral stability of a relative equilibrium and
the Morse index of the central configuration generating it. As Corollary of this result,
we complement the aforementioned Theorem 4.1.

Before giving the proof of this result, we observe that if all circulations strengths
have all the same sign (for instance, positive), then M� is positive definite (thus
n−(M�) = 0) and by Eq. (2.9) in particular ω is positive. Thus by the first claim
of Theorem 2, we conclude that ξ is a minimum (maybe degenerate).

Corollary 4.2 If � j > 0 for all j , and we assume that z is a spectral stable
non-degenerate relative equilibrium. Then the central configuration ξ is a (maybe
degenerate) minimum of H.

Proof The proof of the first claim follows by the above discussion. ��
Before providing the proof of Theorem 2, we start proving the following technical

result.

Lemma 4.3 Let ν be a non-zero real eigenvalue of matrix Â� , then we have that

⎧⎪⎨
⎪⎩
n−

(
Â�

∣∣
Iν

)
= n−

(
M�|Iν

)
if ν > 0

n−
(
Â�

∣∣
Iν

)
= n+

(
M�|Iν

)
if ν < 0

Proof We assume that there exist two different Jordan blocks �1(ν), �2(ν) corre-
sponding to same eigenvalue ν and, as before, we denote by {vi }pi=0 and {w j }qj=0 the
Jordan chains corresponding to these Jordan blocks. Let us consider the following
matrix block decomposition

Â(ν) =
[
A1 A2

AT
2 A3

]
and M�(ν) =

[
M1 M2

MT
2 M3

]
,

where (A1)i j =
〈
Âvi , v j

〉
, (A2)i j =

〈
Âvi ,w j

〉
, (A3)i j =

〈
Âwi ,w j

〉
, (M1)i j =〈

Mvi , v j
〉
, (M2)i j =

〈
Mvi ,w j

〉
and finally (M3)i j =

〈
Mwi ,w j

〉
. By Lemma 3.14,

one immediately get that the p × p block A1 is given by:

A1 =
〈
Âvi+1, v j+1

〉 = ν
〈
M�vi+1, v j+1

〉+ 〈
M�vi , v j+1

〉
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ν
〈
M�v1, v p

〉
0 0 · · · ν

〈
M�v1, v p

〉 〈
M�v1 + νM�v2, v p

〉
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 ν
〈
M�v1, v p

〉 · · · 〈M�v p−3 + νM�v p−2, v p
〉 〈
M�v p−2 + νM�v p−1, v p

〉
ν
〈
M�v1, v p

〉 〈
M�v1 + νM�v2, v p

〉 · · · 〈M�v p−2 + νM�v p−1, v p
〉 〈

M�v p−1 + νM�v p, v p
〉

⎤
⎥⎥⎥⎥⎥⎥⎦
(4.1)

and

M1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
〈
M�v1, v p

〉
0 0 · · · 〈

M�v1, v p
〉 〈

M�v2, v p
〉

...
...

. . .
...

...

0
〈
M�v1, v p

〉 · · · 〈M�v p−2, v p
〉 〈
M�v p−1, v p

〉
〈
M�v1, v p

〉 〈
M�v2, v p

〉 · · · 〈M�v p−1, v p
〉 〈

M�v p, v p
〉

⎤
⎥⎥⎥⎥⎥⎦

.

It is readily seen that the matrix A1 given in Eq. (4.1) can be written in equivalent
form, as follows

A1 = M1�p(ν, 1). (4.2)

Analogously, we have that
A3 = M3�q(ν, 1). (4.3)

By Lemma 3.15, one gets that the p × q block A2 is given by

A2 =
〈
Âvi+1, w j+1

〉 = ν
〈
M�vi+1,w j+1

〉+ 〈
M�vi ,w j+1

〉

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ν
〈
M�v1, vq

〉
0 0 · · · ν

〈
M�v1, vq

〉 〈
M�v1 + νM�v2, vq

〉
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 ν
〈
M�v1, vq

〉 · · · 〈M�v p−3 + νM�v p−2, vq
〉 〈
M�v p−2 + νM�v p−1, vq

〉
ν
〈
M�v1, vq

〉 〈
M�v1 + νM�v2, vq

〉 · · · 〈M�v p−2 + νM�v p−1, vq
〉 〈

M�v p−1 + νM�v p, vq
〉

⎤
⎥⎥⎥⎥⎥⎥⎦
(4.4)

and

M2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
〈
M�v1, vq

〉
0 0 · · · 〈

M�v1, vq
〉 〈

M�v2, vq
〉

...
...

. . .
...

...

0
〈
M�v1, vq

〉 · · · 〈M�v p−2, vq
〉 〈
M�v p−1, vq

〉
〈
M�v1, vq

〉 〈
M�v2, vq

〉 · · · 〈M�v p−1, vq
〉 〈

M�v p, vq
〉

⎤
⎥⎥⎥⎥⎥⎦

(4.5)

so, as before, by Eqs. (4.4) and (4.5) imply that

A2 = M2Γq(ν, 1). (4.6)

Similarly for the term
AT
2 = MT

2 Γp(ν, 1). (4.7)

Thus (4.2), (4.3), (4.6) and finally (4.7) imply that

Âν
� = Mν

� diag
[
�p(ν, 1), �q(ν, 1)

]
.
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Case 1. If ν > 0, we define the (analytic) path of symmetric matrices pointwise given
by

f (t) := Mν
�

(
�p(t, 1) 0

0 �q(t, 1)

)

parametrized by the interval [1, ν], if ν > 1 and by [ν, 1], if ν < 1. Moreover, we let

g(s) := Mν
�

(
�p(1, s) 0

0 �q(1, s)

)
for s ∈ [0, 1].

If an eigenvalue of f (t) (resp. g(s)) changes sign, than det f (t) = 0 (resp.
det(g(s) = 0). However, it is immediate to see that this cannot occur. We observe
that the composition of the two paths f and g is a continuous path joining the matri-
ces Mν

� matrix to Âν
� . By this argument it then follows that both matrices belong to

the same connected component and in particular the inertia indices coincide; thus in
symbols, we have

n−
(
Â(ν)

) = n−
(
M�(ν)

)
,

n+
(
Â(ν)

) = n+
(
M�(ν)

)
.

Case 2. If ν < 0, as before, we define the path of symmetric matrices

f (t) := Mν
�

(
�p(t, 1) 0

0 �q(t, 1)

)

parametrized by the interval [ν,−1] if ν < −1 and by [−1, ν] if ν > −1. As before,
we let

g(s) := Mν
�

(
�p(−1,−s) 0

0 �q(−1,−s)
)

where s ∈ [−1, 0]. Arguing as before, we get

n−
(
Âν

�

) = n+
(
Mν

�

)
,

n+
(
Âν

�

) = n−
(
Mν

�

)
.

��
Proof of Theorem 2 Since z is non-degenerate and spectrally stable relative equilib-
rium, then by invoking Lemma 3.2, we get that

σ(A�) ⊂ R

⋃
{ω + i x |x ∈ R} .

We notice that

Â�(ξ) = D2H(ξ)ξ + ωM�ξ = M�

(
M−1

� D2H(ξ)− ωI + 2ωI
)

ξ = 2ωM�ξ
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and from property (iii) of Lemma 2.6 we have

Â�(K ξ) = D2H(z)K ξ + ωM�K ξ = M�

(
M−1

� D2H(z)+ ωI
)
K ξ

= M�K
(
−M−1

� D2H(z)+ ωI
)

ξ = 0

If W = span(ξ , K ξ), then we get that

Â�

∣∣
W =

[ 〈 Â�(ξ), ξ 〉 〈 Â�(ξ), K ξ 〉
〈 Â�(K ξ), ξ 〉 〈 Â�(K ξ), K ξ 〉

]

=
[〈2ωM�ξ , ξ 〉 〈ξ , Â�(K ξ)〉

0 0

]

=
[
2ω〈M�ξ, ξ 〉 0

0 0

]
.

Thus

n−( Â(ξ)|W ) =
{
1 if 2ω 〈M�ξ, ξ 〉 < 0,

0 if 2ω 〈M�ξ, ξ 〉 > 0.

In conclusion, we get

n−( Â(ξ)|W ) = sign(2ω 〈M�ξ , ξ 〉)

where sign stands for the sign. Let us now consider the Â�-orthogonal M�-orthogonal
invariant decomposition of the full (complexified) phase space C

2n . Since C
2n =

W ⊕W⊥ = I0 ⊕ I2ω ⊕i (Iνi ⊕l
i=1 Iν2ω−νi

), where νi ∈ σ(A�) \ {0, 2ω}. So we have
that

n−( Â(ξ)|W⊥) =
l∑

i=1

(
n−( Â(ξ)|Iνi )+ n−( Â(ξ)|I2ω−νi

)
)

and

n−(M�|W⊥) =
l∑

i=1

(
n−(M�|Iνi )+ n−(M�|I2ω−νi

)
)

.

We let ν ∈ σ(A�)\{0, 2ω} and we consider separately the two cases: ν ∈ R and
ν ∈ C \ R.

If ν ∈ R as consequence of the first item in Lemma 3.2 only two cases can occur:

• Subcase 1: ω positive and 0 < ν < 2ω. (In particular 2ω − ν > 0 and ν > 0);
• Subcase 2: ν ∈ R, ω negative and 2ω < ν < 0. (In particular 2ω − ν < 0 and

ν < 0).

By Lemma 4.3, we have that

⎧⎨
⎩
n−

(
Â�

∣∣
Iν

)
= n−

(
M�|Iν

)
[Subcase 1]

n−
(
Â�

∣∣
Iν

)
= n+

(
M�|Iν

)
[Subcase 2]



76 Page 28 of 39 X. Hu et al.

Case 2: ν ∈ {i x + ω|x ∈ R} ⊂ C \ R. By using Lemma 3.13, we already know that
n−( Âν

�) = mν,wheremν is the algebraic multiplicities of the eigenvalue ν. Moreover,
from Corollary 3.10, the matrix Mν

� can be represented as follows

[
0 Y
Y T 0

]
,

for some Y ∈ L (Eν, Eν̄ ).
Now, since Mν

� is non-degenerate, it readily follows that n−
(
Mν

�

) = n+
(
Mν

�

) =
mν . In conclusion, we get n−( Âν) = n−

(
Mν

�

) = n+
(
Mν

) = mν. This concludes the
proof. ��

We let NC be the total number of eigenvalues of the matrix A� having positive
imaginary part and counted according to their algebraic multiplicities. By using item
2. in Lemma 3.2 we are entitled to define N0 as the total number (counted according
to their algebraic multiplicities) of real eigenvalues μ̃ of the matrix A� such that

μ̃ ∈
{

(2ω,+∞) if ω > 0

(−∞, 2ω) if ω < 0.

Being due to the fact λ ∈ σ(B) if and only if ν± := ±
√

λ2 + ω2+ω ∈ σ(A�), N0
is also equal to the total number (counted according to their algebraic multiplicities
)of the positive real eigenvalues of the stability matrix B .

Theorem 4.4 Let z be a relative equilibrium. Then we have

n−( Â�) =
{∑

ν∈[0,2ω] n−(M�|Iν )+ NC + N0, if ω > 0,∑
ν∈[2ω,0] n+(M�|Iν )+ NC + N0, if ω < 0.

Proof We only prove the case of ω > 0 being the other completely analogous. As
already observed in Eq. (3.5) we get that

n−( Â�) =
l∑

i=1
n−

(
Âνi

�

)
.

By using Lemma 3.13, we get

∑
�ν>0

n−
(
Âνi

�

) = NC . (4.8)

Let ν > 2ω be a (positive real) eigenvalue of the matrix A�; then 2ω − ν is as well
an eigenvalue of the modified Hessian A� having the same algebraic multiplicity.
By Lemma 3.5 and taking advantage that K 2 = I as well as KM� = −M�K by a
straightforward calculation, we get that

n±
(
M�|Iν

) = n±
(
M�|I2ω−ν

)
.
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By using Lemma 4.3, we infer also that

n−( Â�

∣∣
Iν

)+ n−( Â�

∣∣
I2ω−ν

) = n−(M�|Iν )+ n+(M�|I2ω−ν
) = mν,

where, as before, mν denotes by the algebraic multiplicity of the eigenvalue ν. This
implies that ∑

ν>2ω

[
n−( Â�

∣∣
Iν

)+ n−( Â�

∣∣
I2ω−ν

)
]
= N0 (4.9)

So by taking into account Eqs. (3.5)–(4.9) as well as Lemma 4.3, we get that

n−( Â�) =
∑

ν∈[0,2ω]
n−(M�|Iν )+ NC + N0.

This concludes the proof. ��

Remark 4.5 In [8], author considered the case of positive circulations; thus in partic-
ular M� is positive definite. By using the Sylvester’s inertia Theorem, it follows that
n−( Â�) = n−(A�).

[8, Item (i) in Lemma 3.3] shows that the eigenvalues of A� come in pairs and are
of the form (νi , 2ω − νi ). This property implies the existence of an upper bound for
the Morse index of the relative equilibria. As already observed by Roberts in [8], this
upper bound already appeared in [12].

Theorem 4.6 [8, Theorem 3.4] Under the above notation we assume that � j > 0 are
positive for every j and let z be a relative equilibrium. Then

n−( Â�) ≤ n − 2,

with equality holding whenever z is a collinear configuration.

Theorem 4.7 [8, Theorem 3.5] Under the above notation we assume that �i > 0
for all i and let z be a relative equilibrium. Then the Morse index of z is equal to
the number of pairs of real (nonzero) eigenvalues ±λ of the corresponding periodic
solution.

Remark 4.8 It is worth noticing that for positive circulations, then the matrix M� is
positive definite and the matrix A� is diagonalizable on the reals; so NC = 0. Further-
more by Lemma 3.9 and being M� positive definite, we get also that n−(M�|Iν ) = 0
for ν > 0. This, in particular, yields

∑
ν∈[0,2ω] n−(M�|Iν ) = 0. So Theorem 4.6 as

well as Theorem 4.7 can be regarded as two directly corollaries of Theorem 4.4.
Theorem 4.7 yields a direct correspondence between the Morse index and the

instability of the relative equilibrium. However, such a relation failed in the case of
mixed-sign circulations.
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5 Some Symmetric Examples

This section is devoted to the application of Theorem 2 to some specific examples of
relative equilibria in the planar N -vortex problem.

5.1 The Equilateral Triangle

Webeginwith thewell-known equilateral triangle solution in the three-vortex problem.
Placing three vortices of any strength at the vertices of an equilateral triangle yields a
relative equilibrium. Synge [9], showed that the corresponding relative equilibrium is
linearly stable if and only if L > 0. (Cfr. [7, Sect. 4] for further details).

Theorem 5.1 Given any three circulations �1, �2 �3, let

ξ̂1 = (1, 0), ξ̂2 =
(
−1

2
,

√
3

2

)
, ξ̂3 =

(
−1

2
,−
√
3

2

)
,

and let ĉ =∑3
i=3 �i ẑi . We assume that L > 0 and let ξ = (ξ1, ξ2, ξ3), for ξ i = ξ̂ i− ĉ.

Then

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
0 if �1, �2, �3 have the same sign

1 if there is only one �i < 0

2 otherwise

.

Proof As proved by author in [9], we get that ξ = (ξ1, ξ2, ξ3) is a linearly stable
iff L > 0; moreover, the angular velocity ω = �

3 . We note that the vortex positions
ξ i = ξ̂ i − ĉ have center of vorticity at the origin.

By an explicit calculation, we get

ĉ = 1

�

3∑
i=1

�iξ i =
1

�

(
�1 (1, 0)+ �2

(
−1

2
,

√
3

2

)
+ �3

(
−1

2
,−
√
3

2

))

=
(

�1

�
− �1 + �2

2�
,

√
3

2�
(�2 − �3)

)

ξ1 = ξ̂1 − ĉ = (1, 0)−
(

�1

�
− �3 + �2

2�
,

√
3

2�
(�2 − �3)

)

=
(
3 (�3 + �2)

2�
,−
√
3

2�
(�2 − �3)

)

ξ2 = ξ̂2 − ĉ =
(
−1

2
,

√
3

2

)
−

(
�1

�
− �1 + �2

2�
,

√
3

2�
(�2 − �3)

)
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=
(
−1

2
− �1

�
+ �1 + �2

2�
,

√
3

2
−
√
3

2�
(�2 − �3)

)

=
(
−3�1

2�
,

√
3

2�
(�1 + 2�3)

)

ξ3 = ξ̂3 − ĉ =
(
−1

2
,−
√
3

2

)
−

(
�1

�
− �1 + �2

2�
,

√
3

2�
(�2 − �3)

)

=
(
−1

2
− �1

�
+ �1 + �2

2�
,−
√
3

2
−
√
3

2�
(�2 − �3)

)

=
(
−3�1

2�
,−
√
3

2�
(�1 + 2�2)

)
.

Summing up all computations we get

〈M�ξ , ξ 〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

�
− �1 + �2

2�√
3

2�
(�2 − �3)

−3�1

2�√
3

2�
(�1 + 2�3)

−3�1

2�

−
√
3

2�
(�1 + 2�2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎢⎢⎢⎣

�1 0 0 0 0 0
0 �1 0 0 0 0
0 0 �2 0 0 0
0 0 0 �2 0 0
0 0 0 0 �3 0
0 0 0 0 0 �3

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

�
− �1 + �2

2�√
3

2�
(�2 − �3)

−3�1

2�√
3

2�
(�1 + 2�3)

−3�1

2�

−
√
3

2�
(�1 + 2�2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (3�2 + 3�3)
2 �1

4�2 + 3 (�2 − �3)
2 �1

4�2 + 9�1
2�2

4�2 + 3 (�1 + 2�3)
2 �2

4�2

+ 9�1
2�3

4�2 + 3 (�1 + 2�2)
2 �3

4�2

= 3

4�2

(
3 ( �2 + �3)

2 �1 + (�2 − �3)
2 �1 + 3�1

2�2 + (�1 + 2�3)
2 �2

+3�1
2�3 + (�1 + 2�2)

2 �3

)

= 3

�2

(
�
(
�2
1 + �2

2 + �2
3

)
+ 3�1�2�3

)
.

Let a := �
(
�2
1 + �2

2 + �2
3

) + 3�1�2�3, then the signature of the quadratic form
〈M�ξ , ξ 〉 coincides with that of the quadratic form a.

We distinguish the following four cases.
First case.Weassume that�1, �2, �3 > 0. In this casewehaveω > 0 and 〈M�ξ , ξ 〉 >

0 and so, according to Theorem 2, we get that n−( Â�) = 0.
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Second case.Weassume that�1, �2, �3 < 0. Thuswe haveω < 0 and 〈M�ξ , ξ 〉 < 0;
so, according to Theorem 2, we get that n−( Â�) = 0.
Third case. We assume that �i < 0 only for one index i . In this case, without losing
in generalities, we may assume that �3 < 0. Since L > 0, then we have that

− �1�2

�1 + �2
< �3 < 0.

We claim that 〈M�ξ , ξ 〉 > 0. In order to prove this , as already observed, it is enough
to prove that a > 0. We observe that a could be re-written as follows

a = �
(
�2
1 + �2

2 + �2
3

)
+ 3�1�2�3

= (�1 + �2 + �3)
(
�2
1 + �2

2 + �2
3

)
+ 3�1�2�3

= �3
1

((
1+ �2

�1
+ �3

�1

)(
1+ �2

2

�2
1

+ �2
3

�2
1

)
+ 3

�2�3

�2
1

)
.

We let

x = �2

�1
, y = �3

�1
.

Since �1 > 0, Thus the signature of the quadratic form a agrees with the sign of the
function b defined below

b(x, y) := (1+ x + y)(1+ x2 + y2)+ 3xy,

where x > 0, − x

1+ x
< y < 0.

Fix x ∈ [0,+∞), differentiating (1+ x + y)(1+ x2 + y2)+ 3xy with respect to
y, yields

3y2 + 2y(x + 1)+ 3x + x2 + 1 = 3

(
y + x + 1

3

)2

+ 2x2 + 7x + 2

3
> 0.

This implies that y �→ b(x, y) is a monotone increasing function (with respect to y)

thus the infimum is getting precisely at − x

1+ x
. Setting y = − x

1+ x
, then we get

(
1+ x − x

1+ x

)(
1+ x2 + x2

(1+ x)2

)
− 3

x2

1+ x

= 1

(1+ x)3

(
x6 + 3x5 + 3x4 + x3 + 3x2 + 3x + 1

)
> 0 ∀ x ∈ [0,+∞).
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By this, we immediately get that for every x ∈ (0,+∞) and − x

1+ x
< y < 0, the

function b is positive or which is the same that the quadratic form a is positive definite,
hence 〈M�ξ , ξ 〉 > 0.

As direct consequence of Eq. (2.9) as well as of the fact that L > 0 and 〈M�ξ , ξ 〉 >

0, we get that ω > 0. So now, according to Theorem 2, we have that n−( Â�) =
n−(M�)− 1 = 1.
Fourth case. We assume now that �i > 0 only for one index i . Arguing precisely as
before we get 〈M�ξ , ξ 〉 < 0. In this case, however as direct consequence of Eq. (2.9)
s well as of the fact that L > 0 and 〈M�ξ , ξ 〉 < 0, we get that ω < 0. According to
Theorem 2, we have that n−( Â�) = n+(M�) = 2. ��

5.2 The Rhombus Families

From paper [7], we know that there exist two families of relative equilibria where the
configuration is a rhombus. Set �1 = �2 = 1 and �3 = �4 = m, where m ∈ (−1, 1]
is a parameter. Place the vortices at z1 = (1, 0), z2 = (−1, 0), z3 = (0, y) and
z4 = (0,−y), forming a rhombus with diagonals lying on the coordinate axis. This
configuration is a central configuration provided that

y2 = 1

2

(
β ±

√
β2 + 4m

)
, β = 3(1− m), (5.1)

or, equivalently,

m = 3y2 − y4

3y2 − 1
.

The angular velocity is given by

ω = m2 + 4m + 1

2(1+ my2)
= 1

2
+ 2m

y2 + 1
.

The case m < −1 or m > 1 can be reduced to this setup through a rescaling of the
circulations and a relabeling of the vortices. There are two solutions depending on the
sign choice for y2.

Taking plus sign in Eq. (5.1) yields a solution for m ∈ (−1, 1] that always has
ω > 0.Wewill call this solution rhombus A. Taking− in Eq. (5.1) yields a solution for
m ∈ (−1, 0) havingω > 0 form ∈ (−2+√3, 0), butω < 0 form ∈ (−1,−2+√3).
We will call this solution rhombus B.

In the aforementioned paper, author computed the nontrivial eigenvectors of
M−1

� D2H(ξ); in particular he proved that they are reals for every value of m and
are given by

v1 = [my, 0,−my, 0, 0,−1, 0, 1]T and Kv1

v2 = [m, 0,m, 0,−1, 0,−1, 0]T and Kv2. (5.2)
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Theorem 5.2 ([7, Theorem 4.1]) Under the previous notation, the following holds.

1. Rhombus A is linearly stable for−2+√3 < m ≤ 1 . At m = −2+√3 the relative
equilibrium is degenerate. For −1 < m < −2+√3 , rhombus A is unstable and
the nontrivial eigenvalues consist of a real pair and a pure imaginary pair.

2. Rhombus B is always unstable. One pair of eigenvalues is always real. The other
pair of eigenvalues is purely imaginary for−1 < m < m∗ and real for m∗ < m <

0 , where m∗ is the only real root of the cubic 9m3 + 3m2 + 7m + 5. At m = m∗,
rhombus B is degenerate.

As consequence of Theorems 2 and 5.2, we get information on the Morse index of
the rhombi configurations.

Theorem 5.3 We assume that z is the relative equilibrium generated by the rhombus
central configuration ξ . Then

1. if the central configuration corresponds to rhombus A, then we have

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
0 if 0 < m ≤ 1,

3 if − 2+√3 < m < 0,

4 if − 1 < m < −2+√3.

2. if the central configuration corresponds to rhombus B, then we have

n−( Â�(ξ)) =

⎧⎪⎨
⎪⎩
2 if − 2+√3 < m < 0,

4 if m∗ < m < −2+√3,

3 if − 1 < m < m∗.

where m∗ is the only real root of the cubic 9m3 + 3m2 + 7m + 5.

Proof In order to prove the first claim, we observe that, by the computation performed
by author in [7, p. 1129] as well as consequence of Lemmas 2.15 and 3.3, it follows
that the spectrum of the matrix A� is given by

σ(A�) = {0, 2ω,ω,ω − μ1, ω + μ1, ω − μ2, ω + μ2} where

μ1 = 7y4 − 18y2 + 7

2(y2 + 1)(3y2 − 1)
and μ2 = 2(m + 1)(1− y2)

(1+ y2)2

= 2(y2 − 1)(y2 + 2y − 1)(y2 − 2y − 1)

(y2 + 1)2(3y2 − 1)
(5.3)

where the algebraic multiplicity of ω is two. Moreover

A�ξ = 0, A�K ξ = 2ωK ξ , A�s = ωs, A�K s = ωs,

A�v1 = (μ1 + ω)v1, A�Kv1 = (−μ1 + ω)Kv1,

A�v2 = (μ2 + ω)v2, A�Kv2 = (−μ2 + ω)Kv2
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where s is the vector defined in Lemma 2.15. Thus, by using Lemma 3.9, we get the
following M�-orthogonal direct sum decomposition

C
8 = I0 ⊕ I2ω ⊕ Iω ⊕ I−μ1+ω ⊕ Iμ1+ω ⊕ Iμ2+ω ⊕ I−μ2+ω,

where

I0 = span{ξ}, I2ω = span{K ξ}, Iω = span{s, K s}, Iω+μ1 = span{v1},
Iω−μ1 = span{Kv1}, Iω+μ2 = span{v2}, Iω−μ1 = span{Kv2}.

By a straightforward calculations, we get that

Â�

∣∣
I0
[ξ ] = 〈M�A�ξ , ξ 〉 = 0, Â�

∣∣
I2ω
[K ξ ] = 〈M�A�K ξ , K ξ〉 = 2ω 〈M�ξ , ξ〉 ,

Â�

∣∣
Iω
[s, K s] =

[ 〈M�A� s, s〉 〈M�A� s, K s〉
〈M�A�K s, s〉 〈M�A�K s, K s〉

]
=

[
ω 〈M� s, s) ω (M� s, K s〉

ω (M�K s, s) ω 〈M� s, s〉
]

= ω

[
2+ m 0

0 2+ m

]
, Â�

∣∣
Iω+μ1

[v1] = 〈M�A�v1, v1〉 = (ω + μ1) 〈M�v1, v1〉 ,
Â�

∣∣
Iω−μ1

[v1] = 〈M�A�Kv1, Kv1〉 = (ω − μ1) 〈M�v1, v1〉 ,
Â�

∣∣
Iω+μ2

[v2] = 〈M�A�v2, v2〉 = (ω + μ2) 〈M�v2, v〉 ,
Â�

∣∣
Iω−μ2

[v2] = 〈M�A�Kv2, Kv2〉) = (ω − μ2) 〈M�v2, v2〉 . (5.4)

By the rhombi classifications, we distinguish the two cases.
Rhombus A central configuration. We assume that the central configuration corre-
sponds to rhombus A. Then, as already observed, we have

y2 = 1

2

(
3 (1− m)+

√
9 (1− m)2 + 4m

)

and ω is always positive for all m ∈ (−1, 1]. Since M� is the diagonal
block matrix given by M� = diag(I4,m I4) and the central configuration ξ =
[1, 0,−1− 0, 0, y, 0,−y]T, we immediately get that

〈M�ξ , ξ 〉 = 3m − 3m2 + m
√
9 (1− m)2 + 4m + 2

Define the function r(m) := 3m − 3m2 + m
√
9 (1− m)2 + 4m + 2 and in order to

find the root of the equation r(m) = 0, we first compute the roots of the equation

(
3m − 3m2 + 2

)2 −
(
m
√
9 (1− m)2 + 4m

)2

= 0.
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By a simple calculation we get s that

(
3m − 3m2 + 2

)2 −
(
m
√
9 (1− m)2 + 4m

)2

= 9m4 − 18m3 − 3m2 + 12m + 4−
(
9m4 − 14m3 + 9m2

)

= −4m3 − 12m3 + 12m2 + 4 = −4 (m − 1)
(
m + 2+√3

) (
m + 2−√3

)
.

This implies that
(
3m − 3m2 + 2

)2 − (
m
√
9 (1− m)2 + 4m

)2 = 0 has three real

roots given by−2−√3,−2+√3 and 1. Moreover, r(1) = 4 > 0, r(−2+√3) = 0
and r(2+√3) = −50− 30

√
3 < 0, and then the function m �→ r(m) has the unique

root given by −2+√3. So we have that

{
〈M�ξ , ξ 〉 > 0, if − 2+√3 < m ≤ 1

〈M�ξ , ξ 〉 < 0, if − 2−√3 < m < −2+√3.
(5.5)

• Linearly stable relative equilibria. If−2+√3 < m ≤ 1 directly by Theorem 5.2
we get that z is linearly stable. So by Theorem 2, by Eq. (5.5) and by remembering
that fin this case the angular velocity ω is always positive we conclude that

n−( Â�) =
{
n− (M�) = 0 if 0 < m ≤ 1

n− (M�)− 1 = 3 if − 2+√3 < m < 0.

• Unstable relative equilibria.By invoking once again the first claim inTheorem5.2,
we know that if−1 < m < −2+√3, then the relative equilibrium z is unstable and
the nontrivial eigenvalues consist of a pair of real and a pair of purely imaginary
eigenvalues. By Lemma 3.2 it follows that the non-trivial eigenvalues of B are

±
√
−ω2 + μ2

1 and ±
√
−ω2 + μ2

2. Moreover, for −1 < m < −2 + √3, author

in [7] proved that
√
−ω2 + μ2

1 ∈ R and
√
−ω2 + μ2

2 ∈ iR. Summing up, we get
that |μ1| > ω whilst |μ2| < ω.
Being |μ1| > ω, we have that (ω + μ1)(ω − μ1) < 0 for m ∈ (−1,−2 + √3)
which means that the factors ω ± μ1 have opposite signs. By Eq. (5.4)

Â�

∣∣
Iω+μ1

[v1] = (ω + μ1) 〈M�v1, v1〉 and Â�

∣∣
Iω−μ1

[v1] = (ω − μ1) 〈M�v1, v1〉 .

Each of the forms Â�

∣∣
Iω±μ1

is a quadratic form onto a one-dimensional

space and by the previous discussion on signs, we get that n−
(
Â�

∣∣
Iω+μ1

)
+

n−
(
Â�

∣∣
Iω−μ1

)
= 1 form ∈ (−1,−2+√3). By a straightforward calculation, we

also get that 〈M�v2, v2〉 = 2m2+2m where v2 was given in Eq. (5.2).We observe
that 〈M�v2, v2〉 is negative form ∈ (−1, 0) and a fortiori form ∈ (−1,−2+√3).
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Now since |μ2| < ω, this implies that (ω + μ2)(ω − μ2) > 0. However, by the
definition of μ2 given in Eq. (5.3), we infer that μ2 < 0 and in particular being
ω > 0 we get that ω − μ2 > 0. Thus by the product rule it then follows that also
ω + μ2 > 0 Since,

Â�

∣∣
Iω+μ2

[v2] = (ω + μ2) 〈M�v2, v2〉 and Â�

∣∣
Iω−μ2

[v2] = (ω − μ2) 〈M�v2, v2〉 .

we finally get both quadratic forms (on the one-dimensional subspace generated
by v2) are negative definite and hence each gives a 1 contribution to the Morse
index. In conclusion, we get

n−
(
Â�

) = n−
(
Â�

∣∣
I0

)
+ n−

(
Â�

∣∣
I2ω

)
+ n−

(
Â�

∣∣
Iω

)
+ n−

(
Â�

∣∣
Iω+μ1

)

+ n−
(
Â
∣∣
Iω−μ1

)
+ n−

(
Â
∣∣
Iω+μ2

)
+ n−

(
Â
∣∣
Iω−μ2

)

= 0+ 1+ 0+ 1+ 1+ 1

= 4.

Rhombus B central configuration. We assume now that the relative equilibrium z0
comes out from rhombus B central configuration. Once again by using Theorem 5.2,
it follows that z0 is always unstable for m ∈ (−1, 0), moreover, we know that

{
ω > 0 if m ∈ (−2+√3, 0)

ω < 0 if m ∈ (−1,−2+√3).
(5.6)

and one pair of eigenvalues is always real whilst the other is purely imaginary for
−1 < m < m∗ and real for m∗ < m < 0, where m∗ ≈ −0.5951 is the only real root
of the cubic 9m3 + 3m2 + 7m + 5. At m = m∗, rhombus B is degenerate.

By invoking Lemma 3.2, the non-trivial eigenvalues of B are ±
√
−ω2 + μ2

1 and

±
√
−ω2 + μ2

2. Furthermore by [7, p. 1129], we know also that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
−ω2 + μ2

1 is real if m ∈ (−1, 0),√
−ω2 + μ2

2 is real if m ∈ (m∗, 0),√
−ω2 + μ2

2 is purely imaginary if m ∈ (−1,m∗).

Thus we get ⎧⎪⎨
⎪⎩
|μ1| > |ω|, if m ∈ (−1, 0),
|μ2| > |ω|, if m ∈ (m∗, 0),
|μ2| < |ω|, if m ∈ (−1,m∗).
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Being |μ1| > |ω|, we have that (ω + μ1)(ω − μ1) < 0 for m ∈ (−1, 0). By Eq.
(5.4)

Â�

∣∣
Iω+μ1

[v1] = (ω + μ1) 〈M�v1, v1〉 and Â�

∣∣
Iω−μ1

[v1] = (ω − μ1) 〈M�v1, v1〉

then we can conclude that n−
(
Â�

∣∣
Iω+μ1

)
+ n−

(
Â�

∣∣
Iω−μ1

)
= 1. By the very some

argument, we infer also that n−
(
Â�

∣∣
Iω+μ2

)
+ n−

(
Â�

∣∣
Iω−μ2

)
= 1 for m ∈ (m∗, 0).

Next, we will compute the sign of Â�

∣∣
Iω±μ2

for m ∈ (−1,m∗). Since 〈M�v2, v2〉 =
2m2+2mwhich is negative in (−1, 0), a fortiori itwill be negative in form ∈ (−1,m∗).
Since −2+√3 ≈ −0.2679 > −0.5951 ≈ m∗, then ω < 0 for (−1,m∗). Now, since
−ω2 + μ2

2 < 0 we get that (μ2 − ω)(μ2 + ω) < 0 and since μ2 + ω < 0 (in fact ω

is negative for m ∈ (−1,m∗) as well as μ2), this implies that μ2 − ω > 0. Thus in
conclusion both eigenvalues μ2 ± ω are negative in (−1,m∗). By Eq. (5.4), we have
that

Â�

∣∣
Iω+μ2

[v2] = (ω + μ2) 〈M�v2, v2〉 and Â�

∣∣
Iω−μ2

[v2] = (ω − μ2) 〈M�v2, v2〉

and immediately by the discussion above, we conclude that

n−
(
Â�

∣∣
Iω+μ2

)
= n−

(
Â�

∣∣
Iω−μ2

)
= 0 for m ∈ (−1,m∗).

Invoking once again Eq. (5.4), we get that Â�

∣∣
I2ω
[K ξ ] = 2ω 〈M�K ξ , ξ 〉. Summing

up Eqs. (5.5) and (5.6), then we get

n−
(
Â�

∣∣
I2ω

)
= 0 for all m ∈ (−1,−2+√3) ∪ (−2+√3, 0)

By Eq. (5.4), we get finally that

n−
(
Â�

) =
⎧⎪⎨
⎪⎩
1+ 1 = 2 if − 2+√3 < m < 0,

2+ 1+ 1 = 4 if m∗ < m < −2+√3,

2+ 1 = 3 if − 1 < m < m∗.

This concludes the proof. ��
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