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Abstract
We discuss real and complex polynomial vector fields and polynomially nonlinear,
input-affine control systems, with a focus on invariant algebraic varieties. For a given
real variety we consider the construction of polynomial ordinary differential equations
ẋ = f (x) such that the variety is invariant and locally attracting, and show that such
a construction is possible for any compact connected component of a smooth variety
satisfying a weak additional condition. Moreover we introduce and study natural con-
trolled invariant varieties (NCIV) with respect to a given input matrix g, i.e. varieties
which are controlled invariant sets of ẋ = f (x) + g(x)u for any choice of the drift
vector f . We use basic tools from commutative algebra and algebraic geometry in
order to characterize NCIV’s, and we present a constructive method to decide whether
a variety is a NCIV with respect to an input matrix. The results and the algorithmic
approach are illustrated by examples.
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1 Introduction

In the present paper, we discuss ordinary differential equations with polynomial right
hand side

ẋ = f (x) (1)
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as well as polynomial control systems

ẋ = f (x) + g(x)u (2)

over Kn (with K = R or C), with f a Kn-valued polynomial, g a polynomial n × m
matrix, and u having values in K

m . Considering complex systems will turn out to be
useful also for the real case. We are mainly interested in polynomial state feedbacks
α : K

n → K
m and the corresponding closed loop system

ẋ = f (x) + g(x)α(x). (3)

Overall we are concerned with invariant algebraic varieties of polynomial vector
fields, and with the construction of polynomial vector fields that leave a given variety
invariant. This approach has proven quite fruitful in qualitative investigations and inte-
grability problems; see e.g. [6,7], Llibre et al. [13] and the monograph by Zhang [22].
For control systems, the notion of controlled invariant variety (CIV) was introduced
and investigated in [21]. One calls the algebraic variety V controlled invariant for
system (2) if there exists a polynomial state feedback α such that V is an invariant set
for (3). This extends the notion of controlled invariant subspaces for linear systems
which was introduced by Basile andMarro in 1969. The geometric approach for linear
systems provides the theoretical basis for solving certain decoupling and noninteract-
ing problems; see [2] for a comprehensive survey. The theory has been generalized to
nonlinear systems by Isidori [10] and several other authors. Recently, some progress
has been made in the area of nonlinear polynomial systems; see [15–17,21], and Yuno
and Ohtsuka [19,20], where it is shown that methods from symbolic computation can
be used to test the conditions for controlled invariance of varieties constructively.

The purpose of the present work, which is in part based on the doctoral dissertations
[11,17] by two authors of the present manuscript, is twofold. First, for real systems
(1) there is interest not only in invariance of algebraic varieties but also in attractive-
ness. For the “inverse problem” to find suitable vector fields for a given variety, we
provide some general constructions of vector fields with prescribed Lyapunov func-
tions. Our main result here is concerned with a compact connected component of a
smooth variety: Given one (technical) additional condition, we prove the existence of
a polynomial vector field for which this component is locally exponentially attracting.
Second, for control systems we introduce the notion of natural controlled invariant
variety (NCIV)with respect to a given input matrix g, by requiring that this variety can
be made invariant for (3) with arbitrary drift f by a suitable choice of the feedback α.
For real systems we will also introduce a slightly weaker form (RNCIV) by allowing
for rational feedbacks whose denominators have no real zeros. One motivation for
introducing these notions is the observation that they ensure robustness with respect
to perturbations of the drift. Moreover, from a computational point of view, there are
cases where it is possible to construct NCIV’s for a given g, whereas no solution
method is currently known for the general problem of constructing CIV’s for given
f and g. Our main result (Theorem 2) provides a precise characterization of NCIV’s
and RNCIV’s, and allows an algorithmic verification of the relevant properties. We
illustrate all the results by (classes of) examples.
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2 Preliminaries

We first introduce some notation, and note basic facts from commutative algebra and
algebraic geometry that may be found in Kunz [12] and Shafarevich [18], for instance.
Moreover we recall some familiar notions related to ordinary differential equations.

2.1 Notation

We abbreviate R = K [x1, . . . , xn] = K [x]. For a subset S ⊆ R, we write V(S) for
the set of common zeros (in K

n) of all elements of S; the set V(S) is then called an
algebraic variety. Given an algebraic variety V ⊆ K

n , one has the ideal J (V ) of all
polynomials vanishing on V . Given a generator set ϕ1, . . . , ϕk , wewill fix the notation

I := J (V ) = 〈ϕ1, . . . , ϕk〉 (4)

throughout the paper. By J ∈ Rk×n we denote the Jacobian of (ϕ1, . . . , ϕk), thus

J = (Ji�) with Ji� = ∂�ϕi . (5)

The dimension dim(V ) of V is defined as the Krull dimension of R/J (V ). The variety
V is a finite union of irreducible components. If all the irreducible components have
the same dimension, V is called equidimensional. The tangent space at a ∈ V is given
by

TaV = kerK(J (a)), with dim(TaV ) = n − rank (J (a)). (6)

A point a ∈ V is called simple (or regular, or nonsingular) if dim(Ta(V )) is equal to
the dimension of the (unique) irreducible component of V that contains a. Finally, the
variety V is said to be smooth if all a ∈ V are simple points.

Given the ordinary differential equation (1),we call a subsetM ofKn invariant (resp.
positively invariant, resp. negatively invariant) if for any y ∈ M the solution orbit (resp.
the positive semi-orbit, resp. the negative semi-orbit) through y is contained in M . We
call a closed invariant set M (locally) attracting for (1) if there is a neighborhood U
of M such that for any y ∈ U the solution z(t) with initial value y exists for all t ≥ 0
and satisfies dist (z(t), M) → 0 as t → ∞ (see e.g. Perko [14], Ch. 3.2, Def. 2).

Given some (polynomial) function ψ , the Lie derivative L f (ψ) of ψ with respect
to a vector field f is defined by

L f (ψ)(x) = Dψ(x) f (x) = 〈∇ψ(x), f (x)〉

with Dψ(x) = (∂1ψ(x), . . . , ∂nψ(x)), and ∇ denoting the gradient.
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2.2 Some Known Results

First we recall from [21] some definitions and a criterion for invariance of an algebraic
variety with respect to a polynomial vector field. Recall that R = K [x1, . . . , xn].

Definition 1 With the notations from above and for i ∈ {1, . . . , k} define

Ni = kerR (∂1ϕi , . . . , ∂nϕi , ϕ1, . . . , ϕk) = kerR (Dϕi , ϕ1, . . . , ϕk) ⊆ Rn+k,

thus (ψ1, . . . , ψn+k) ∈ Ni if and only if
∑

j ∂ jφi ψ j +∑
� φ� ψn+� = 0.Moreover set

Mi := π(Ni ), where π denotes the projection onto the first n components. Finally let

M := MI :=
k⋂

i=1

Mi ⊆ Rn .

With these notions one has algebraic characterizations of invariant varieties for Eq.
(1).

Lemma 1

V is invariant for f ⇐⇒ L f (ϕi ) ∈ I for all i = 1, . . . , k

⇐⇒ L f (I) ⊆ I ⇐⇒ J · f ∈ I · Rk ⇐⇒ f ∈ M.

From the above one sees that the complexification of a real variety that is invariant
with respect to a real vector field remains invariant with respect to the complexified
vector field.

There are two aspects in the discussion of invariant varieties of polynomial vector
fields: In the direct problem one asks for invariant varieties of a given polynomial
vector field, while in the inverse problem one considers the existence and construction
of polynomial vector fields that admit a given variety as invariant set. For the (easier)
inverse problem one knows some general answers. The first part of the following
Proposition is obvious, but the proof of the second is nontrivial.

Proposition 1 (a) Let H be a polynomial vector field such that LH (ϕi ) = 0 for
1 ≤ i ≤ m, and g1, . . . , gm arbitrary vector fields. Then

f = H +
m∑

i=1

giϕi

admits the invariant variety V .
(b) (See Bavula [3], Theorem 1.1.) If V is smooth then every polynomial vector field

which admits the invariant variety V is of the type given in part (a).

For smooth varieties Bavula [3] also provides a precise characterization of the
vector fields H which admit every ϕi as a first integral. For non-smooth varieties there
exist further vector fields admitting V ; see a detailed discussion of invariant curves
for planar systems in [6], and also [21].
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Remark 1 In our context, ideals without zeros are of particular relevance. From
Hilbert’s Nullstellensatz [12] and the real Nullstellensatz [5] one knows: An ideal
J ⊆ C [x] admits no zero if and only if it contains the constant polynomial 1. An ideal
J ⊆ R [x] admits no zero if and only if it contains a polynomial of the form 1 + s,
with s(x) ≥ 0 for all x (actually s is a sum of squares of suitable rational functions).

In some situations it will be appropriate to consider rational vector fields. The
pertinent facts are stated next, with the first assertion being standard (see e.g. Perko
[14], Section 3.1, Remark 3). The proof of the second statement uses the fact that
closures of invariant sets (with respect to the norm topology as well as the Zariski
topology) are invariant.

Lemma 2 Let ρ ∈ R and U := K
n\V(ρ).

(a) Then the ordinary differential equation

ẋ = 1

ρ(x)
f (x) on U

and the restriction of (1) to U have the same solution orbits, hence the same
invariant sets.

(b) If no irreducible component of V is contained in V(ρ) then V ∩ U is invariant
for ẋ = ρ(x)−1 f (x) if and only if V is invariant for (1) on K

n.

3 Prescribed Attracting Invariant Varieties

Throughout this section we assume that K = R. As before, we consider a variety V
with J (V ) = 〈ϕ1, . . . , ϕk〉. Now the objective is to determine polynomial vector fields
for which V , or some connected component of V , is invariant and locally attracting.
(Global attractivity will in general be precluded for topological reasons; see Remark 4
below.)

3.1 Lyapunov Functions

We first construct real polynomial vector fields with certain prescribed Lyapunov
functions.

Lemma 3 Let K = R.

(a) Let z ∈ V be a simple point, and (w.l.o.g.) assume that

r := rank
(∇ϕ1 · · · ∇ϕk

)
(z)

satisfies r = rank
(∇ϕ1 · · · ∇ϕr

)
(z), in particular z lies in an irreducible com-

ponent of dimension n − r . Then there exist a Zariski neighborhood Uz of z and
polynomial vector fields
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κz,r+1, . . . , κz,n

such that

�z := (∇ϕ1 · · · ∇ϕr κz,r+1 · · · κz,n
)

is invertible at every point of Uz.
(b) With z as above consider the matrix

Az := adj
(
�z · �tr

z

) = det(�z)
2 · (

�z · �tr
z

)−1

with polynomial entries. Moreover let Hz be a vector field such that LHz (ϕi ) = 0
for 1 ≤ i ≤ r . Then the polynomial vector field

fz = Hz −
r∑

i=1

ϕi Az∇ϕi

satisfies

L fz (ϕ j ) = − det (�z)
2 ϕ j

for 1 ≤ j ≤ r .
(c) Let V1 := V(ϕ1, . . . , ϕr ), and z1, . . . , z� simple points of V1. Then the polynomial

vector field

f :=
�∑

j=1

fz j

satisfies

L f (ϕi ) = −σ · ϕi ; with σ :=
⎛

⎝
�∑

j=1

det
(
�z j

)2

⎞

⎠

for 1 ≤ i ≤ r . In particular, ϕi is a semi-invariant for any i ∈ {1, . . . , r}, hence
the sets

Zi := {x; ϕi (x) = 0} , Z+
i := {x; ϕi (x) ≥ 0} , Z−

i := {x; ϕi (x) ≤ 0}

are invariant for ẋ = f (x).
If rank

(∇ϕ1 · · · ∇ϕr
)
(y) = r for all y ∈ V1 then one may choose z1, . . . , z�

such that σ(y) > 0 for all y ∈ V1.
(d) In the setting of part (c), for any i ∈ {1, . . . , r} the restriction of ẋ = f (x) to the

invariant set Z+
i admits the Lyapunov function ϕi , and the restriction of ẋ = f (x)

to the invariant set Z−
i admits the Lyapunov function −ϕi .
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(e) Given the setting of part (c), let v(t) be any solution of ẋ = f (x). Then

ϕi (v(t)) = ϕi (v(0)) · exp
(

−
∫ t

0
σ(v(s)) ds

)

for all t in the maximal interval of existence.

Proof By assumption we have

rank
(∇ϕ1 ∇ϕ2 · · · ∇ϕr

)
(z) = r ,

hence there exist polynomial (for instance, constant) vector fields

κz,r+1, . . . , κz,n

such that

∇ϕ1(z), · · · ,∇ϕr (z), κz,r+1(z), . . . , κz,n(z)

form a basis of Rn . Therefore the matrix

�z = (∇ϕ1 ∇ϕ2 · · · ∇ϕr κz,r+1 · · · κz,n
)

is invertible at every point of an appropriate Zariski open neighborhood Uz , and part
(a) is proven. As for part (b), the matrix Az is symmetric and positive definite on Uz

and moreover we observe that

(∇ϕi )
tr

(
�−1

z

)tr · �−1
z ∇ϕ j = δi, j

follows from

�z · ei = ∇ϕi , 1 ≤ i ≤ r

with the standard basis e1, . . . , en of Rn . Consequently, we get

L fz (ϕi ) = − det(�z)
2ϕi for all 1 ≤ i ≤ r .

Parts (c) and (d) are then clear, while part (e) follows from the identity

d

dt
ϕi (v(t)) = L f (ϕi )(v(t)).

��
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Remark 2 It is worth noting that the construction of Az in Lemma 3 ensures that the
∇ϕi (x) are orthonormal for the scalar product induced by Az(x) for all x ∈ Uz . There
may be other choices which also yield this property.

In particular, for the case r = 1, ϕ1 = ϕ the construction in Lemma 3 is unnecessar-
ily complicated, since one may choose A as the identity matrix. Indeed the polynomial
vector field

f := H − ϕ · ∇ϕ

with LH (ϕ) = 0 satisfies

L f (ϕ) = −‖∇ϕ‖2 · ϕ,

for which the conclusions of Lemma 3(d) and (e) hold, mutatis mutandis.

Lyapunov functions yield positively invariant sublevel sets (see e.g. Amann [1],
Thm. 18.2) and impose restrictions on limit sets (LaSalle’s principle; see e.g. Amann
[1], Thm. 18.3); note also the invariance of limit sets. We obtain:

Proposition 2 Let the setting and notation of Lemma 3 be given. Then:

(a) For any c > 0 and any i ∈ {1, . . . , r} the sets
{
x ∈ Z+

i ; ϕi (x) ≤ c
}
and

{
x ∈ Z−

i ; ϕi (x) ≥ −c
}

are positively invariant for ẋ = f (x).
(b) Let y ∈ R

n such that the omega limit set ω(y) is defined and nonempty,
and denote by Y the largest invariant set for ẋ = f (x) that is contained in
V(det(�z1), . . . , det(�z� )). Then

ω(y) ⊆ V1 ∪ Y .

3.2 Attracting Compact Components

Keeping the notation from Lemma 3, we denote by Ṽ a connected component of V
which is also compact. Moreover we assume that dim Ṽ = n − r and impose the
stronger condition that

rank
(∇ϕ1, . . . ,∇ϕr

)
(a) = r for all a ∈ Ṽ . (7)

Remark 3 For the following we define f as in Lemma 3(c), and require σ(a) > 0 for
all a ∈ Ṽ .

By condition (7), each point a ∈ Ṽ admits a neighborhood and a diffeomorphism
� to a neighborhood of 0 ∈ R

n with ϕi ◦ �−1 = xi for 1 ≤ i ≤ r . Thus locally one
may assume

ϕ1 = x1, . . . , ϕr = xr .
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Thus, there exists a compact neighborhood Ka of a such that

(ϕ1(y), . . . , ϕr (y)) = (0, . . . , 0)

holds if and only if y ∈ Ka ∩ Ṽ . Since Ṽ is compact, there exists a compact neigh-
borhood N of Ṽ such that

(ϕ1(y), . . . , ϕr (y)) �= (0, . . . , 0)

for all y ∈ N\Ṽ . Moreover we may assume that σ(x) > 0 for all x ∈ N .

Theorem 1 Let Ṽ be a compact connected component of V . Then any polynomial
vector field f as given in Remark 3 has the following property: There exists a compact,
positively invariant neighborhood K ⊆ N (see Remark 3) such that Ṽ ⊆ int K and:

(i) Each z ∈ K satisfies ∅ �= ω(z) ⊆ Ṽ .
(ii) All solutions of ẋ = f (x) that start in K are attracted exponentially by Ṽ .

Proof Define

ψ(x) :=
r∑

i=1

ϕ2
i (x); L f (ψ)(x) = −2σψ(x);

in particular ψ is a Lyapunov function. Since N is compact, so is its boundary ∂N ,
hence ψ attains a positive minimum c on ∂N , and the connected component K of

{
x ∈ R

n; ψ(x) ≤ c
}

which contains Ṽ is a compact subset of N . By construction, K is positively invariant.
From La Salle and σ(x) ≥ σ0 > 0 for all x ∈ N one sees that ω(z) ⊆ Ṽ , and this
limit set is nonempty since the positive semi-orbit is contained in the compact set K .
Finally, with Lemma 3(e) one sees

ϕi (v(t)) ≤ exp(−σ0t)ϕi (v(0)) when v(0) ∈ K ∩ Z+
i , 1 ≤ i ≤ r ,

and

ϕi (v(t)) ≥ exp(−σ0t)ϕi (v(0)) when v(0) ∈ K ∩ Z−
i , 1 ≤ i ≤ r .

In view of Remark 3, the second assertion follows. ��
Corollary 1 Let Ṽ ⊆ V ⊆ R

n as above, in particular let (7) be satisfied; moreover let
f be as in Remark 3, and ψ = ϕ2

1 + · · · + ϕ2
r with L f (ψ) = −2σψ . Then, given any

polynomial vector field h that leaves V invariant, there exists an ε0 > 0 such that Ṽ
is an attracting invariant set for

f + εh as well as ε−1 f + h, 0 < ε < ε0.
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Proof It suffices to prove the assertion for f +εh. Invariance of V w.r.t. the vector field
h implies the existence of rational functions μi, j which are regular on Ṽ such that

Lh(ϕi ) =
r∑

j=1

μi, jϕ j , 1 ≤ i ≤ r .

This follows e.g. from Theorem 4 in Shafarevich [18], Ch. II, §3, with the ϕi forming
a system of local parameters at every point of Ṽ . In turn we find

L f+εh(ψ) = −2σψ + ε · Lh(ψ)

= −2σψ + ε ·
r∑

i=1

r∑

j=1

μi, j · ϕi · ϕ j .

Now let N be as in Remark 3. Then the symmetric matrix

M(x) := diag(−2σ(x), . . . ,−2σ(x)) + ε · (
(μi, j (x) + μ j,i (x))/2

)
1≤i, j≤r

is negative definite for all x ∈ N , provided that ε is sufficiently small. Therefore there
exists δ > 0 such that

L f+εh(ψ)(x) < −δψ2 for all x ∈ N .

Now the assertion follows from arguments similar to those in the proof of Theorem1.��

3.3 Examples

Example 1 When r = 1, i.e. V is a hypersurface, Remark 2 yields

f (x) = H(x) − ϕ(x) · ∇ϕ(x).

If Ṽ is a compact and smooth connected component then ∇ϕ does not vanish on Ṽ ,
hence Theorem 1 is applicable.

• As for a concrete example, let ϕ = x2 + y2 − 1, i.e. V(ϕ) is a planar circle. In this
case we explicitly have

f = γ ·
(−2y

2x

)

− (x2 + y2 − 1) ·
(
2x
2y

)

for some γ ∈ R. Note that f admits the stationary point (0, 0) and therefore, V(ϕ)

is not a globally attracting set.
• For a second example consider the variety V = V(y2− x(x+1)(x+2)) ⊆ R

2 (an
elliptic curve) which is irreducible and smooth of dimension 1, with two connected
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components. Here we have

f = γ ·
( −2y

−(3x2 + 6x + 2)

)

− (y2 − x(x + 1)(x + 2)) ·
(−(3x2 + 6x + 2)

2y

)

with some polynomial γ .

Example 2 Another special case is r = n−1, thus Ṽ is a compact connected component
of a curve. In this situation with Lemma 3 we obtain the vector field

ẋ = f (x) := H(x) −
n−1∑

i=1

ϕi (x)A(x)∇ϕi (x)

and A can be constructed in the following special manner: By assumption

rank
(∇ϕ1 · · · ∇ϕn−1

) = n − 1

holds on V . We define the vector field κ by

κ := ∇ϕ1 × · · · × ∇ϕn−1

where w1 × · · · × wn−1 is the generalized cross product on R
n defined via

det(w1, · · · , wn−1, wn) = 〈wn, w1 × · · · × wn−1〉.

Then κ(v) is orthogonal to each vector ∇ϕi (v) for any v ∈ R
n , and furthermore

κ(z) �= 0 for all z ∈ V . Thus

� = (∇ϕ1 · · · ∇ϕn−1 κ
)

is invertible on V , and for

A := det(�)2 · (
� · �tr)−1

Theorem 1 is applicable.
Again we give a concrete example. Let n = 3 and consider the ideal

I := 〈ϕ1, ϕ2〉 ⊆ R[x1, x2, x3]

with

ϕ1 := x21 + x22 + x23 − 1, ϕ2 := x1.
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Then V := V(I ) is the intersection of the sphere S2 and the plane x1 = 0. Clearly, V
is smooth, compact and has only one connected component. Furthermore we observe

∇ϕ1 =
⎛

⎝
2x1
2x2
2x3

⎞

⎠ , ∇ϕ2 =
⎛

⎝
1
0
0

⎞

⎠ .

Taking the cross product of both vectors and dividing by two we obtain

κ :=
⎛

⎝
0

−x3
x2

⎞

⎠

and thus we have

A = det(�)2 · (
� · �tr)−1

=
⎛

⎜
⎝

4(x22 + x23 )
2 −4x1x2(x22 + x23 ) −4x1x3(x22 + x23 )

−4x1x2(x22 + x23 ) 4x21 x
2
2 + x22 + 4x23 x2x3(4x21 − 3)

−4x1x3(x22 + x23 ) x2x3(4x21 − 3) 4x21 x
2
3 + 4x22 + x23

⎞

⎟
⎠ .

By Theorem 1 there exists an attracting neighborhood of V with respect to any vector
field

f = H − (ϕ1A∇ϕ1 + ϕ2A∇ϕ2) .

Moreover with Bavula [3] one has that H = ρ · κ for some polynomial ρ.

Next we demonstrate that, in contrast to the above examples, it is not generally
possible to construct vector fields

κr+1, . . . , κn,

such that

(∇ϕ1 · · · ∇ϕr κr+1 · · · κn
)

is invertible on all of Ṽ .

Example 3 We consider the smooth, compact and connected variety given by

V = V(ϕ1, ϕ2) ⊆ R
4,

with ϕ1 = x21 + x22 + x23 + x24 − 1 and ϕ2 = x1; thus V is isomorphic to the sphere
S
2. Due to the hedgehog theorem (see e.g. Deimling [8], Ch. I, Thm. 3.4), one cannot

construct two additional vector fields

κ1, κ2 ∈ R[x]4
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such that the vectors
∇ϕ1, ∇ϕ2, κ1, κ2

are linearly independent at every point of V . Therefore, the approach fromLemma 3(a)
is not feasible in this situation.

However, the problem can be resolved via Lemma 3(c) and Theorem 1. We have

∇ϕ1 =

⎛

⎜
⎜
⎜
⎝

2x1
2x2
2x3
2x4

⎞

⎟
⎟
⎟
⎠

, ∇ϕ2 =

⎛

⎜
⎜
⎜
⎝

1

0

0

0

⎞

⎟
⎟
⎟
⎠

.

Consider the matrices �1 and �2 given by

�1 :=

⎛

⎜
⎜
⎜
⎝

2x1 1 0 0

2x2 0 −x3 −x2x4
2x3 0 x2 −x3x4

2x4 0 0 x22 + x23

⎞

⎟
⎟
⎟
⎠

, �2 :=

⎛

⎜
⎜
⎜
⎝

2x1 1 0 0

2x2 0 −x4 x2x3

2x3 0 0 −x22 − x24
2x4 0 x2 x3x4

⎞

⎟
⎟
⎟
⎠

.

Then we have

det(�1)
2 = 4(x22 + x23 )

2(x22 + x23 + x24 )
2

det(�2)
2 = 4(x22 + x24 )

2(x22 + x23 + x24 )
2

and

σ := det(�1)
2 + det(�2)

2 = 4(x22 + x23 + x24 )
2
[
(x22 + x23 )

2 + (x22 + x24 )
2
]

vanishes if and only if x2 = x3 = x4 = 0 holds. Consequently, σ does not vanish on
V and Theorem 1 is applicable.

Finallywe note that global attractivity of every connected component of an invariant
variety is generally impossible, for topological reasons.

Remark 4 As in Example 1 consider the variety V = V(y2−x(x+1)(x+2))with two
connected components of dimension 1, one bounded and one unbounded. Assume that
h is a polynomial (or smooth) vector field onR2 such that for each initial value y ∈ R

2

the solution z(t) exists on [0, ∞) and satisfies dist (z(t), M) → 0 as t → ∞. Then
there are points inR2\V which are attracted by the bounded connected component, as
well as points which are attracted by the unbounded component. For each connected
component its domain of attraction is nonempty and open, andR2 cannot be the union
of these disjoint domains, by connectedness. Thus we obtain a contradiction.
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4 Natural Controlled Invariant Varieties

We now turn to control problems (2), (3), and to varieties V that are invariant for (3)
with appropriate feedback. Geometrically speaking, in a control problem one needs
to modify f via g such that every solution orbit that has one point in common with V
is completely contained in it.

4.1 Definition and Some Properties

We recall and extend the definition of controlled invariance from [15].

Definition 2 (a) A variety V is called controlled invariant for (2) if there exists a
polynomial state feedback α ∈ Rm such that V is invariant for the closed loop
system (3).

(b) A variety V is called rationally controlled invariant for (2) if there exists a rational
state feedback α whose denominator has no zero in K

n such that V is invariant
for the closed loop system (3).

By Remark 1 both notions coincide forK = C, but there is a significant difference
in the real case.

Now, given a polynomial input matrix g ∈ Rn×m , we wish to characterize varieties
which are controlled invariant for (2) for every vector field f ∈ Rn .

Definition 3 (a) Given a polynomial matrix g ∈ Rn×m and a variety V , we call V
rationally natural controlled invariant with respect to g (briefly RNCIV) if for all
f ∈ Rn there exist α = α f ∈ Rm and ψ = ψ f ∈ R with V(ψ f ) = ∅ such that
V is invariant for ẋ = (ψ f · f + g · α f )(x).

(b) If ψ f = 1 can be chosen then we call V natural controlled invariant with respect
to g (briefly NCIV).

Remark 5 (a) A necessary requirement for the RNCIV property of a smooth variety
V is the “pointwise condition”

Ta(V ) + Kg1(a) + · · · + Kgm(a) = K
n for all a ∈ V .

Indeed, if this condition fails at the point a then take any polynomial drift f
with f (a) /∈ Ta(V ) + imK g(a). Obviously there exists no rational (or smooth)
feedback α such that f + gα leaves V invariant.

(b) The requirement of natural controlled invariance ensures robustness with respect
to perturbations of the drift, in a dual sense:

(i) Whenever the drift is altered from f to f̃ then there existψ f̃ and α f̃ such that

V is invariant for ẋ = (ψ f̃ · f̃ + g · α f̃ )(x). This holds by definition.
(ii) Let a (smooth) vector field f1 be given. Then for sufficiently small ε, every

nonstationary point a ∈ V of f + ψ−1gα admits a neighborhood U and a
local invariant manifold V ∗ for the perturbed system

f + ε f1 + ψ−1gα
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with V ∗ close to V (with respect to the Hausdorff distance). This is a direct
consequence of standard dependency theorems.

While for every given variety it is easy to construct nontrivial polynomial vector
fields that leave this variety invariant (see Proposition 1), there exist controls which
do not admit interesting rationally natural controlled invariant varieties. We look at a
simple example.

Example 4 (a) In R2 the input matrix

g(x) =
(−x2

x1

)

admits no smooth RNCIV of dimension one. To see this, assume that V = V(ϕ)

is a RNCIV, and let y ∈ V be a point of minimal distance to 0. Setting ρ(x) :=
(x21 + x22 )/2, the Lagrange multiplier theorem implies that either ∇ϕ(y) = 0
(which is impossible by smoothness of V ) or

λ · ∇ϕ(y) = ∇ρ(y) = y for some λ.

When λ = 0 then y = 0, and g(y) = 0 ∈ T0(V ); a contradiction to Remark 5(a).
But when λ �= 0 then 〈g(y), ∇ϕ(y)〉 = 0 which also implies g(y) ∈ Ty(V ); again
we obtain a contradiction.

(b) Note: It is unproblematic to generalize this example to Rn , with the columns of g
generating the submodule of Rn which leaves Sn−1 invariant. Moreover, one has
the same result for closed submanifolds (rather than varieties).

(c) Nonexistence ofRNCIV’smay imply scarcity ofCIV’s for a given drift. To see this,
we continue part (a) with the particular drift f (x) = x . Let V be a one dimensional
smooth invariant variety for some f + gα, with y ∈ V having minimal distance
to 0. The arguments from part (a) show that λ = 0, with ( f + gα)(y) = 0, or

0 = 〈( f + gα)(y), y〉 = 〈y, y〉 .

Since f (z) and g(z) are linearly independent for all z �= 0, we find y = 0 in both
cases. To summarize, if there exists a CIV for some f + gα then this variety must
contain 0. There obviously exist invariant varieties for f = f + g · 0 (α = 0;
control is switched off), viz. all straight lines through the origin. For α(0) �= 0 the
stationary point 0 is a focus of f + gα, which admits no local analytic invariant
curves in R

2, and a fortiori no algebraic invariant curves. In case α(0) = 0 the
vector field is locally analytically equivalent to f by Poincaré–Dulac normal form
theory (see e.g. Bibikov [4]). Conclusion At most, the input matrix g can deform
existing invariant curves of f .

4.2 Characterization

Ourmain result on natural controlled invariant varieties provides equivalent conditions
for a variety V to satisfy the “pointwise conditions” from Remark 5. This can be
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used for the algorithmic verification of the NCIV property, and it is also helpful for
the construction of varieties, and for the computation of feedbacks. We are mainly
interested in the real case, which is the underlying reason for the introduction of
rational feedbacks. On the other hand, a proper understanding of the real case requires
to consider the complex setting as well.

We keep the notation from Sect. 2.1, in particular V is a variety with vanishing
ideal J (V ) generated by ϕ1, . . . , ϕk , and its Jacobian J is defined in (5).

Theorem 2 Let V be equidimensional and smooth with dim(V ) = d; furthermore let
g ∈ Rn×m.

(a) The following statements are equivalent for K = R as well as K = C.

(i) V is rationally natural controlled invariant with respect to g.
(ii) For all f ∈ Rn there exists ψ f ∈ R such that V(ψ f ) = ∅ and

ψ f · f ∈ M + imR(g)

(iii) rank((J · g)(a)) = rank(J (a)) for all a ∈ V .
(iv) TaV + imK(g(a)) = K

n for all a ∈ V .

(b) In case K = C, (i)–(iv) are equivalent to

(v) M + imR(g) = Rn.
(vi) V is natural controlled invariant with respect to g.

(c) If K = R and any of (ii), (iii), (iv) holds for the complexification of R or V
respectively, then V is natural controlled invariant with respect to g.

Proof Wefirst prove part (a); parts (b) and (c) are rather simple consequences. Since V
is smooth and equidimensional, the equality rank(J (a)) = n − d holds for all a ∈ V .

1. For a fixed ψ f ∈ R we can find an α f ∈ Rm such that ψ f · f + g · α f ∈ M if
and only if ψ f · f ∈ M + imR(g). From this and Lemma 1 we get (i) ⇔ (ii).
To prove equivalence of (iii) and (iv) we use a fact from Linear Algebra (see e.g.
Lemma 5.46 in [17]): For matrices A ∈ K

k×n , B ∈ K
n×m , one has rank(A) =

rank(AB) if and only if kerK(A) + imK(B) = K
n . The assertion follows with

ker(J (a)) = TaV .
2. In order to show the implication (ii) ⇒ (iv) we first prove that

M(a) := {h(a) | h ∈ M} ⊆ TaV for all a ∈ V . (8)

Thus let a ∈ V and h ∈ M be arbitrary. Then Lemma 1 implies J · h ∈ I · Rk

and thus we have 0 = (J · h)(a) = J (a) · h(a). Because of J (V(I)) = I this
yields h(a) ∈ ker(J (a)) = TaV as desired.
Next, we prove that statement (ii) implies Kn = M(a) + imK(g(a)). Combined
with (8) this will yield

K
n = M(a) + imK(g(a)) ⊆ TaV + imK(g(a)) ⊆ K

n
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which shows (iv). So let v ∈ K
n ⊆ Rn . By (ii) there existsψv ∈ RwithV(ψv) = ∅

and q ∈ M, w ∈ Rm such that ψv · v = q + g · w. But then for every a ∈ V we
have ψv(a) �= 0 and thus

v = v(a) = (ψv(a))−1 · (q(a) + g(a) · w(a)) ∈ M(a) + imK(g(a))

as desired.
3. As a preliminary step for the proof of “(iv)⇒(ii)” we strengthen the subset relation

in (8) to equality, thus we prove

M(a) = TaV for all a ∈ V . (9)

To see this, partition

J (x) =
(
A11(x) A12(x)
A21(x) A22(x)

)

, A11(x) ∈ R(n−d)×(n−d),

and assume w.l.o.g. that A11(a) is invertible, hence A11(v) is invertible for all v

in a neighborhood of a. Since J (v) has rank n − d for all v ∈ V , we have

J (v)

(
z1
z2

)

= 0 ⇔ A11(v)z1 + A12(v)z2 = 0,

whence the columns

w1(x), . . . , wd(x) of

(−A11(x)−1A12(x)
Id

)

are defined at a and form a basis of ker J (x) ⊆ K(x1, . . . , xn)n . Multiplying by a
common denominator ρ of the wi with ρ(a) �= 0, we get

w̃i := ρ · wi ∈ M, 1 ≤ i ≤ d,

and w̃1(a), . . . , w̃d(a) ∈ M(a) are linearly independent in K
n .

4. Now we show that (iv) implies (ii). Let q1, . . . , qs generate the module M, and
let f ∈ Rn . Then for every a ∈ V there exist polynomials

ρa, μa, j (1 ≤ j ≤ s), νa,� (1 ≤ � ≤ m)

such that ρa(a) �= 0, and

ρa · f =
∑

j

μa, j q j +
∑

�

νa,�g�.

To verify this, assume w.l.o.g. that

q1(a), . . . , qd(a), g1(a), . . . , gn−d(a)
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span K
n , and use Cramer’s rule over K(x1, . . . , xn).

Due to Hilbert’s basis theorem [9, Thm. 1.3.5], the variety V is quasi-compact
[12, Prop. 1.3]. Therefore there exists p ∈ N and {a1, . . . , ap} ⊆ V such that the
ρi := ρai have no common zero in V , hence ρ1, . . . , ρp and ϕ1, . . . , ϕk have no
common zero inKn . By the Nullstellensatz (see Remark 1) there exist βi , η j ∈ R
such that

∑
ρiβi +

∑
ϕ jη j = 1 + σ

with σ = 0 in case K = C, and σ(x) ≥ 0 for all x when K = R. Abbreviating
μi j := μai , j and νik := νai ,k , summation yields

(1 + σ) f =
∑

j

ϕ j (η j f ) +
∑

i, j

βiμi j q j +
∑

i,�

βiνi,�g�.

The first two sums on the right hand side lie inM, since I · Rn ⊆ M, and the last
sum lies in imR(g).

5. For K = C the equivalence of (ii) and (v) follows by Hilbert’s Nullstellensatz
(Remark 1); this shows part (b). Finally in part (c) we may choose ψ f = 1 in the
complexification by (b), and then take real parts. Thus V is a NCIV with respect
to g. ��

4.3 Examples

As shown by Example 4, RNCIV’s for a given g do not exist in general. Moreover
their construction (if existence is given) is a nontrivial task, although considerably
easier than finding CIV’s for given f and g. In this section, we construct RNCIV’s
and NCIV’s for special classes of input matrices g ∈ Rn×m .

Proposition 3 For K = R, let ψ1, . . . , ψm ∈ R, and A ∈ Rn×n such that A(z) is
symmetric and positive semidefinite for all z ∈ R

n. Define

g(x) := A(x) · (∇ψ1(x), . . . ,∇ψm(x)) .

If c1, . . . , cm ∈ K are such that

W := V(ψ1 − c1, . . . , ψm − cm)

is smooth of dimension d, rank (∇ψ1(x), . . . ,∇ψm(x)) = n − d on W, and A(z)
is positive definite for all z ∈ W then W is a RNCIV for g, and a NCIV given the
conditions of Theorem 2(c).

Proof For any z ∈ W , a positive definite scalar product τz is defined by

τz(u, v) := 〈u, A(z)v〉 .
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Then the vector space imK(g(z)) is spanned by the ∇ψ j (z), and the tangent space
Tz(W ) is the τz–orthogonal complement of this space. This implies the “pointwise”
condition (ii) in Theorem 2(a). ��
Remark 6 In particular, if A is given as in Lemma 3 (or A is such that Remark 2
is applicable) and the conditions of Theorem 1 hold for W then any drift admits a
feedback such that W is locally attracting for (3): First find a feedback such that W is
invariant for (3), then apply Corollary 1.

The next class of examples generalizes invariance properties of homogeneous poly-
nomials, and also works in the complex setting.

Proposition 4 For an input matrix g = (g1, . . . , gm) ∈ Rn×m assume there exist
nonconstant μ1, . . . , μk ∈ R such that

Lgi (μ j ) = b ji · μ j with some b ji ∈ K; j ∈ {1, . . . , k}, i ∈ {1, . . . ,m}.

Assume that there exist c1, . . . , ck ∈ K such that

Y := V(μ1 − c1, . . . , μk − ck)

satisfies J (Y ) = 〈μ1 − c1, . . . , μk − ck〉, and Y is equidimensional and smooth, of
dimension d. If the matrix

B = (b ji ) ∈ K
k×m

satisfies rank(B) = n − d then Y is a NCIV for g.

Proof Let J be the Jacobian of J (Y ), and M := diag(μ1, . . . , μk). We have

J · g =
⎛

⎜
⎝

Dμ1
...

Dμk

⎞

⎟
⎠ · (g1, . . . , gm) =

⎛

⎜
⎝

b11μ1 · · · b1mμ1
...

...

bk1μk · · · bkmμk

⎞

⎟
⎠ = M · B.

Since μ j (a) = c j �= 0 for all a ∈ V and j = 1, . . . , k, we have rank(M(a)) = k for
all a ∈ Y and thus

rank((J · g)(a)) = rank((M · B)(a)) = rank(M(a) · B) = rank(B) = rank(J (a))

Therefore Y is smooth, and all assumptions of Theorem 2 are satisfied. The assertion
follows. ��
Example 5 (a) Let K = R and n ≥ 2. Consider g ∈ Rn with g(x) = x and let μ be

any homogeneous polynomial of degree � ≥ 1. By the familiar Euler differential
equation one has Lg(μ) = � · μ, So, whenever c ∈ R is such that W := V(μ − c)
is smooth then the assumptions of Propositions 3 and 4 are fulfilled and W is a
NCIV with respect to g.
As a special example consider the real case and μ = ∑n

i=1 αi x2i , with all αi > 0,
and c > 0. Here Remark 6 is applicable.
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(b) Let K = R and

g = (
g1 g2

) =
⎛

⎝
x1 0
0 x2
0 x3

⎞

⎠ .

Then W := V(x1 − c1, x22 + x23 − c2), with c1 ∈ R and c2 > 0, is a NCIV
with respect to g. To see this, note that the complexification of W is smooth of
dimension one, and for

μ1 = x1, μ2 = x22 + x23

the identities

Lg1(μ1) = μ1, Lg2(μ1) = 0, Lg1(μ2) = 0, Lg2(μ2) = 2μ2

hold; therefore

B =
(
1 0
0 2

)

in the notation of Proposition 4. Consequently, we get

rank(B) = 2 = 3 − 1

and by applying Proposition 4 the assertion follows.

Example 6 We provide an application of Proposition 3. With K = R and

ψ := x22 − x1(x1 + 1)(x1 + 2)

(compare Example 1), consider the input matrix

g = ∇ψ =
(−(3x21 + 6x1 + 2)

2x2

)

.

The elements of the module M are given by

ρ · q + ψ · h,

with ρ ∈ R and h ∈ R2 arbitrary, and

q :=
(

2x2
3x21 + 6x1 + 2

)

,
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as follows e.g. from [6] (and is easily verified directly). We note that

�(x) := det
(
q(x) g(x)

) = 4x22 + (3x21 + 6x1 + 2)2

has real zeros only at x1 = (−6 ± 2
√
3)/6 and x2 = 0. At these points one has

ψ(x) = ±2
√
3/9. Thus for all c ∈ R\{±2

√
3/9} Proposition 3 is applicable to

Vc := V(ψ − c). Thus for any a ∈ Vc we have that Ta(Vc) is spanned by q(a);
moreover q(a), g(a) span R

2.
Given any f ∈ R2 we obtain

�(x) f (x) = det ( f (x), g(x)) · q(x) + det (q(x), f (x)) · g(x)

by Cramer’s rule.
We now consider the special case c = 0, for the sake of simplicity. According to

step # 4 in the proof of Theorem 2 one would determine polynomials β and η such that
β� + ηψ = 1 + σ , with σ only attaining nonnegative values. But the relevant point
is to find some linear combination of � and ψ that has no real zero. In the present
example, determining a Gröbner basis of 〈�, ψ〉 yields one element

λ := β� + ηψ = 729x82 − 584x62 − 72x42 + 96x22 + 16,

with

η = 729x31 x
4
2 + 1863x21 x

4
2 + 729x62 − 108x31 x

2
2 + 954x1x

4
2 − 324x21 x

2
2

− 396x42 − 108x13 − 72x1x
2
2 − 324x21 + 36x22 − 216x1,

β = 81x21 x
4
2 + 126x1x

4
2 − 12x21 x

2
2 − 47x42 − 24x1x

2
2 − 12x21 + 20x22 − 24x1 + 4.

Note that λ is a polynomial in one variable; an elementary discussion shows that λ

attains a positive minimum in R. We thus obtain

λ f = (ηψ · f + β det ( f , g) · q) + β det (q, f ) · g,

and choosing the feedback

α = β det (q, f )

λ
− ε−1ψ

(with any ε) yields a vector field which admits the invariant variety V0 = V . Choosing
ε > 0 sufficiently small yields a vector field which admits ψ as a Lyapunov function
in some neighborhood of the compact connected component Ṽ of V .
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