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The final part of the proof of Lemma 2.7 in [3] is not correct as pointed out in [1]. The
correct part, after Eq. (12), is the following one.

Suppose that r5 �= (0, 0). Then, from Eq. (12), we have d36λ + M = 0, which is
equivalent to

λ

M
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where R = d−3
6 , for every mass m5. The last equation can be written as
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The original article can be found online at https://doi.org/10.1007/s12346-012-0084-y.
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Separating m5 in the last equation, we have
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In the last equation, the factor multiplying m5 is null, then we get
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which is equivalent to
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Note that the quotient in the last equation is the Lagrange multiplier of the four co-
circular bodies divided by M = m1 + m2 + m3 + m4. Let λ4 be this Lagrange
multiplier. So the last equation can be written as

R + λ4

M = 0. (13)

Since the four co-circular bodies are in a convex central configuration with positions
disposed counterclockwise, the following inequalities must hold (see for instance [2]
p. 349)

R13, R24 < − λ4

M < R12, R14, R23, R34.

On the other hand, using the perpendicular bisector theorem, we see that in a co-
circular central configuration the center of the circle belongs to the interior of the
convex hull of the quadrilateral, see [2]. Thus, from the geometry of a quadrilateral
inscribed in the circle of radius d6 with the center of the circle inside the convex hull
of the quadrilateral, at least one side is greater than

√
2d6. Thus, Eq. (13) is never

satisfied, because the four co-circular bodies are in a convex central configuration.
Therefore, in order to satisfy (12) we must have r5 = (0, 0) = C and the proof is
complete.
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