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Abstract This article studies a confluence of a pair of regular singular points to an
irregular one in a generic family of time-dependent Hamiltonian systems in dimension
2. This is a general setting for the understanding of the degeneration of the sixth
Painlevé equation to thefifth one.Themain result is a theoremof sectoral normalization
of the family to an integrable formal normal form, through which is explained the
relation between the local monodromy operators at the two regular singularities and
the non-linear Stokes phenomenon at the irregular singularity of the limit system. The
problem of analytic classification is also addressed.
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1 Introduction

We consider a parametric family of non-autonomous Hamiltonian systems of the form

x(x − ε)
dy1
dx = ∂ H

∂y2
(y, x, ε)

x(x − ε)
dy2
dx = − ∂ H

∂y1
(y, x, ε),

(y, x, ε) ∈ (C2×C×C, 0), (1)
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shortly written as

x(x − ε)
dy
dx = J t(Dy H), J =

(
0 1

− 1 0

)
, (2)

with a singular Hamiltonian function H(y,x,ε)
x(x−ε)

, where H(y, x, ε) is an analytic germ
such that H(y, 0, 0) has a non-degenerate critical point (Morse point) at y = 0:

Dy H(0, 0, 0) = 0, det D2
y H(0, 0, 0) �= 0.

The last condition means that the y-linear terms of the right side of (2) are of the form
A(x, ε)y for A(x, ε) = J D2

y H(0, x, ε), with trA(x, ε) ≡ 0 and det A(0, 0) �= 0,

i.e. A(0, 0) ∼
(

λ(0)(0) 0
0 − λ(0)(0)

)
for some λ(0)(0) �= 0.

For ε �= 0 the system (1) has two regular singular points at x = 0 and x = ε.
At each one of them, the local information about the system is carried by a formal
invariant and a monodromy (holonomy) operator. On the other hand, for ε = 0 the
corresponding information about the irregular singularity at x = 0 is carried by a
formal invariant and by a pair of non-linear Stokes operators. Our main goal is to
explain the relation between these two distinct phenomena, and to show how the
Stokes operators are related to the monodromy operators. The principal thesis is,
that while the monodromy operators diverge when ε → 0, they each accumulate
to a 1-parameter family of “wild monodromy operators” which encode the Stokes
phenomenon (Theorem 40). It is expected that this “wild monodromy” should have
Galoisian interpretation, this question is however outside the reach of this paper.

An important example of a confluent family of systems (1), which in fact motivates
this study, is the degeneration of the sixth Painlevé equation to the fifth one, presented
in Sect. 6. A more detailed treatment of this confluence will be the subject of an
upcoming article [14], which will provide an explicit description of a representation
of the “wild monodromy” of the fifth Painlevé equation as an action on the “wild
character variety” of the associated isomonodromic problem.

The main tool in our investigation is a theorem on “sectoral normalization” of
the family (Theorem 17) to its formal normal form which is integrable. The domains
on which these transformations exist are of the form introduced in recent years by
C. Rousseau and her collaborators [10,15,16,25,26], consisting of two sectors in the
ε-space and a family of ramified domains in the x-space attached to both singular
points x = 0, ε along certain logarithmic spirals. When ε → 0 they tend to a pair of
usual sectors attached to the irregular singularity at x = 0. This construction allows
to define unfolded Stokes operators for the family, analogical to those introduced in
[10,15] for linear systems, and to decompose the nonlinear monodromy operators
around 0 and ε for ε �= 0 into a convergent “Stokes” part and a wild “exponential
torus” part (Theorem 38). We also provide an analytic classification for the family
(Theorem 36), where the analytic modulus is expressed in terms of a conjugacy class
of the unfolded Stokes operators.
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In Sect. 5, we illustrate all this on the example of 2-dimensional traceless linear
differential systems

x(x − ε)
dy
dx = A(x, ε)y, A(x, ε) ∈ sl2(C), det A(0, 0) �= 0, (3)

for which our description follows from the more general work of Lambert and
Rousseau [10,15]. Here the relation between the monodromy of the unfolded sys-
tem and the Stokes operators of the limit systems can be summarized as:

Theorem When ε → 0 the elements of the monodromy group of the system (3)
accumulate to generators of the wild monodromy group of the limit system (that is the
group generated by the Stokes operators and the exponential torus).

The non-linear analogy of this theorem is Theorem 40. The linear case can be kept
in mind as a leading example of which the general non-linear case is a close parallel.

2 The Foliation and its Formal Invariants

The family of systems (1) defines a family of singular foliations in the (y, x)-space,
leaves of which are the solutions. We associate to (1) a family of vector fields tangent
to the foliation

Z H (y, x, ε) = x(x − ε)∂x + X H (y, x, ε), (4)

where
X H (y, x, ε) = ∂ H

∂y2
(y, x, ε)∂y1 − ∂ H

∂y1
(y, x, ε)∂y2 , (5)

which may also be seen as a single vector field in the (y, x, ε)-space. We will denote

Z H,ε(y, x), resp. X H,x,ε(y),

the restriction of (4) to a fixed value of ε, resp. of (5) to a fixed value of (x, ε).
The vector field Z H,0(y, x) has a saddle-node type singularity at (y, x) = 0, i.e.

its linearization matrix has one zero eigenvalue, corresponding to the x-direction. It
follows from the Implicit Function Theorem that, for small ε �= 0, Z H,ε has two
singular points (y0(0, ε), 0) and (y0(ε, ε), ε) bifurcating from (y0(0, 0), 0) = 0 and
depending analytically on ε. The aim of this paper is a study of their confluence when
ε → 0.

The two singularities of Z H,ε have each a strong invariant manifold Y0 = {(y, x) :
x = 0}, resp.Yε = {(y, x) : x = ε}. Away of these invariant manifolds the vector field
Z H,ε is transverse to the fibration with fibers Yc = {(y, x) : x = c}. The (y, x)-space
is endowed with a Poisson structure associated to the 2-form

ω = dy1 ∧ dy2, (6)

the restriction of which on each fiber Yc is symplectic. The vector field Z H,ε is trans-
versely Hamiltonian with respect to this fibration, the form ω, and the Hamiltonian
function H(y, x, ε).
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2.1 Fibered Changes of Coordinates

We consider the problem of analytic classification of families of systems (1), or orbital
analytic classification of vector fields (4), with respect to fiber-preserving (shortly
fibered) changes of coordinates

(y, x, ε) = (�(u, x, ε), x, ε).

Such a change of coordinate transforms a system (2) to a system

x(x − ε)
du

dx
= (Du�)−1 J t(Dy H) ◦ � − x(x − ε)(Du�)−1 ∂�

∂x

= (det Du�)−1 J t(Du(H ◦ �)) − x(x − ε)(Du�)−1 ∂�
∂x , (7)

using the identity

P J tP = det P · J for any 2×2 matrix P. (8)

Definition 1 We call a fibered transformation � transversely symplectic if det(Du�)

≡ 1, i.e. if it preserves the restriction of ω to each fiber Yx .

Definition 2 Two systems (1) with Hamiltonian functions H(y,x,ε)
x(x−ε)

and H̃(u,x,ε)
x(x−ε)

are
called analytically equivalent if there exists an analytic germ of a transversely sym-
plectic transformation y = �(u, x, ε) that is analytic in (u, x, ε) and transforms one
system to another: �∗Z H,ε = Z H̃ ,ε

.

Lemma 3 If a transformation y = �(u, x, ε) is transversely symplectic, then the
transformed system (7) is transversely Hamiltonian w.r.t. ω = du1 ∧ du2, i.e. it is
again of the form (1).

Proof It is enough to show that the system du
dx = −(Du�)−1 ∂�

∂x is transversely Hamil-

tonian, that is, denoting

(
f1
f2

)
:= −(Du�)−1 ∂�

∂x , to show that ∂u1 f1 + ∂u2 f2 =
0. Using the identity (8), we can express f1 = − 1

det Du�
t(∂u2�)J∂x�, f2 =

1
det Du�

t(∂u1�)J∂x�, hence

∂u1 f1 + ∂u2 f2 = −1
det Du�

[t(∂u2�)J∂x∂u1� − t(∂u1�)J∂x∂u2�
]

= −1
det Du�

∂x
[t(∂u2�)J∂u1�

] = −1
det Du�

∂x det Du� = 0.


�

2.2 The Formal Invariant χ(h, x, ε)

Theorem 4 (Siegel)Let H : (C2, 0) → (C, 0) have a non-degenerate critical point at
0, and let ω be a symplectic volume form. There exists an analytic system of coordinates
u = (u1, u2) in which
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ω = du1 ∧ du2, and H = G H (u1u2), G H (0) = 0.

The function G H is uniquely determined by the pair (H, ω) up to the involution

G H (u1u2) �→ G H (−u1u2), (9)

induced by the symplectic change of variable J : (u1, u2) �→ (u2,−u1). The pair
(G H , ω) is called the Birkhoff–Siegel normal form of the pair (H, ω). Moreover,
if (H, ω) depend analytically on a parameter, then so does G H and the change of
coordinates.

Proof While not explicitly stated in this form, the existence part of the theorem is
originally proved by Siegel [28, chaps. 16 and 17]. See also [8,36]. The uniqueness
can be seen by expressing G H (h) in terms of a period map of ω

d H over a vanishing
cycle, see Sect. 2.2.1 below. 
�
Remark 5 • The Theorem 4 provides the existence of an analytic transformation of

a Hamiltonian vector field ẏ = J t(Dy H) in dimension 2 to its Birkhoff normal
form u̇ = J t(DuG H ), with

G H (h) = λh + · · · ,

where ±λ �= 0 are the eigenvalues of the linear part J D2
y H(0). The involution (9)

corresponds to the freedom of choice of the eigenvalue λ.
• The change of coordinates is far from unique. Indeed, the flow of any vector field

ξ = a(u1u2)
(
u1∂u1 − u2∂u2

)
preserves the normal form.

Let H = H(y, x, ε) be our germ. By the implicit function theorem, for each
small (x, ε), the function H(·, x, ε) has an isolated non-degenerate critical point
y0(x, ε), depending analytically on (x, ε). Let y = �(u, x, ε) be the transformation
to the Birkhoff–Siegel normal form for the function y �→ H(y, x, ε) and the form
ω = dy1 ∧ dy2, depending analytically on (x, ε), i.e.

H(·, x, ε) ◦ �(u, x, ε) = G H (u1u2, x, ε), det Du�(u, x, ε) ≡ 1.

By (7), it brings the system (1) to a prenormal form

x(x − ε)
du

dx
= J t(DuG H ) + O(x(x − ε))

= χ(u1u2, x, ε)

(
1 0
0 − 1

)
u + O(x(x − ε)), (10)

where

χ(h, x, ε) = χ(0)(h, ε) + xχ(1)(h, ε) := ∂G H
∂h (h, x, ε) mod x(x − ε), (11)
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h = u1u2, or equivalently,

χ(h, x, ε) =
⎧⎨
⎩
1
ε

[
x ∂G H

∂h (h, ε, ε) − (x − ε) ∂G H
∂h (h, 0, ε)

]
, ε �= 0,

∂G H
∂h (h, 0, 0) + x ∂2G H

∂h∂x (h, 0, 0), ε = 0.
(12)

Definition 6 The function χ(h, x, ε) is called the formal invariant of the system (1).

For ε �= 0 the formal invariant χ is completely determined by the functions
G H (·, 0, ε) and G H (·, ε, ε) , which are analytic invariants of the autonomous Hamil-
tonian systems X H,0,ε , X H,ε,ε (5) on the strong invariant manifolds Y0,Yε .

Corollary 7 The formal invariant χ(h, x, ε) is well-defined up to the involution

J ∗ : χ(h, x, ε) �→ −χ(−h, x, ε), (13)

induced by the symplectic transformation u �→ Ju. It is uniquely determined by the
polar part of the Hamiltonian H(y,x,ε)

x(x−ε)
, and it is invariant with respect to fibered

transversely symplectic changes of coordinates.

Let

λ(x, ε) = χ(0, x, ε).

Then ±λ(x, ε) are the eigenvalues of the matrix of the linearized system A(x, ε) =
J

t
D2

y H(y0(x, ε), x, ε) modulo x(x − ε), see Example 8, and the involution (13)
corresponds to the freedom of choice of the eigenvalue λ.

Example 8 (Traceless linear systems) A traceless linear system

x(x − ε)
dy

dx
= A(x, ε)y, (14)

with trA(x, ε) = 0 and A(0, 0) ∼
(

λ(0)(0) 0
0 −λ(0)(0)

)
for some λ(0)(0) �= 0, is of

the form (1) for the quadratic form H(y, x, ε) = 1
2
ty J tA(x, ε)y. Let ±λ̃(x, ε) be

the eigenvalues of A(x, ε), and let C(x, ε) be a corresponding matrix of eigenvectors
of A(x, ε), depending analytically on (x, ε) and normalized so that det C(x, ε) = 1.
The change of variable y = C(x, ε)u is the one which brings (H, dy1 ∧ dy2) to
its Birkhoff–Siegel normal form (G H = 1

2 λ̃(x, ε)h2, du1 ∧ du2). It transforms the
system (14) to a prenormal form

x(x − ε)
du

dx
=
[
λ̃(x, ε)

(
1 0
0 − 1

)
+ x(x − ε)C−1 dC

dx

]
u.

Denoting λ(x, ε) := (
λ(0)(ε) + xλ(1)(ε)

) = λ̃(x, ε) mod x(x − ε), then we have
χ(h, x, ε) = λ(x, ε) up to the choice of sign (13). It coincideswith the formal invariant
of [10,15].
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2.2.1 Geometric Interpretation of the Invariant χ .

For each small (x, ε), the function H(·, x, ε) has an isolated non-degenerate criti-
cal point y0(x, ε), depending analytically on (x, ε), with a critical value h0(x, ε).
For (x, ε) fixed, h ∈ (C, h0), consider the germ of the level set Sh(x, ε) = {y ∈
(C2, y0(x, ε)) : H(y, x, ε) = h} ⊂ Yx . As a basic fact of the Picard–Lefschetz the-
ory [1], we know that if h is a non-critical value for H(·, x, ε), i.e. h �= h0, then
Sh(x, ε) has the homotopy type of a circle. Let γh(x, ε) depending continuously on
(x, ε) be a loop generating the first homology group of Sh(x, ε), the so called vanish-
ing cycle. And letμ be a 1-form such that ω = d H ∧μ; its restriction to a non-critical
level Sh(x, ε) is called the Gelfand–Leray form of ω and is denoted

μ = ω

d H
.

Its period function over the vanishing cycle

p(h, x, ε) := 1
2π i

∫
γh(x,ε)

ω

d H
, (15)

is well-defined up to a sign change (orientation of γh), and depends analytically
on (x, ε) [1, chap. 10]. Let G H (·, x, ε) be the inverse of the function h �→∫ h

h0(x,ε)
p(s, x, ε) ds. Then (G H , ω) is the Birkhoff–Siegel normal form of (H, ω).

Indeed, the above formula for G H is invariant with respect to analytic trans-
versely symplectic changes of coordinates: Supposing that H = g(y1y2, x, ε) is
in its Birkhoff–Siegel normal form, then the level sets are written as Sh = {y1 �=
0, y2 = g◦(−1)(h,x,ε)

y1
}, and ω

d H = dy1
y1· ∂g

∂(y1 y2)
◦g◦(−1)(h,x,ε)

, and therefore p(h) =
(

∂g
∂(y1y2)

)−1 ◦ g◦(−1)(h, x, ε), i.e. G H = g.

The above formula for the Birkhoff–Siegel normal form and hence for the formal
invariant χ involves a double inversion which makes it difficult to calculate. The
following proposition, which will be proved in Sect. 7.4, allows to determine it in
some special cases. This will be useful in the case of the fifth Painlevé equation
(Sect. 6).

Proposition 9 (Birkhoff–Siegel normal form of an autonomousHamiltonian system)
Let H(y) be of the form

H(y) = G(h) + yi�(yi , h), h = y1y2,

for some i ∈ {1, 2}, with G,� analytic germs, and

G(h) = λh + O(h2), λ �= 0.

Then (G, ω) is the Birkhoff–Siegel normal form for the pair (H, ω), ω = dy1 ∧ dy2.
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Corollary 10 (Invariant χ for ε = 0) For ε = 0, suppose that

H(y, x, 0) = G(0)(h, 0) + x H (1)(y, 0) + O(x2), h = y1y2,

where G(0)(h, 0) = λ(0)(0)h + O(h2), λ(0)(0) �= 0. Write

H (1)(y, 0) = G(1)(h, 0) + y1�1(y1, h, 0) + y2�2(y2, h, 0),

with �i (yi , h, 0) = O(yi ). Then

χ(h, x, 0) = ∂
∂h

(
G(0)(h, 0) + x G(1)(h, 0)

)

is the formal invariant of the vector field Z H,0 = x2∂x + X H associated to H.

Proof Consider a deformation

H(y, x, ε) = G(0)(h, 0) + xG(1)(h, 0) + xy1�1(y1, h, 0)

+ (x − ε)y2�2(y2, h, 0) + O(x(x − ε)),

and calculate the Birkhoff–Siegel invariants for H(y, 0, ε), H(y, ε, ε), using Propo-
sition 9. 
�

2.3 Model System (Formal Normal Form)

Definition 11 (Model family) Let χ(h, x, ε) be the formal invariant of the system (1).
The model family (formal normal form) for the the system (1) is the family of systems

x(x − ε) du1
dx = χ(u1u2, x, ε) · u1

x(x − ε) du2
dx = −χ(u1u2, x, ε) · u2,

(16)

which is Hamiltonian with respect to the Hamiltonian function G(u1u2,x,ε)
x(x−ε)

,

G(h, x, ε) =
∫ h

0
χ(s, x, ε) ds = G H (h, x, ε) mod x(x − ε). (17)

The formal normal form of the family Z H is the associated family of vector fields

ZG(u, x, ε) = x(x − ε)∂x + χ(u1u2, x, ε)
(
u1∂u1 − u2∂u2

)
. (18)

The system (16) is integrable with the function h(u) = u1u2 being its first integral,
ZG · h = 0. The general solutions of (16) are of the form

u1(x, ε; c) = c1Eχ (c1c2, x, ε),

u2(x, ε; c) = c2Eχ (c1c2, x, ε)−1,
c = (c1, c2) ∈ C

2, (19)
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where Eχ (h, x, ε) = exp
∫ x
∞

χ(h,x,ε)
x(x−ε)

dx, namely

Eχ (h, x, ε) =
⎧⎨
⎩

x− χ(0)(h,ε)
ε (x − ε)

χ(0)(h,ε)
ε

+χ(1)(h,ε), for ε �= 0,

e− χ(0)(h,0)
x xχ(1)(h,0), for ε = 0.

(20)

In particular, Eχ (h, x, ε) is analytic in ε near the origin for x �= 0.

3 Formal and Sectoral Normalization Theorem

Throughout the text we will denote

Y = {|y| < δy}, U = {|u| < δu}, X = {|x | < δx }, E = {|ε| < δε}, (21)

for some δy, δu, δx , δε > 0 sufficiently small,1 and consider the systems (1), resp.
(16), as defined on Y × X × E, resp. U × X × E. We will implicitly suppose that
δε << δx so that the singular points (y, x) = (y0(0, ε), 0) and (y0(ε, ε), ε) of the
original foliation are both well inside Y × X for all ε ∈ E±.

We will now define “sectoral” domains in the ε- and x-space on which the system
can be normalized. They are of the same type as those introduced in [10,13,15,16,25].

Definition 12 (Family of spiraling sectoral domains X±(ε), ε ∈ E±) Let η > 0 be
an arbitrarily small constant, and let δx >> δε > 0 be radii of small discs at 0 in the
x-and ε-space. Let λ(x, ε) = χ(0, x, ε), and let

E± := {|ε| < δε, | arg
(
± ε

λ(0,0)

)
| < π − 2η} ∪ {0}, (22)

be two sectors in the ε-space. For ε ∈ E± define a domain

X±(ε)

in the x-space as a simply connected ramified domain spanned by the complete real
trajectories of the vector fields

eiθ± · x(x−ε)
λ(x,ε)

∂x (23)

that never leave the disc of radius δx , where the phase θ± varies continuously in the
interval

{
max

{
0, arg

( ±ε
λ(0,0)

)}
− π

2 +η < θ± < min
{
0, arg

( ±ε
λ(0,0)

)}
+ π

2 −η, for ε �= 0,

|θ±| < π
2 − η, for ε = 0.

(24)

1 The constants δu , δx , δε will appear in Theorem 17 in purely existential way; they’re “small enough”.
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Fig. 1 The domains X±(ε) in dependence on ε ∈ E±. (Picture with λ(0)(0) = 1)

The constraints (24) on the variation of θ± are such that the real dynamics of the
vector field (23) and the asymptotic behavior of the solutions (19) would not change
drastically depending on θ±. Namely, for ε �= 0:

• The point x = ε is repulsive when | arg ε
λ(x,ε)

− θ±| < π
2 and attractive when

| arg −ε
λ(x,ε)

− θ±| < π
2 , and vice-versa for the point x = 0.

• The u1-component of the solution (19) tends to 0 along a negative real trajectory
of (23) and to ∞ along a positive real trajectory for |θ±| < π

2 , and vice-versa for
the u2-component.

For ε = 0, the domain X+(0) = X−(0) consists of a pair of overlapping sectoral
domains2 X

��
(0),X ��

(0) of opening 2π −2ηwith a common point at x = 0. See Fig. 1.
Moreover, it follows from the construction that when ε → 0 radially with some fixed
arg ε = β, then X±(ε) tends to a sectoral subdomain of X±(0) corresponding to the
constraints (24) on the variation of the phase θ±.

Note that by our definition the points x = 0, ε are included in X±(ε).
We denote XE± the union of the domains in the (x, ε)-space

XE± := {(x, ε) | x ∈ X±(ε)}. (25)

2 Our notion of sectoral domains deviates slightly from the usual one by including also the vertex point 0.
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Remark 13 Denoting x1,±(ε) the attractive equilibrium point of (23) and x2,±(ε) the
repulsive one,

x1,+(ε) = x2,−(ε) = 0, x1,−(ε) = x2,+(ε) = ε, (26)

then

ui (x, ε) → ∞, u j (x, ε) → 0, ( j = 3 − i), when x → xi,±(ε)

along a real trajectory of (23).

Remark 14 For each ε ∈ E± � {0}, X±(ε) is a simply connected ramified domain.
Strictly speaking, the domain X±(ε) is defined on the Riemann surface of t (x, ε) =∫ x
∞

λ(x,ε)
x(x−ε)

dx , on which it corresponds to a simply connected domain in the coordinate
t (x, ε) obtained as a union of infinite stripes of varying directions θ± for ε �= 0, resp.
half-planes with boundaries in directions θ± for ε = 0. See [13] for more details.

Remark 15 In the variable x = εz, the system (2) takes the form of a singularly
perturbed system

εz(z − 1) dy
dz = J t(Dy H)(y, εz, ε).

The domains z ∈ 1
ε
X±(ε), ε ∈ E±, then roughly correspond to the Stokes domains

in the sense of exact WKB analysis [12], where the Stokes curves would be the real
separatrices of the point z = ∞ of the vector field (23) ei(θ±+arg ε) z(z−1)

λ(0,0) ∂z with a
fixed phase θ± (24).

Before giving a general theorem on sectoral normalization for the parametric family
(1), let us first state it for the limit systemwith ε = 0 which has an irregular singularity
of Poincaré rank 1 at x = 0.

Theorem 16 (Formal and sectoral normalization at ε = 0) The system (1) with ε = 0
can be brought to its formal normal form (16) through a formal transversely symplectic
change of coordinates

(y, x) = (�̂(u, x, 0), x), �̂(u, x, 0) =
∑
k≥0

ψ(k,0)(u)xk, (27)

where ψ(k,0)(u) are analytic in u on a fixed neighborhood U of 0. This formal series is
generally divergent, but it is Borel 1-summable, with a pair of Borel sums �

��
(u, x, 0)

and � ��
(u, x, 0) defined respectively above the sectors x ∈ X

��
(0),X ��

(0) of Defini-
tion 12 (for some 0 < η < π

2 arbitrarily small and some δx > 0 depending on η),
and u ∈ U. The fibered sectoral transformations (y, x) = (�•(u, x, 0), x), • = ��

, ��,
are transversely symplectic and bring the system (1) with ε = 0 to its formal normal
form.

The Theorem 16 is originally due to Takano [32] for systems (1) whose formal
invariant is of the form χ(h, x) = λ(0) + xχ(1)(h). In the case of the irregular singu-
larity of the fifth Painlevé equation it was proved earlier by Takano [30]. Some similar
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and closely related theorems are due to Shimomura [27], Yoshida [34], and recently
by Bittmann [3,4], which apply to doubly resonant systems x2 dy

dx = F(y, x), with

Dy F(0, 0) = λ(0)(0)
(1

− 1

)
under the condition that � (

tr ∂
∂x Dy F(0, 0)

)
> 0. This

condition is not satisfied for Hamiltonian systems (1) but nevertheless allows to treat
Painlevé equations.

Theorem 17 (Formal and sectoral normalization) Let Z H (y, x, ε) be a family of vec-
tor fields (4) and let χ(h, x, ε) be their formal invariant.
(i) There exists a formal transversely symplectic change of coordinates (y, x, ε) =
(�̂(u, x, ε), x, ε) which brings Z H to its formal normal form (18). It is written as a
formal power series

�̂(u, x, ε) =
∑

k,l≥0

ψ(k,l)(u)xkεl , (28)

with ψ(k,l)(u) analytic in u on the same fixed neighborhood U = {|u1|, |u2| < δu} of
0 for some δu > 0, and �̂(u, 0, ε) = ∑

l≥0 ψ(0,l)(u)εl is convergent on U × E for
some δε > 0. The coefficients ψ(k,l) grow at most factorially in k + l:

sup
u∈U

|ψ(k,l)(u)| ≤ Cr−(k+l)(k + l)! for some C, r > 0.

(ii) There exists a transversely symplectic fibered change of coordinates (y, x, ε) =
(�±(u, x, ε), x, ε), with �±(u, 0, ε) = �̂(u, 0, ε), defined for x in the spiraling
domain X±(ε), ε ∈ E±, of Definition 12 (for some 0 < η < π

2 arbitrarily small and
some δx , δε > 0 depending on η), and for u ∈ U, which brings Z H to its formal normal
form (18). It is uniformly continuous on U × XE± (25) and analytic on its interior.
When ε tends radially to 0 with arg ε = β, then �±(u, x, ε) converges to �±(u, x, 0)
uniformly on compact sets of the sub-domain lim ε→0

arg ε=β
X±(ε) ⊆ X±(0). Note that in

our notation �±(u, x, 0) consists of a pair of sectoral transformations �
��
(u, x, 0)

and � ��
(u, x, 0); it is a functional cochain using the terminology of [11,18].

(iii) Let �̃(u, x, ε) be an analytic extension of the function given by the convergent
series

�̃(u, x, ε) =
∑

k,l≥0

ψ(k,l)(u)

(k + l)! xkεl , ψ(k,l) as in (28).

For each point (x, ε), for which there is θ ∈ ]− π
2 , π

2 [ such that Bθ · (x, ε) ⊆ XE±,
with Bθ ⊂ C denoting the closed disc with center on eiθ

R
+ and 0 and 1 on its

circumference, we can express �±(u, x, ε) through the following Laplace transform
of �̃:

�±(u, x, ε) =
∫ +∞eiθ

0
�̃(u, sx, sε) e−s ds. (29)

In particular, �±(u, x, 0) is the pair of sectoral Borel sums �
��
(u, x, 0), � ��

(u, x, 0)
of the formal series �̂(u, x, 0).
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As a consequence, �± and �̂ satisfy the same (∂u, ∂x , ∂ε)-differential relations
with meromorphic coefficients.

The proof of the theorem will be given in Sect. 7.
The transformations �± and �̂ are unique up to left composition with an analytic

symmetry of the model system, see Corollary 32.

Corollary 18 The system (1) possesses:

(i) A formal first integral given by h ◦ �̂◦(−1)(y, x, ε), where �̂ is as above and
h(u) = u1u2 is a first integral of the model system.

(ii) An actual first integral given by h ◦ �
◦(−1)
± (y, x, ε) that is bounded and analytic

on the domain XE±.

Definition 19 The solution y = �±(0, x, ε) is called ramified center manifold of
the vector field Z H . It is the unique solution of the corresponding system (1) that is
bounded on X±(ε) (cf. [13]).

Remark 20 More generally, instead of the system (1) one could consider a parametric
family of systems unfolding a higher order singularity

(xk+1 + εk xk + · · · + ε0)
dy
dx = J t(Dy H),

J =
(

0 1
− 1 0

)
, (y, x, ε) ∈ (C2 × C × C

k+1, 0),

for any k ≥ 1 under the same non-degeneracy condition on H . The definition of
the formal invariant χ(h, x, ε) = χ(0)(h, ε) + · · · + xkχ(k)(h, ε) would then be a
straightforward generalization of (11), and it is expected that the same should be also
true for the assertions (i) and (ii) of Theorem 17 where the “sectoral” domains in the
(x, ε)-space should be generalized in the spirit of those introduced in [10].

4 Stokes Operators and Accumulation of Monodromy

We will define several operators acting as transversely symplectic fibered isotropies
on the three following parametric foliations given by three different vector fields:

• Foliations in the (u, x)-space given by the model vector field ZG(u, x, ε) (18).
• Foliations in the (c, x)-space, c being the constant of initial condition in (19), given
by the rectified vector field Z0(c, x, ε) = x(x − ε)∂x . Note that a fibered isotropy
of Z0 is necessarily independent of x ; it acts on the c-space of initial conditions
only.

• Foliations in the (y, x)-space given by the original vector field Z H (y, x, ε) (4).

Notation 21 If f = f (u, x, ε) is a map, we denote f (·, x, ε) : u �→ f (u, x, ε) the
restricted map. Hence f (·, x, ε) ◦ g(·, x, ε) = f (g(·, x, ε), x, ε).
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4.1 Symmetries of the Model System: Exponential Torus

A vertical infinitesimal symplectic symmetry, or shortly infinitesimal symmetry, of
the normal form vector field ZG (18) is an analytic germ of a family of vector fields
ξ(u, x, ε) in the (u, x)-space that preserves:

(i) the x-coordinate: Lξ x = ξ · x = 0,
(ii) the symplectic form ω = du1 ∧ du2: Lξω = 0,
(iii) the vector field ZG : Lξ ZG = [ξ, ZG ] = 0.

Similarly, we can define a vertical infinitesimal symplectic symmetry ξε(u, x) of the
normal form vector field ZG,ε restricted to a fixed ε.

Lemma 22 A family of vector fields ξ(u, x, ε) is an infinitesimal symmetry of ZG if
and only if there exists an analytic first integral f (u, x, ε) of ZG, i.e. ZG · f = 0, such
that ξ = X f (u, x, ε) is a Hamiltonian vector field for f with respect to ω. Similarly
for an infinitesimal symmetry ξε of ZG,ε for any fixed ε.

Proof The conditions (i) and (ii) say that ξ = a1(u, x, ε)∂u1 + a2(u, x, ε)∂u2 with
∂a1
∂u1

+ ∂a2
∂u2

= 0, i.e. a1 = ∂ f
∂u2

, a2 = − ∂ f
∂u1

for some f with f (0, x, ε) = 0, and

ξ = ∂ f
∂u2

∂u1 − ∂ f
∂u1

∂u2 = X f . The condition (iii) now says that

0 = ZG · Du f − X f · DuG = Du(ZG · f ),

whichmeans that ZG · f is independent ofu, henceby evaluating atu = 0: ZG · f |u=0 =
x(x − ε)

∂ f
∂x |u=0 = 0. 
�

The “initial condition” constant c ∈ (C2, 0) in the general solution u(x, ε; c) (19)
is obviously locally constant along the solution, hence it can be seen as a local first
integral of the corresponding vector field ZG . By expressing it as a function of (u, x, ε),
we obtain

c1(u, x, ε) = u1 · Eχ (h, x, ε)−1, c2(u, x, ε) = u2 · Eχ (h, x, ε), (30)

and
h(u) = u1u2 = c1c2,

where Eχ (h, x, ε) is as in (20). Clearly, any function of c = (c1, c2) and ε is again a
first integral of ZG , and since c defines local coordinates on the space of leaves (space
of initial conditions), the converse is also true. Note that the map c : u �→ c(u, x, ε)

conjugates the vector field ZG to the “rectified” vector field Z0 = x(x − ε)∂x in the
(c, x)-space:

ZG = c∗(Z0).

It turns out that analytic first integrals are functions of h = c1c2 and ε only.

Proposition 23 If f (u, x, ε) is an analytic first integral of ZG on some neighborhood
U×X×Eof 0, then f = F(u1u2, ε)with F analytic. Similarly, an analytic first integral
fε(u, x) of ZG,ε on some neighborhood U × X of 0 is of the form fε = Fε(u1u2) for
some analytic Fε .
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Proof Since c1(u, x, ε), c2(u, x, ε) are local coordinates on the space of leaves, we
canwrite f (u, x, ε) = g(c(u, x, ε), ε) for some analytic germ g, which can be decom-
posed uniquely as g(c, ε) = g0(h, ε)+c1g1(c1, h, ε)+c2g2(c2, h, ε)with gl analytic.
When x → xi,± from within X±(ε), then ci (u, x, ε) → 0 and c j (u, x, ε) → ∞ for
every u ∈ U. Since f (u, x, ε) = g(c(u, x, ε), ε) is bounded on X±(ε), this means
that g j = 0. Therefore f (u, x, ε) = g0(h, ε). 
�
Corollary 24 The Lie algebra tor of analytic infinitesimal symmetries of ZG consists
of Hamiltonian vector fields

tor = {ξ = a(u1u2, ε)
(
u1∂u1 − u2∂u2

) = a(h, ε)Xh : a(h, ε) analytic}, (31)

and is commutative. It is called the infinitesimal torus of ZG.
Similarly, for a fixed ε ∈ E, the Lie algebra torε of analytic infinitesimal symmetries

of ZG,ε consists of Hamiltonian vector fields

torε = {ξε = aε(u1u2)
(
u1∂u1 − u2∂u2

) = aε(h)Xh : aε(h) analytic},

and is commutative. It is called the infinitesimal torus of ZG,ε .

The time-1 flow map of a vector field (31) is given by

u �→ Ta(u) := �1
a Xh

(u) =
(

ea(h,ε) 0
0 e−a(h,ε)

)
u. (32)

Definition 25 We define the exponential torus of ZG as the connected commutative
Lie group

Tor = exp tor = {Ta : a(h, ε) analytic}, (33)

and likewise, for a fixed ε ∈ E, the exponential torus of ZG,ε as the commutative Lie
group

Torε = exp torε = {Taε : aε(h) analytic}. (34)

Definition 26 A transversely symplectic fibered symmetry, or shortly symmetry,
of a family of vector fields ZG is a germ of analytic symplectic transformation
(u, x, ε) �→ (φ(u, x, ε), x, ε), such that φ∗ZG = ZG . Similarly, for a fixed ε ∈ E,
a symmetry of a vector field ZG,ε is a germ of analytic symplectic transformation
(u, x) �→ (φε(u, x), x), such that φ∗

ε ZG,ε = ZG,ε .

Proposition 27 The (transversely symplectic fibered) symmetries of ZG, resp. ZG,ε ,
are exactly the elements of the exponential torus Tor, resp. Torε .

This follows as an immediate corollary from Proposition 31 below. A charac-
terization of the Lie group of symmetries of a general system (1) will be given in
Proposition 34.
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Fig. 2 The intersection sectors
X∩

i,±(ε), i = 1, 2, for some fixed
value of ε. The two arrows
symbolize the Stokes operators
(40) which change the branch of
the transformation �± above the
intersection sectors

Definition 28 (Intersection sectors) For ε ∈ E± � {0} define the left and right inter-
section sectors

X∩
i,±(ε) = {x ∈ X±(ε) : xi,± + e2π i (x − xi,±) ∈ X±(ε)},

and for ε = 0 let X∩
i±(0) be their limits (see Fig. 2). They are the domains of

self-intersection of X±(ε) attached to the points xi,±(ε) (26). And they are simply
connected; in fact in the coordinate t (x, ε) = ∫ x

∞
λ(x,ε)
x(x−ε)

dx of Remark 14 each inter-
section sectors corresponds to an “infinite wedge”.

Definition 29 An isotropy of a vector field ZG,ε is a germ of transversely symplectic
transformation (u, x) �→ (φε(u, x), x), such that φ∗

ε ZG,ε = ZG,ε . We will consider
isotropies of ZG,ε which are analytic and bounded either on the domain U × X±(ε)

or on U × X∩
i,±(ε).

Lemma 30 Let φε(u, x) be a sectoral isotropy of the normal form vector field ZG,ε ,
analytic and bounded for x ∈ X∩

i,±(ε), u ∈ U. Then

ci ◦ φε = ci · eaε (h) + c2i gi,ε(h, ci ), and c j ◦ φε = c j · e−aε (h) + g j,ε(h, ci ),

for some analytic germs aε, gi,ε, g j,ε , subject to a transversal symplecticity condition
det Dc(c ◦ φε) ≡ 1.

Proof The isotropy φε(u, x) is analytic in u on some neighborhood of u = 0 and
bounded when x → xi,±(ε). In particular, the restriction of c ◦ φε to any fiber {x =
cst �= 0, ε} is analytic in u, and therefore the function c ◦φε(u(x, ε; c), x), which is a
function only of c, independent of x , is analytic in c on some neighborhood of c = 0.

We have ck = uk Eχ (h, x, ε)(−1)k
, k = 1, 2, (30), and

lim
x→xi,±
x∈X±(ε)

Eχ (h, x, ε)(−1)i = 0.

Writing φε = (φ1,ε, φ2,ε), its i-th component is given by

φi,ε = (ci ◦ φε) ·
(

E−(−1)i ◦ h ◦ φε

)
,
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and we see that the expansion of ci ◦φε in powers of c can contain only terms cni
i c

n j
j =

uni
i u

n j
j Eχ (h, x, ε)(−1)i (ni −n j ) with ni ≥ n j + 1, while the expansion of c j ◦ φε in

powers of c can contain only terms cni
i c

n j
j = uni

i u
n j
j Eχ (h, x, ε)(−1)i (ni −n j ) with ni ≥

n j − 1, i.e.

ci ◦ φε = ci · eai,ε (h) + c2i gi,ε(h, ci ), and c j ◦ φε = c j · ea j,ε (h) + g j,ε(h, ci ).

By transversal symplecticity 1 = det Duφε = det Dc(c ◦ φε). One can verify that the
last determinant is a function of (h, ci ) only; expressing it for ci = 0, we have

1 = eai,ε+a j,ε (1 + ha′
i,ε + ha′

j,ε) = d
dh

(
heai,ε+a j,ε

)
,

which implies that ai,ε + a j,ε = 0. 
�
Note that the hypersurface {ui = 0} = {ci = 0} consists of all leaves of ZG,ε that

are bounded when x → xi,±(ε) inside X±(ε), and therefore φε must preserve it.

Proposition 31 An isotropy of the normal form vector field ZG,ε that is bounded and
analytic on U × X±(ε) is an element of the exponential torus Torε (34).

Proof An isotropy φε(u, x) of the model system bounded and analytic on U×X±(ε)

is in particular bounded and analytic on U × X∩
i,±(ε), and therefore by Lemma 30, it

is such that

c ◦ φε = t
(c1eaε (h), c2e−aε (h)), i.e. φε(u, x) = t

(u1eaε (h), u2e−aε (h))

for some analytic germ aε . 
�
Corollary 32 The normalizing transformations �̂ and �± of Theorem 17 are unique
modulo right composition with elements of the exponential torus Tor. They are
uniquely determined by the analytic germ �̂(u, 0, ε) = �±(u, 0, ε).

Proof If �±, �± are two normalizing transformations for Z H , then φ±(u, ε) :=
�

◦(−1)
± ◦ �±(u, x, ε) is by Proposition 31 independent of x and such that φ±(·, ε) ∈

Torε . Hence φ±(u, ε) = �̂◦(−1)(·, 0, ε) ◦ �̂(u, 0, ε) which is analytic in ε ∈ E by
Theorem 17 (i). 
�

4.2 Canonical General Solutions

The model system has a canonical general solution u(x, ε; c) (19), depending on an
“initial condition” parameter c ∈ C

2, uniquely determined by a choice of a branch
of the function Eχ (h, x, ε) (20). Correspondingly, y = �±(u(x, ε; c), x, ε) is a germ
of general solution of the original system on Y × X±(ε). In order for this solution to
have a continuous limit when ε → 0, one has to split the domain X±(ε) in two parts,
corresponding to the two parts of X±(0), by making a cut in between the singular
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Fig. 3 The sectoral isotropies S1,± ◦ N , S2,± and Nx2,± as connecting transformations between the

canonical general solutions y
��
±(x, ε; ·) on X��

± and y ��
±(x, ε; ·) on X ��

± above the intersection sectors

points x1,±, x2,± along a trajectory of (23) through the mid-point ε
2 (see Fig. 3). Let

us denote X
��
±(ε) the upper and X ��

±(ε) the lower part (with respect to the oriented line
λ(0)(0) R) of the cut domain

X±(ε) = X
��
±(ε) ∪ X ��

±(ε).

The two parts of X±(ε) intersect in the left and right intersection sectors X∩
i,±(ε)

(Definition 28) attached to xi,±, i = 1, 2, and for ε �= 0 also in a central part along
the cut.3

Now take two branches E
��
χ (h, x, ε) and E ��

χ (h, x, ε) of Eχ (h, x, ε) on the two
parts of the domain, that agree on the right intersection sector X∩

2,±, and have a limit
when ε → 0. Correspondingly they determine a pair of general solutions of the model
system

u•(x, ε; c), • = ��
, ��,

3 Technically speaking, the domainsX±(ε) andX∩
i,±(ε) are defined on some Riemann surface as explained

in Remark 14, what we mean here is the intersection of the projection of X•±(ε), • = ��
, ��, to the x-plane.
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and a pair of canonical general solutions of the original system

y•±(x, ε; c) := �±(u•(x, ε; c), x, ε), • = ��
, ��. (35)

Since the transformation �± is unique only modulo right composition with an expo-
nential torus action Ta(u, ε) (32), which acts on u•(x, ε; c) as

Ta(·, ε) ◦ u•(x, ε; c) = u•(x, ε; ·) ◦ Ta(c, ε),

the solutions y•± are determined only up to the same right action of Ta(c, ε).

4.3 Formal Monodromy

The formal monodromy operators are induced by monodromy acting on the solutions
u•(x, ε; c), • = ��

, ��, of the model system. For ε �= 0 the induced action of formal
monodromies along simple counterclockwise loops around each singular point xi,± =
0, ε on the 3 foliations is given by:

• Monodromy operators of the model system, defined by

Nxi,±(·, x, ε) ◦ u(x, ε; c) = u(e2π i (x − xi,±) + xi,±, ε; c), x ∈ X±(ε), (36)

whose action on the foliation of the normal form vector field ZG,ε is given by

N0 : u �→ exp

(
− 2π i χ0(h,ε)

ε

(
1 0
0 − 1

))
· u = T− 2π i

ε
χ�x=0

(u),

Nε : u �→ exp

(
2π i

[
χ0(h,ε)

ε
+ χ(1)(h, ε)

](1 0
0 − 1

))
· u = T2π i

ε
χ�x=ε

(u).

(37)
They belong to the exponential torus Tor. The outer monodromy of the model
system, that is the monodromy around both x1,±, x2,±, is given by

N = N0 ◦ Nε = Nε ◦ N0 : u �→ exp

(
2π iχ(1)(u1u2, ε)

(
1 0
0 − 1

))
· u.

• Formal monodromy operators

Nxi,±(·, ε) ◦ c(u, x, ε) = c(·, x, ε) ◦ Ni,±(u, x, ε),

acting on the space of initial conditions c commutatively by

N0 : c �→ exp

(
− 2π i χ0(h,ε)

ε

(
1 0
0 − 1

))
· c = T− 2π i

ε
χ�x=0

(c),

Nε : c �→ exp

(
2π i

[
χ0(h,ε)

ε
+ χ(1)(h, ε)

](1 0
0 − 1

))
· c = T2π i

ε
χ�x=ε

(c),

(38)
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and a formal outer monodromy

N = N0 ◦ Nε = Nε ◦ N0 : c �→ exp

(
2π iχ(1)(h, ε)

(
1 0
0 − 1

))
· c.

• Formal monodromy operatorsNi,±(y, x, ε) acting on the foliation of the original
vector field Z H,ε :

Ni,±(·, x, ε) ◦ �±(u, x, ε) = �±(·, x, ε) ◦ Ni,±(u, x, ε), x ∈ X±(ε), (39)

and

N±(·, x, ε) = N1,±(·, x, ε) ◦ N2,±(·, x, ε) = N2,±(·, x, ε) ◦ N1,±(·, x, ε).

The canonical solutions u
��
±, u ��

± of the model system on the domains X
��
±, X

��
±, are

defined such that they agree on the right intersection sector X∩
2,±. Therefore on the left

intersection sector they are connected by the formal outer monodromy operator

u
��
±(x, ε; c) = N (·, x, ε) ◦ u ��

±(x, ε; c) = u ��
±(x, ε; ·) ◦ N (c, ε), x ∈ X∩

1,±,

and by the formal monodromy Nxi,± on the central cut between the two domains for
ε �= 0 (cf. Fig. 3).

4.4 Stokes Operators and Sectoral Isotropies

Let y = �±(u, x, ε) be the normalizing transformation on X±(ε). We call Stokes
operators the operators that change the determination of the branch of �± over the
left or right intersection sectors (see Fig. 2). If x ∈ X∩

i,±(ε), then for ε �= 0 we denote

x̄ = e2π i (x − xi,±) + xi,±

the corresponding point in X±(ε) on the other sheet, and extend this notation by limit
to ε = 0. Namely,

if x ∈ X∩
1,±(ε) ⊂ X ��

±(ε), then x̄ ∈ X
��
±(ε),

if x ∈ X∩
2,±(ε) ⊂ X

��
±(ε), then x̄ ∈ X ��

±(ε).

Then the Stokes operators are the operators

�±(u, x, ε) �→ �±(u, x̄, ε), x ∈ X∩
i,±(ε), (40)

which for ε = 0 are the Stokes operators in the usual sense that send the Borel sum
of the formal x-series �̂(u, x, 0) in one non-singular direction to the Borel sum in a
following non-singular direction.

To each of these Stokes operatorswe associate sectoral isotropies of the 3 foliations.
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• Sectoral isotropies Si,±(u, x, ε) of the normal form vector field ZG,ε :

�±(·, x, ε) ◦ Si,±(u, x, ε) = �±(u, x̄, ε), x ∈ X∩
i,±(ε). (41)

The pair (S1,±,S2,±) is an analog of theMartinet–Ramis invariant of saddle-node
singularity [17,25].

• Sectoral isotropies S1,±(c, ε) and S2,±(c, ε) of the rectified vector field Z0,ε =
x(x − ε)∂x in the c-space:

u ��
(x, ε; ·) ◦ S1,±(c, ε) = S1,±(·, x, ε) ◦ u ��

(x, ε; c), x ∈ X∩
1,±(ε),

u
��
(x, ε; ·) ◦ S2,±(c, ε) = S2,±(·, x, ε) ◦ u

��
(x, ε; c), x ∈ X∩

2,±(ε).
(42)

• Sectoral isotropies Si,±(y, x, ε) of the original vector field Z H,ε :

Si,±(·, x, ε) ◦ �±(u, x, ε) = �±(u, x̄, ε), x ∈ X∩
i,±(ε). (43)

Proposition 33 (Form of the Stokes isotropies) Let Si,±(c, ε) = t(S1,i,±(c, ε), S2,i,±
(c, ε)) be a Stokes sectoral isotropy (42). Then

• Si,i,±(c, ε) = ci + c2i · σi,i,±(h, ci , ε) for an analytic germ σi,i,±,
• S j,i,±(c, ε) = c j + σ j,i,±(h, ci , ε) for an analytic germ σ j,i,±, j = 3 − i ,

subject to a condition det Dc(Si,±) = 1.

The term σ j,i,±(0, 0, ε) is responsible for the ramification of the ramified center
manifold y = �±(0, x, ε) of the original vector field Zε at the sector X∩

i,±(ε).

Proof The isotropySi,± = (S1,i,±,S2,i,±) is analytic in u on some neighborhood of
u = 0 and bounded in x with limx→xi,± Sk,i,±(u, x, ε) = uk , k = 1, 2. By Lemma 30
Sk,i,± ◦ c = ck ◦ Si,± is of the form

ci ◦ Si,± = ci · eai,±(h,ε) + c2i σi,i,±(h, ci , ε), and

c j ◦ Si,± = c j · e−ai,±(h,ε) + σ j,i,±(h, ci , ε)

for some some germs ai,±, σi,i,±, σ j,i,±. We want to show that ai,± = 0.
Writing tautologically

Sk,i,± = (
ck ◦ Si,±

) ·
(

E−(−1)k ◦ h ◦ Si,±
)

,

and knowing that limx→xi,± h ◦Si,±(u, x, ε) = h, we have h ◦Si,± = h + ci · (. . .)
where (. . .) is an analytic function of (h, ci , ε), hence limx→xi,± E−1

χ ·(Eχ ◦h◦Si,±) =
1, and therefore limx→xi,±

(
ck ◦ Si,±

) · E−(−1)k = uk , from which we conclude that
ai,± = 0. 
�
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4.5 Symmetry Group of the System

The following proposition describes the group of analytic symmetries of the original
vector field Z H , resp. Z H,ε , where the Stokes operators provide an obstruction for
analyticity. It is a direct analogue of similar theorems for e.g. saddle-node singularities
[25, Proposition 10.6] or for irregular singularities of linear systems [10, Lemma 6.2].

Proposition 34 The group of (analytic transversely symplectic fibered) symmetries of
the original vector field Z H , resp. its restriction Z H,ε to a fixed ε, is either

(1) isomorphic to the exponential torus Tor, resp. Torε: this happens if and only if
the system is analytically equivalent to the model (16), or

(2) isomorphic to a finite cyclic group.

If the symmetry group is non-trivial, then the system has an analytic center manifold
(bounded analytic solution on a neighborhood of both singular points).

Proof If �(y, x, ε) is a symmetry of the system (1), then �(·, x, ε) ◦ �±(u, x, ε) =
�±(·, x, ε) ◦ φ(u, ε) for some germ

φ : u �→
(

ea(h,ε)

e−a(h,ε)

)
,

from the exponential torus, and the analyticity of � means that this φ must commute
with the Stokes operators Si,± (42) (note that φ acts the same way on c as on u). Using
their characterization in Proposition 33, this means that

σi1,±(h, c1) = eaσi1,±(h, eac1), σi2,±(h, c2) = e−aσi2,±(h, e−ac2), i = 1, 2.

This can be satisfied only if

• either σi j,±(h, c j ) = 0 for all i, j , i.e. if S1,± = id, S2,± = id and the system is
analytically equivalent to its formal normal form,

• or there is k ∈ N such that c jσi j,±(h, c j ) = 0 contains only powers of ck
j for all

i, j , and eka = 1, i.e. a ∈ 2π i
k Z.


�

4.6 Analytic Classification

Definition 35 (Analytic invariants) The collection (χ, {S1,+,S2,+,S1,−,S2,−})
is called an analytic invariant of a system (1). Two analytic invariants (χ, {Si,±}),
(χ̃, {S̃i,±}) are equivalent if
• either χ = χ̃ and there is an element φ(u, ε) ∈ Tor of the exponential torus such
that: Si,± = φ ◦ S̃i,± ◦ φ◦(−1), i = 1, 2,

• or χ(h, x, ε) = −χ̃ (−h, x, ε) and there is an element φ(u, ε) ∈ Tor of the
exponential torus such that: Si,± = Jφ ◦ S̃ j,∓ ◦ (Jφ)◦(−1), i = 1, 2, j =
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3 − i, where J : (u1, u2) �→ (u2,−u1). Note that the definition of E±, X± and
xi,± depends on λ(x, ε) = χ(0, x, ε), therefore the relation λ̃ = −λ entails the
renaming

Ẽ± = E∓, X̃•± = X•∓, x̃i,± = x j,∓.

By the construction, an analytic invariant of a system (1) is uniquely defined up to
the equivalence.

Theorem 36 (Analytic classification) Two systems (1) are analytically equivalent (in
the sense of Definition 2) if and only if their analytic invariants are equivalent.

Proof If y = �(ỹ, x, ε) is analytic transformation from one system to another, then
the sectoral normalizations y = �±(u, x, ε) and ỹ = �̃±(u, x, ε) = � ◦ �± provide
the same analytic invariant. Conversely, if the analytic invariants are equivalent, then
up to modifying one of the normalizing transformation, one can suppose that they are
in fact equal, in which case �± = �̃± ◦ �

◦(−1)
± are analytic transformations between

the systems onE+ andE−. In fact�+ = �− is analytic on the whole ε-neighborhood
E. Indeed, the composition �+ ◦ �◦−1− is a symmetry of the second system on the
intersection E+ ∩ E−, and as such it is determined by its value at x = 0; but since
by Theorem 17 (i) �̃+(u, 0, ε) = �̃−(u, 0, ε) and �+(u, 0, ε) = �−(u, 0, ε) are
analytic in ε (29), this means that �+ ◦ �◦−1− = id. 
�
Example 37 In the case of linear systems (14), the Stokes operators Si,± are given by
two unipotent matrices

S1,± : c �→
(

1 0
s1,±(ε) 1

)
c, S2,± : c �→

(
1 s2,±(ε)

0 1

)
c.

In this particular case, the conjugacy class of the outer monodromy M = S2,±S1,±N
is given by det M = 1, trM = 2 cos(2πλ(1)) + e2π iλ(1)s1,±s2,±, and therefore it
determines completely, togetherwith the formal invariantλ(x, ε), the analytic invariant
of the system.

4.7 Decomposition of Monodromy Operators

For ε �= 0, let x0 ∈ X±(ε)�{0, ε} be a base-point, and let two counterclockwise simple
loops around the singular points xi,±, i = 1, 2, be as in Fig. 4. Correspondingly, we
have two monodromy operators Mxi,± acting on the foliation by the solutions of the
original system (1) by analytic continuation along the loops. Since the monodromy
operators Mxi,± act on the foliation, they are independent of the choice of the two-
parameter general solution on which they act on the left (a different general solution
is related to it by a change of c independent of x , i.e. by right action on the general
solution). In particular

Mx1,+ = Mx2,− , Mx2,+ = Mx1,− .
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Fig. 4 Simple loops along
which the monodromy operators
M0 andMε are defined

Theorem 38 For ε �= 0, the monodromy operators Mxi,± of the original foliation
are well defined on some open neighborhood of the ramified center manifold y =
�±(0, x, ε) in Y × X±(ε). Their (left) action is given by

Mxi,± = Si,± ◦ Ni,±, (44)

where Si,± are the Stokes operators (43) and Ni,± are the formal monodromy oper-
ators (39). Hence

M0 = S1,+ ◦ N1,+ = S2,− ◦ N2,−,

Mε = S2,+ ◦ N2,+ = S1,− ◦ N1,−.

Their right action on analytic extension of the canonical general solutions y•± (35) to
the whole X±(ε) is given by

Mxi,±(y•±(x, ε; c), x, ε) = y•±(x, ε; ·) ◦ M•
i,±(c, ε), • = ��

, ��,

where
M

��
1,± = N ◦(−1)

x2,± ◦ S1,± ◦ N , M ��
1,± = S1,± ◦ Nx1,± ,

M
��
2,± = S2,± ◦ Nx2,± , M ��

2,± = Nx2,± ◦ S2,±,
(45)

cf. Fig. 3.

Proof of Theorem 38 The demonstration of the given formulas is straightforward, but
we include it here for the sake of completeness. Let x̄ := xi,± + e2π i (x − xi,±), then

Mxi,±(·, x, ε) ◦ y±(x, ε; c) = y±(x̄, ε; c) = �±(·, x̄, ε) ◦ u(x̄, ε; c)

= (
Si,± ◦ �±

)
(·, x, ε) ◦ u(x̄, ε; c)

= (
Si,± ◦ �± ◦ Ni,±

)
(·, x, ε) ◦ u(x, ε; c)

= (
Si,± ◦ Ni,± ◦ �±

)
(·, x, ε) ◦ u(x, ε; c)

= (
Si,± ◦ Ni,± ◦ y±

)
(x, ε; c),

using (36), (39), (43). Similarly, to calculate M
��
1,± for example,

y
��
±(x̄, ε; c) = �±(·, x̄, ε) ◦ u

��
(x̄, ε; c)

= �±(·, x̄, ε) ◦ u ��
(x̄, ε; ·) ◦ Nx2,±(c, ε)

= �±(·, x̄, ε) ◦ u ��
(x, ε; ·) ◦ Nx1,± ◦ Nx2,±(c, ε)



Stokes Phenomenon and Confluence in Non-autonomous... 689

= �±(·, x, ε) ◦ u ��
(x, ε; ·) ◦ S1,± ◦ Nx1,± ◦ Nx2,±(c, ε)

= �±(·, x, ε) ◦ u
��
(x, ε; ·) ◦ N ◦(−1)

x2,± ◦ S1,± ◦ Nx1,± ◦ Nx2,±(c, ε)

= y
��
±(x, ε; ·) ◦ N ◦(−1)

x2,± ◦ S1,± ◦ N (c, ε),

see Fig. 3. The general solutions y
��
±, y ��

± are related by

y
��
±(x, ε; c) = y ��

±(x, ε; ·) ◦ Nx2,±(c, ε).


�
Note that in general, a composition of the two monodromies may not be defined if

the image of the first does not intersect the domain of definition the second. This is
due to the ramification of the center manifold.

4.8 Accumulation of Monodromy

Definition 39 (Monodromy pseudogroup)

(1) For ε �= 0, the pseudogroup generated by the monodromy operators

〈M0(·, x, ε), Mε(·, x, ε)〉

is called the (local) monodromy pseudogroup. The pseudogroup generated by the
corresponding action on the initial condition c

〈M•
1,±(·, ε), M•

2,±(·, ε)〉

is its representation with respect to the general solution y•±(x, ε; c).
(2) For ε = 0, the pseudogroup generated by the Stokes operators and by the elements

of the exponential torus (pushed-forward by the sectoral transformations �•):

〈S1,±(·, x, 0), S2,±(·, x, 0), {T•
a(·, x, 0)}a〉,

where T•
a(·, x, 0) = �•±(·, x, 0)∗Ta = �1

(�•±)∗(a(h)Xh)
, is called the (local)

wild monodromy pseudogroup. The pseudogroup generated by the corresponding
action on the initial condition c

〈S1,±(·, 0), S2,±(·, 0), {Ta(·)}a〉, (46)

is its representation with respect to the formal transseries solution ŷ(x, 0; c) =
�̂(u(x, 0; c), x, 0).

Note that the pseudogroup (46) is independent of the freedom of choice of the sectoral
normalizations �•± of Theorem 16.
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One of the main goals of this paper is to understand the relation between the
monodromy pseudogroup for ε �= 0 and the wild monodromy pseudogroup for ε = 0.

Suppose that the formal invariant χ(h, x, ε) is such that

χ(h, x, 0) = λ(0)(0) + xχ(1)(h, 0), (47)

and therefore

χ(h, x, ε) = λ(0)(0) + ε
∂χ(0)

∂ε
(h, 0) + xχ(1)(h, 0) + O(xε) + O(ε2).

Let {εn}n∈±N be sequence in E± � {0} defined by

λ(0)(0)
εn

= λ(0)(0)
ε0

+ n, ε0 ∈ E± � {0} (48)

along which the exponential factor e
2π iλ(0)

ε in the formal monodromy (38) stays con-
stant, and denote

κ := e
2π iλ(0)

ε0 . (49)

Then the formalmonodromyoperatorsN0(u, x, ε),Nε(u, x, ε), resp. N0(u, x, ε), Nε

(u, x, ε), converge along each such sequence to a symmetry of the model system
(element of the exponential torus)

Ñ0(κ; u, x) := lim
n→±∞N0(u, x, εn) : c �→

⎛
⎝κ−1e−2π i ∂χ(0)

∂ε
(h,0) 0

0 κe2π i ∂χ(0)

∂ε
(h,0)

⎞
⎠ c,

Ñε(κ; u, x)

:= lim
n→±∞Nε(u, x, εn) : c �→

⎛
⎝κe2π i[ ∂χ(0)

∂ε
(h,0)+χ(1)(h,0)] 0

0 κ−1e−2π i[ ∂χ(0)

∂ε
(h,0)+χ(1)(h,0)]

⎞
⎠ c, (50)

κ ∈ C
∗. This implies that also the monodromy operators M ·

i,±(c, ε), resp.
Mxi,±(y, x, ε), converge along such sequences {εn}n∈±N ⊂ E± � {0}. Denote

Ñ•
i,±(κ; y, x) := lim

n→±∞Ni,±(y, x, εn), x ∈ X•±, • = ��
, ��.

Theorem 40 Suppose that the formal invariant of the form (47). Then the monodromy
operators of the system (1) for ε �= 0 accumulate along the sequences {εn}n∈±N (48)
to a 1-parameter family of wild monodromy operators



Stokes Phenomenon and Confluence in Non-autonomous... 691

M̃1,±(κ; y, x) := lim
n→±∞Mx1,±(y, x, εn)

= S1,±(·, x, 0) ◦ Ñ ��
x1,±(κ; y, x), x ∈ X∩

1,±(0),

M̃2,±(κ; y, x) := lim
n→±∞Mx2,±(y, x, εn)

= S2,±(·, x, 0) ◦ Ñ
��
x2,±(κ; y, x), x ∈ X∩

2,±(0).

In particular, if we replace κ by e
− 2π i

[
∂χ(0)

∂ε
(h,0)+δi,±(0)χ(1)(h,0)

]
, δi,±(ε) = xi,±(ε)

ε
, so

that Ñ•
xi,±(κ; y, x) becomes an identity, we obtain the Stokes operators

Si,±(y, x, 0) = M̃i,±(e
− 2π i

[
∂χ(0)

∂ε
(h,0)+δi,±(0)χ(1)(h,0)

]
; y, x). (51)

The vector field corresponding to the differential system

ẏ = ±(−1)i
(
κ ∂

∂κ
M̃i,±(κ; y, x)◦(−1)

)
◦ M̃i,±(κ; y, x) (52)

equals to the push-forward �•±(·, x, 0)∗ (Xh) of the vector field Xh = u1∂u1 − u2∂u2 ,
where • = ��if i = 1 and • = �� if i = 2, which “generates” the commutative Lie
algebra of bounded infinitesimal symmetries on the sector X•(0).

Conclusion. The knowledge of the limits M̃i,±(κ; y, x), κ ∈ C
∗, allows to

recover the infinitesimal symmetry �•±(·, x, 0)∗ (Xh) (52), and hence its Hamilto-
nian, the bounded first integral �•±(·, x, 0)∗(h) which vanishes at the singular points
(y0(xi,±, ε), xi,±), and therefore, knowing the formal invariant χ , also the formal
monodromy operators Ñ•

x1,±(κ; y, x), and finally the Stokes isotropiesSi,±(y, x, 0).

Remark 41 In the case when the assumption (47) is not met, one can nevertheless get
a similar “accumulation” result by replacing in (48) λ(0)(0) by χ(0)(h, 0) and defining

κ(h) = e
2π iχ(0)(h,0)

ε0(h) (49). In fact, one can interpret the limit M̃i,± of Mxi ,± along
the special sequence {εn(h)}n∈±N as being obtained by replacing the divergent term

e
2π iχ(0)(h,0)

ε in an expression of Mxi ,± by a new function κ(h) and taking the limit
ε → 0 of all the other terms bounded in ε.

5 Confluence in 2×2 Traceless Linear Systems and Their Differential
Galois Group

To illustrate the matter of the previous section, let us consider a confluence of two
regular singular points to a non-resonant irregular singular point in a family of linear
systems

x(x − ε)
dy

dx
= A(x, ε)y, y ∈ C

2, (53)
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where A is a 2×2 traceless complex matrix depending analytically on (x, ε) ∈ (C×
C, 0), such that A(0, 0) �= 0 has two distinct eigenvalues ±λ(0)(0).

The Theorem 17 in this case can be found in the thesis of Parise [22] and in the
work of Lambert and Rousseau [15] (see also [10]). It provides us with a canonical
fundamental solution matrices

Y •±(x, ε) = �±(x, ε) · U •±(x, ε), • = ��
, ��, (54)

where the transformation matrix �±(x, ε) is bounded on XE±, and

U •±(x, ε) =
(

E•
λ(x, ε) 0
0 E•

λ(x, ε)−1

)
, (55)

is a solution to the diagonal model system

x(x − ε)
dy

dx
=
(

λ(x, ε)

− λ(x, ε)

)
y.

The solution basis Y •±(x, ε) is also called amixed basis: the first (resp. second) column
spans the subspace of solutions that asymptotically vanish when x → x1,±(ε) (resp.
when x → x2,±(ε)), and it is an eigensolution with respect to the corresponding

monodromy operator Mx1,± (resp. Mx2,± ) associated to its eigenvalue e±2π i
λ(x1,±,ε)

ε

(resp. e±2π i
λ(x2,±,ε)

ε ). A general solution is a linear combination

y•±(x, ε; c) = Y •±(x, ε) · c, • = ��
, ��.

Let K be the field of meromorphic functions of the variable x on a fixed small
neighborhood of 0, equipped with the differentiation d

dx . For a fixed small ε, the local
differential Galois group (also called the Picard–Vessiot group) of the system (53) is
the group of (K, d

dx )-automorphisms of the differential field K〈Y (·, ε)〉, generated by
the components of any fundamental matrix solution Y (x, ε). The differential Galois
group acts on the foliation associated to the system by left multiplication of solutions
of the system. Fixing a fundamental solution matrix Y = Y •±, then each automorphism
is represented by a right multiplication of Y •± by a constant invertible matrix, hence the
differential Galois group is represented by an (algebraic) subgroup of SL2(C) acting
on the right.

It is well known [19,29] that the differential Galois group is the Zariski closure of

ε �= 0: the monodromy group generated by the two monodromy operators around the
singular points 0 and ε,
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ε = 0: the wild monodromy group 4 generated by the Stokes operators and the linear
exponential torus 5 which acts on the fundamental solutions Y •± as

T•
a : Y •±(x, 0) �→ Y •±(x, 0) · Ta, where Ta =

(
ea

e−a

)
, a ∈ C. (56)

The question is how are these two different descriptions related?

The monodromy matrices of Y
��
± , Y ��

± , around the points x1,±(ε), x2,±(ε), ε ∈
E± � {0}, are given respectively by

M
��
1,± = N (−1)

x2,± S1,±N , M
��
2,± = S2,±Nx2,±

M ��
1,± = S1,±Nx1,± , M ��

2,± = Nx2,± S2,±,

where Si,± are of the form

S1,± =
(

1 0
s1,± 1

)
, S2,± =

(
1 s2,±
0 1

)
.

In particular M•
1,± is lower-triangular and M•

2,± is upper-triangular.

When ε → 0 along a sequence6 1
εn

= 1
ε0

+ n
λ(0) , n ∈ ±N, ε0 ∈ E± � {0}, these

monodromy converge respectively to M̃•
i,±(κ) = limn→±∞ M•

i,±(εn) given by

M̃
��
1,+(κ) = Ñε(κ)−1S1(0)N (0), M̃ ��

1,+(κ) = S1(0)Ñ0(κ),

M̃
��
2,+(κ) = S2(0)Ñε(κ), M̃ ��

2,+(κ) = Ñε(κ)S2(0),

M̃
��
1,−(κ) = Ñ0(κ)−1S1(0)N (0), M̃ ��

1,−(κ) = S1(0)Ñε(κ),

M̃
��
2,−(κ) = S2(0)Ñ0(κ), M̃ ��

2,−(κ) = Ñ0(κ)S2(0),

with

Ñ0(κ) =
(

κ−1

κ

)
T−2π i dλ(0)

dε
(0)

, Ñε(κ) =
(

κ

κ−1

)
T
2π i[ dλ(0)

dε
(0)+λ(1)(0)],

N (0) = T2π iλ(1)(0).

We call them wild monodromy matrices. Their family

{M̃•
1,±(κ), M̃•

2,±(κ) | κ ∈ C
∗}

4 The name “wild monodromy” is borrowed from [19].
5 For general linear systems one would need to add also the formal outer monodromy N (0) = T2π iλ(1)(0),
which in our case already belongs to the exponential torus.
6 The idea of taking limits of monodromy along such sequences can be found in the works of Ramis [23]
or Duval [7].
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generates the same group, the representation of thewild monodromy groupwith respect
to the formal solution Ŷ (x, ε), as does the collection of the Stokes matrices and the
linear exponential torus

{S1(0), S2(0)} ∪ {Ta | a ∈ C}.
Hence we have the following theorem, whose general idea was suggested by Ramis
[23]:

Theorem 42 When ε → 0 the elements of the monodromy group of the system (53)
accumulate to generators of the wild monodromy group of the limit system.

6 Confluent Degeneration of the Sixth Painlevé Equation to the Fifth

The sixth Painlevé equation is

PV I : q ′′ = 1

2

(
1

q
+ 1

q − 1
+ 1

q − t

)
(q ′)2 −

(
1

t
+ 1

t − 1
+ 1

q − t

)
q ′

+ q(q − 1)(q − t)

2 t2(t − 1)2

[
(ϑ∞−1)2 − ϑ2

0
t

q2 + ϑ2
1

(t − 1)

(q − 1)2

+ (1−ϑ2
t )

t (t − 1)

(q − t)2

]
,

where ϑ = (ϑ0, ϑt , ϑ1, ϑ∞) ∈ C
4 are complex constants. It is a reduction to the

q-variable of a time dependent Hamiltonian system [21]

dq

dt
= ∂ HV I (q, p, t)

∂p
,

dp

dt
= −∂ HV I (q, p, t)

∂q
, (57)

with a polynomial Hamiltonian function

HV I = 1
t (t−1)

[
q(q − 1)(q − t)p2

− (ϑ0(q − 1)(q − t) + ϑ1q(q − t) + (ϑt − 1)q(q − 1)) p

+ (ϑ0+ϑ1+ϑt −1)2−ϑ2∞
4 (q − t)

]
.

It has three simple (regular) singular points on the Riemann sphereCP
1 at t = 0, 1,∞.

The fifth Painlevé equation PV
7

PV : q ′′ =
(

1

2q
+ 1

q−1

)
(q ′)2 − 1

t̃
q ′ + (q−1)2

2t̃2

(
(ϑ∞− 1)2q − ϑ2

0

q

)

7 The Eq. (6) is the fifth equation of Painlevé with a parameter η1 = −1. A general form of this equation

would be obtained by a further change of variable t̃ �→ −η1 t̃ . The degenerate case Pdeg
V with η1 = 0 which

has only a regular singular point at ∞ is not considered here.
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+ (1 + ϑ̃1)
q

t̃
− q(q+1)

2(q−1)
,

is obtained from PV I as a limit ε → 0 after the change of the independent variable

t = 1 + ε t̃, ϑt = 1

ε
, ϑ1 = −1

ε
+ ϑ̃1 + 1, (58)

which sends the three singularities to t̃ = − 1
ε
, 0,∞. At the limit, the two simple

singular points − 1
ε
and ∞ merge into a double (irregular) singularity at the infinity.

The change of variables (58), changes the function ε · HV I to

HV I,ε = 1
t̃(1+ε t̃)

[
q(q − 1)(q − 1 − ε t̃)p2

−
(
ϑ0(q − 1)(q − 1 − ε t̃) + ϑ̃1q(q − 1 − ε t̃) + t̃q − ε t̃q

)
p

+ (ϑ0+ϑ̃1)
2−ϑ2∞

4 (q − 1 − ε t̃)
]
,

and the Hamiltonian system to

dq

dt̃
= ∂ HV I,ε(q, p, t̃)

∂p
,

dp

dt̃
= −∂ HV I,ε(q, p, t̃)

∂q
,

whose limit ε → 0 is a Hamiltonian system of PV . In the coordinate x = 1
t̃

+ ε, the
above system is written as

x(x − ε)
dq

dx
= ∂ H(q, p, x, ε)

∂p
, x(x − ε)

dp

dx
= −∂ H(q, p, x, ε)

∂q
, (59)

with

H(q, p, x, ε) = − (1 + ε t̃)HV I,ε(q, p, t̃)

= − (ϑ0+ϑ̃1)
2−ϑ2∞

4 ((x − ε)q − x)

+ xϑ0 p + (
1 − ε − (x − ε)ϑ0 − x(ϑ0 + ϑ̃1)

)
qp

+ (2x − ε)(qp)2 + (x − ε)(ϑ0 + ϑ̃1)q
2 p − xqp2 − (x − ε)q3 p2,

and Theorem 17 can be applied.

Theorem 43 The formal invariant χ of the system (59) is

χ(h, x, ε) = 1 − ε − (x − ε)ϑ0 − x(ϑ0 + ϑ̃1) + 2(2x − ε)h. (60)

Proof Let

q̃ = q − x A, A = ϑ0

1+ε(1+ϑ0+ϑ̃1)
,
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p̃ = p + (x − ε)B, B = (ϑ0+ϑ̃1)
2−ϑ2∞

4(1+ε(1−ϑ0))
,

and let

H̃(q̃, p̃, x, ε) = H(q, p, x, ε) − (ϑ0+ϑ̃1)
2+ϑ2∞

4t x .

Then for ε �= 0,

H̃(q̃, p̃, ε, ε) = (
1 − ε(1 + ϑ0 + ϑ̃1)

)
q̃ p̃ + ε(q̃ + ε A)2 p̃2 − ε(q̃ + ε A) p̃2,

hence by Proposition 9 the Birkhoff–Siegel invariant of H(q, p, ε, ε) is

G(h, ε, ε) = (
1 − ε(1 + ϑ0 + ϑ̃1)

)
h + εh2,

and

H̃(q̃, p̃, 0, ε) = (
1 − ε(1 − ϑ0)

)
q̃ p̃ − εq̃2( p̃ + εB)2 − ε(ϑ0 + ϑ̃1)q̃

2( p̃ + εB)

+ εq̃3( p̃ + εB)2,

hence by Proposition 9 the Birkhoff–Siegel invariant of H(q, p, 0, ε) is

G(h, 0, ε) = (
1 − ε(1 − ϑ0)

)
h − εh2,

i.e.

G(h, x, ε) = (
1 − ε − (x − ε)ϑ0 − x(ϑ0 + ϑ̃1)

)
h + (2x − ε)h2.


�
The Theorem 16 for the limit system ε = 0 is in this case due to Takano [30], see

also [27,35]. A separate paper [14] will be devoted to a more detailed study of the
confluence PV I → PV and of the non-linear Stokes phenomenon in PV through the
Riemann-Hilbert correspondence.

7 Proof of Theorem 17 and of Proposition 9

The proof of Theorem 17 is loosely based on the ideas of Siegel’s proof of Theo-
rem 4 [28, chaps. 16 and 17], using similar tools as [4]. We construct the normalizing
transformation y = �±(u, x, ε) in a couple of steps as a formal power series in the
u-variable with coefficients depending analytically on (x, ε) ∈ XE±, and then show
that the series is convergent. The main tool to prove the convergence is the Lemma 44
below for series with coefficients in a Banach algebra.

Let (B, ‖ · ‖) be a Banach algebra, and let

φ(u) =
∑

|m|≥2

φmum, m = (m1, m2), um = um1
1 um2

2 , |m| = m1 + m2,
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be a formal power series in the u-variable with coefficients φm ∈ B, and denote

φ(u) =
∑

|m|≥2

‖φm‖um

its majorant power series. We will use the notation

{φ}m := φm,

and

φ(u) ≺ ψ(u) if ‖{φ}m‖ ≤ ‖{ψ}m‖ for all m.

Lemma 44 Let (B, ‖ · ‖) be a Banach algebra, let φ = t(φ1, φ2) = O(u2) be a
formal power series in u with coefficients in B2, and let r = t(r1, r2) = O(u2) be a
power series in u with coefficients in B2 convergent w.r.t. the norm ‖ · ‖. If

φ j (u) ≺ r j (u + φ(u)), j = 1, 2,

where φ = t
(φ1, φ2), then φ is convergent w.r.t. the norm ‖ · ‖.

Proof See [24, Theorem 2.2]—the generalization to Banach algebra setting comes
for free with no change in the proof. This lemma can also be implicitly found in [20,
p.520] and in [28, chap. 17] as the technique used in Siegel’s proof of Theorem 4. 
�

Wewill introduce twoBanach algebras: (i) an algebraB(XE±) of bounded analytic
functions on the domain XE±, and (ii) an algebra B̂(�0±) of certain Borel summable
formal power series in (x, ε), with the goal to construct the sectoral normalizing
transformation �±(u, x, ε), resp. the formal normalizing transformation �̂(u, x, ε),
of Theorem 17 as a convergent power series of u in the algebraB(XE±), resp. B̂(�0±).

Banach algebra of bounded analytic functions B(XE±). We denote B(XE±) the
space of all such functions f : XE± → C that are bounded and uniformly continuous
on the ramified domain XE± (25) and analytic on its interior. The space B(XE±)

endowed with the supremum norm

‖ f ‖ := sup
(x,ε)∈XE±

| f (x, ε)|

clearly forms a Banach algebra.
Banach algebra of Borel (1,1)-summable formal power series B̂(�0±). Next we

introduce a type of Borel summation procedure for certain formal series of (x, ε)

following [2], and provide a suitable norm which makes the space of them into a
Banach algebra. While the construction is a bit technical, the details of it won’t be
needed beyond this section.

For θ ∈ ]− π
2 , π

2 [ let us denote

Bθ := {σ ∈ C : �( eiθ

σ

) ≥ cos θ} ∪ {0} (61)
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the closed disc with center on eiθ
R

+ and the points 0 and 1 on its circumference.
Let r > 0 be a small constant which will appear in Theorem 47 below. We will

consider formal power series

f̂ (x, ε) =
∑

k,l≥0

f (k,l)xkεl , such that sup
k,l≥0

| f (k,l)| rk+l

(k+l)! < +∞,

i.e. such that the transformed series

f̃ (x, ε) :=
∑
k,l

f (k,l)

(k+l)! x
kεl ,

converges on the polydisc Dr = {|x |, |ε| < r}. Supposing that f̃ extends analytically
on a ray (x0, ε0) · R

+ for some (x0, ε0) and has at most exponential growth there:∫ +∞
0 | f̃ (sx0, sε0)|e−�(x0,ε0)sds < +∞ for some �(x0, ε0) > 0, then the following
Laplace transform of f̃ :

L0[ f̃ ](x, ε) :=
∫ +∞

0
f̃ (sx, sε) e−s ds, (62)

is convergent on the segment (x, ε) ∈ (x0, ε0) · [0,�(x0, ε0)]. The function (62)
extends analytically as a bounded function to the “Borel disc” (x0, ε0) · �(x0, ε0)B0,
by

Lθ [ f̃ ](x, ε) :=
∫ +∞eiθ

0
f̃ (sx, sε) e−s ds,

where θ ∈ ]− π
2 , π

2 [ depending on (x, ε) is such that (x, ε) · eiθ ∈ (x0, ε0)R+. The
function (62) is called the Borel (1,1)-sum of f̂ (x, ε) in the direction (x0, ε0) [2],
and satisfies the same (∂x , ∂ε)-differential relations over the ring of convergent power
series as f̂ (x, ε).

We shall now define a space B̂(�0±) of thus summable power series, and a suitable
norm that would make it into a Banach algebra.

Definition 45 Let

�0± := {(x, ε) ∈ XE± : (x, ε) · B0 ⊆ XE±} ⊆ XE±,

where B0 is the disc (61), and let r > 0 as before. Let

�(x, ε) := max
{ |x |

δx
,

|ε|
δε

}
,

where δx , δε > 0 are such as in Definition 12. Let us consider formal power
series f̂ (x, ε) = ∑

k,l≥0 f (k,l)xkεl such that the transformed series f̃ (x, ε) =∑
k,l

f (k,l)

(k+l)! x
kεl , is convergent on the polydisc Dr = {|x |, |ε| < r} and extends analyt-

ically on the cone�0± ·R+. We introduce a norm of the formal series f̂ (x, ε), based on
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similar norms in [5,6], as an exponentially weighted supremum norm of the function
(x∂x + ε∂ε) f̃ :

‖ f̂ ‖� := sup
(x,ε)∈

Dr ∪�0±·R+

4π
�(x,ε)

|(x∂x + ε∂ε) f̃ (x, ε)|e−�(x,ε)(1 + �(x, ε)2), (63)

and define B̂(�0±) as the space of such f̂ for which ‖ f̂ ‖� < +∞.

If f̂ ∈ B̂(�0±), then its Borel (1,1)-sum f±(x, ε) defined through the Laplace inte-
gral (62) converges for every (x, ε) ∈ �0± with �(x, ε) < 1 (which is automatically
satisfied), and it extends analytically as a bounded function on

�± =
⋃

(x,ε)∈�0±

(x, ε) · B0 = {(x, ε) ∈ XE±, ∃ θ ∈ ]− π
2 , π

2 [: (x, ε) · Bθ ⊂ XE±}.

(64)

Note that if a sequence of formal series in B̂(�0±) converges with respect to the
norm ‖ · ‖� then they also converge in the product topology on C[[x, ε]], i.e. the
coefficients of the power series converge term by term, and moreover the sequence
of the corresponding Borel (1,1)-sums converges uniformly on compacts of �±. In
particular, if

∑
m φ̂m(x, ε)um, φ̂m(x, ε) = ∑

k,l≥0 φ
(k,l)
m xkεl ∈ B̂(�0±), is a con-

vergent power series in the Banach space (B̂(�0±), ‖ · ‖�) for u ∈ U, then its sum

is a map U → B̂(�0±) given by a formal series φ̂(u, x, ε) = ∑
k,l≥0 φ(k,l)(u)xkεl ,

with each φ(k,l)(u) = ∑
m φ

(k,l)
m um convergent on U. Moreover, it follows that the

Borel (1,1)-sum of φ̂(u, x, ε), given by the Laplace integral L0[φ̃(u, ·, ·)](x, ε) (62),

with φ̃(u, x, ε) = ∑
k,l≥0

φ(k,l)(u)
(k+l)! xkεl , agrees with the convergent series of the Borel

(1,1)-sums
∑

m L0[φ̃m](x, ε)um, which can be showed by a dominated convergence
argument.

Proposition 46 The space (B̂(�0±), ‖ · ‖�) is a Banach algebra.

Proof It is quite clear that (B̂(�0±), ‖ · ‖�) is a Banach space. What rests is to show
the sub-multiplicativity property of the norm:

‖ f̂ ĝ‖� ≤ ‖ f̂ ‖�‖ĝ‖� for all f̂ , ĝ ∈ B̂(�0±).

Given f̂ (x, ε) ∈ B̂(�0±), consider the formal series

F̂(t, x, ε) = f̂ (t x, tε) =
∑

k,l≥0

f (k,l)xkεl t k+l =
∑
n≥0

( ∑
k+l=n

f (k,l)xkεl

)
tn
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of a new variable t with parameters (x, ε). The usual Borel transform of F̂ with respect
to t is given by

B[F̂](s, x, ε) :=
∑

k,l≥0

f (k,l)

(k+l−1)! x
kεl sk+l−1 = ∂s f̃ (sx, sε).

Hence

‖ f̂ ‖� = sup
(sx,sε)∈Dr ∪�0±·R+

4π
�(x,ε)

|B[F̂](s, x, ε)|e−�(x,ε)|s|(1 + �(x, ε)2|s|2),

which is a rescaling of the weighted supremum norm introduced in [5, p.312]. The
usual Borel transform B changes products into convolutions,

B[F̂ Ĝ](t, x, ε) = (B[F̂] ∗ B[Ĝ])(t, x, ε) :=
∫ t

0
B[F̂](t − s, x, ε)B[Ĝ](s, x, ε)ds,

and we can conclude by the estimate of a norm of convolution in [5, Proposition 4]
which gives us the result. 
�

The reason for introducing the two Banach algebras the above way lies in the
following theorem adapted from [13] which is the other essential tool in our proof of
Theorem 17.

Theorem 47 Consider a system of the form

x(x − ε)
dφ

dx
= Mφ + F(φ, x, ε), (φ, x, ε) ∈ C

m × C × C. (65)

with M an invertible m ×m-matrix whose eigenvalues all lie on the line λ(0)
R, and

F(φ, x, ε) analytic germ such that Dφ F(0, 0, 0) = 0, and F(0, x, ε) = O(x(x −ε)).
Then there exist some constants r, η, δx , δε > 0 such that the system (65) possesses:

(1) A unique formal power series solution φ̂(x, ε) = ∑
j,k≥0 φk j xkε j . It is formally

divisible by x(x − ε), and it belongs to
(
B̂(�0±)

)m
.

(2) A unique bounded analytic solution φ±(x, ε) ∈ (
B(XE±)

)m
on the domain XE±

of Definition 12. It vanishes at the singular points (it is uniformly O(x(x − ε))).

Moreover, the restriction of φ±(x, ε) to the domain �± agrees with the Borel (1,1)-
sum of the formal solution φ̂(x, ε):

φ±(x, ε) =
∫ +∞eiθ

0
φ̃(sx, sε) e−s ds, for (x, ε) ∈ �0±, (66)

where θ ∈]− π
2 , π

2 [ depending on (x, ε) is such that (x, ε) ·Bθ ⊂ XE±, and φ̃(x, ε) =∑
j,k

φk j
(k+ j)! x

kε j .
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Proof The existence and uniqueness of the bounded solutionφ±(x, ε) is [13, Theorem
2]. The existence and uniqueness of the formal solution φ̂(x, ε) is [13, Proposition
1], while the Borel (1,1)-summability is [13, Theorem 4]. The finiteness of the norm
‖φ̂‖� is just a consequence of its Borel (1,1)-summability, up to perhaps restricting
of δx , δε > 0. 
�

7.1 Step 1: Ramified Straightening of Center Manifold and Diagonalization of
the Linear Part

Suppose that the system is in a pre-normal form,

x(x − ε)
dy

dx
= J tDy F(y, x, ε),

J tDy F(y, x, ε) = χ(y1y2, x, ε)

(
1 0
0 − 1

)
y + O(x(x − ε)). (67)

We will show that there exists a ramified transversely symplectic change of variable

y = T±(x, ε)w + φ±(x, ε), det T±(0, ε) = I, φ±(x, ε) = O(x(x − ε)) (68)

bounded and analytic on the domain XE± (25), i.e. defined over the Banach space
B(XE±), that brings the system to a form

x(x − ε)
dw

dx
= χ(w1w2, x, ε)

(
1 0
0 − 1

)
w + x(x − ε) f±(w, x, ε), (69)

with f±(w, x, ε) = O(|w|2), ∂ f1,±
∂w1

+ ∂ f2,±
∂w2

= 0.

All this has a formal counterpart over the Banach space B̂(�0±).
The solution w = 0 of the transformed system (69), corresponds to a bounded

ramified solution y = φ±(x, ε) of the system (67). The paper [13], see Theorem 47
below, shows that there is a unique such solution on the domain XE±; this it is the
“ramified center manifold” of the corresponding foliation.

The variable ỹ = y − φ±(x, ε) then satisfies

x(x − ε)
d ỹ

dx
= J tDy F(ỹ + φ±, x, ε) − J tDy F(φ±, x, ε),

whose linear part is A±(x, ε) := J (D2
y F)(φ±, x, ε) = λ(x, ε)

(
1 0
0 − 1

)
+ x(x −

ε)R(φ±, x, ε). The transformation matrix T± (68) must then satisfy

x(x − ε)
dT±
dx

= A±T± − λT±
(
1 0
0 − 1

)
.
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The existence of such a transformation T± bounded on XE± is known [10,15] when
A± is analytic. In our case the matrix A± is ramified, but their proof would work
anyway. We will obtain T± directly using Theorem 47.

Writing R = (
ri j
)

i, j and

T± =
(

1 t1,±
t2,± 1

)(
eb1,± 0
0 eb2,±

)
,

then the terms ti,±, i = 1, 2, are solutions to Riccati equations

x(x −ε)
dti,±
dx = (−1)i−12λti,± + x(x −ε)

[
ri j +(rii −r j j ) · ti,± −r ji ·

(
ti,±

)2]
, (70)

and the terms bi,± are solution to dbi,±
dx = (

rii + ri j t j,±
)
, i.e.

bi,± =
∫ x

0
rii + ri j t j,±dx .

Combining together the equations (67) for φ± and (70) for t±, in which ri j =
ri, j (φ±, x, ε), we get an analytic system for which the existence of a unique bounded
solution on XE± is assured by Theorem 47.

Since the trace of the linear part of both systems (67) and (69) is null, then by the
Liouville–Ostrogradskii formula det T (x, ε) is constant in x and equal to det T (0, ε) =
1. Therefore the transformation (68) is transversely symplectic, and by Lemma 3 the
transformed system (69) is transversely Hamiltonian.

7.2 Step 2: Normalization

Suppose that the system is in the form (69). We will show that there exists a ramified
change of variable w = �±(v, x, ε), �±(·, 0, ε) = id, given as a convergent series
of v in the Banach space B(XE±), that will bring it to an integrable form

x(x − ε)
dv

dx
= α±(h, x, ε)

(
1 0
0 − 1

)
v, h = v1v2, (71)

for some germ α±(h, x, ε), with α±(0, x, ε) = λ(x, ε).
As before, this has a formal counterpart over the Banach space B̂(�0±).
The transformation �± must satisfy

x(x −ε)∂x�±+α±·(v1∂v1− v2∂v2

)
�± = χ ◦�±·

(
1 0
0 − 1

)
�±+x(x −ε) f±◦�±.

(72)
We are looking for �± written as

�±(v, x, ε) = v + �±,� + x(x − ε)�±,�(v, x, ε), �±,� + �±,� =: �± (73)
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where the power expansion of the j-th coordinate of �±,� is equal to

� j,±,� =
∑
n≥1

{� j,±}(n,n)+e j h
nv j , e j being the j-the elementary vector,

while the power expansion of the j-th coordinate of {�±,�}does not contains anypower
hnv j , n ≥ 0. In particular,

(
v1∂v1− v2∂v2

)
�±,� =

(
1 0
0 − 1

)
�±,�. Therefore (72)

becomes

∂x�±,� + ∂x
(
x(x − ε)�±,�

)+ λ

(
v1∂v1− v2∂v2−

(
1 0
0 − 1

))
�±,�

= −α∗±
(
v1∂v1− v2∂v2

)
�±,� + χ∗ ◦ �± − α∗±

x(x − ε)

(
1 0
0 − 1

)
(v + �±,�) + G±,

(74)

where G± = (χ∗ ◦ �±)

(
1 0
0 − 1

)
�±,� + f ◦ �±, and χ∗ = χ − λ, α∗± = α± − λ.

Set
α±(h, x, ε) =

∑
n≥0

{χ ◦ �±}(n,n)h
n,

and denote

K± := χ∗ ◦ �± − χ∗ ◦ (v + �±,�)

x(x − ε)
,

which is an analytic function of v+�±,� and�±,� with coefficients depending on x, ε.
Then {χ∗ ◦�± −α∗±}(n,n) = 0 for all n ≥ 0, and {χ∗ ◦�± −α∗±}n = x(x − ε){K±}n
for all multi-indices n with n1 �= n2, since {α∗±}n = 0 = {χ∗ ◦ (v + �±,�)}n.

Expanding the j-th coordinate, j = 1, 2, of the Eq. (72) in powers of v we get:

• for m = (n, n) + e j :

∂x {� j,±}(n,n)+e j = {G j,±}(n,n)+e j , (75)

• for a multi-index m with m1− m2 + (−1) j �= 0:

∂x {x(x − ε)� j,±}m + (m1− m2 + (−1) j )λ{� j,±}m

= −(m1− m2){α∗± · � j,±}m − (−1) j {K± · (v j + � j,±,�)}m + {G j,±}m.

(76)

The right-hand sides of (76) and (75) are functions of {�±}k = t({�1,±}k, {�2,±}k),
with k1 ≤ m1, k2 ≤ m2, |k| < |m| only, which means that the equations for {� j,±}m
can be solved recursively.

The Eq. (75) is solved by

{� j,±}(n,n)+e j (x, ε) =
∫ x

0
{G j,±}(n,n)+e j dx . (77)
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The Eq. (76) has a unique bounded solution {� j,±}m given by the integral

{� j,±}m(x, ε) = e−(m1−m2+(−1) j )tλ

x(x − ε)

∫ x

xi,±
e(m1−m2+(−1) j )tλ{Fj,±}mdx, (78)

where {Fj,±}m is the right side of (76),

tλ(x, ε) =
∫ x

∞
λ(x,ε)
x(x−ε)

dx =
{
−λ(0)

ε
log x +

(
λ(0)

ε
+ λ(1)

)
log(x − ε), for ε �= 0,

−λ(0)

x + λ(1) log x, for ε = 0,

is a branch of the rectifying coordinate for the vector field

x(x − ε)

λ(x, ε)
∂x = ∂tλ ,

on X±(ε), and the integration follows a real trajectory of the vector field (23) in X±(ε)

from a point

x∗ =
{
x1,±, if m1 − m2 + (−1) j > 0,
x2,±, if m1 − m2 + (−1) j < 0,

xi,± is as in (26),

to x , along which the integral is well defined.
Note that the convergence of the constructed formal transformation�± is equivalent

to the convergence of �± (73). We prove the convergence of the latter series using
Lemma 44. For this we need to estimate the norms of (77) and (78).

Lemma 48 Let {� j,±}m be given by (78). Then

‖{� j,±}m‖ ≤ c�

m1−m2+(−1) j ‖{Fj,±}m‖,

for some c� > 0 independent of m.

Proof Let τk(x, ε) = ktλ(x, ε) + log(x(x − ε)). If k = m1 − m2 + (−1) j �= 0,
then for ε small enough the integrating path can be deformed so that it corresponds
to a ray τk(ξ, ε) ∈ τk(x, ε) − eiθ±[0,+∞[, with θ± as in (24). We have dτk

dx (x, ε) =
kλ(x,ε)+2x−ε

x(x−ε)
. Hence

‖{� j,±}m‖ ≤ 1

cos θ±

∥∥∥∥ {Fj,±}m(x, ε)

kλ(x, ε) + 2x − ε

∥∥∥∥ ,

with cos θ± > sin η > 0, η as in (24). 
�
Therefore

• for m = (n, n) + e j :

‖{� j,±}(n,n)+e j ‖ ≤ c‖{G j,±}(n,n)+e j ‖,
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• for a multi-index m with m1− m2 + (−1) j �= 0:

‖{� j,±}m‖ ≤ c
(‖{α∗±� j,±}m‖ + ‖{K± · (v j + � j,±,�)}m‖ + ‖{G j,±}m‖) ,

for some c > 0.

Therefore the majorating series satisfies

� j,± ≺ c α∗±� j,± + c K ± · (v j + � j,±) + c G j,±
≺ 2c (χ∗ ◦ �±) · � j,± + c k± · (v j + � j,±) + c f j,± ◦ �±
=: R j,±(v + �±,�,�±,�)

≺ R j,±(v + �±, v + �±),

where K± = K±(v+�±,�,�±,�), k± = K ±(v+�±,�,�±,�), and R j,±(w1, w2) =
O(|w|2), and we can conclude with Lemma 44.

The same thing is done also in the formal category with the Banach space B̂(�0±).

7.3 Step 3: Final Reduction and Transverse Symplecticity of the Transformation

Suppose that the system is in the form (71), and write

α±(h, x, ε) = χ̃±(h, x, ε) + x(x − ε)β±(h, x, ε),

χ̃±(h, x, ε) = χ̃
(0)
± (h, ε) + xχ̃

(1)
± (h, ε).

Then the transformation v = e

∫ x
0 β±dx

(
1 0
0 − 1

)

u will bring it to the normal formwith
formal invariant χ̃±.

Let y = �±(u, x, ε) be the transformation obtained as a composition of the trans-
formations of Steps 1–3, and y = �̂(u, x, ε) = ∑

k,l ψ(k,l)(u)xkεl the corresponding

formal transformation. By construction �±(·, 0, ε) = �̂(·, 0, ε) = id, in particular
it is convergent. The restriction of �±(u, x, ε) to U × �± must agree with the Borel
(1,1)-sum of �̂(u, x, ε): indeed one can swap the summation in u and of the Laplace
integral by a dominated convergence argument.

Let us now show that �±(u, x, ε) is transversely symplectic and therefore χ̃± =
χ . Let u±(x, ε; c) be a germ of a general solution of the normal form system with
the formal invariant equal to χ̃±, depending on an initial condition parameter c =
(c1, c2) ∈ (C2, 0), det(Dcu±) �= 0, and let y±(x, ε; c) = �±(u±(x, ε; c), x, ε) be
the corresponding solution germ of the system (1). Then Dc y± = Du�± · Dcu±
satisfies the linearized system

x(x − ε)
d Dc y±

dx
= J D2

y H · Dc y±,
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and by the Liouville-Ostrogradskii formula

x(x − ε)
d

dx
det(Dc y±) = tr(J D2

y H) · det(Dc y±),

but tr(J D2
y H) = 0, i.e. det(Dc y±) = det(Du�±) · det(Dcu±) is constant in x .

Similarly, det(Dcu±) is constant in x . Therefore det(Du�±(u, x, ε)) is also constant
in x , and equal to det(Du�±(u, 0, ε)) = 1 since �±(u, 0, ε) = u.

This terminates the proof of Theorem 17.

7.4 Proof of Proposition 9

We will construct a formal symplectic change of coordinate � = �(h, ui ), written
as a formal power series in h and ui , such that G = H ◦ �. The transformation � is
constructed recursively as a formal limit

� = lim
k→+∞ �k,1, �k+1,1 = lim

l→+∞ �k,l , �0,1 = id, H ◦ �k,l = G + O
(

hkul
i

)
.

At each step (k, l), k ≥ 0, l ≥ 1, we want to get rid of the power hkul
i in H ◦�k,l . We

construct �k,l+1 = �k,l ◦ �1
fk,l X

hk ul
i

as a composition of �k,l with the time-1 flow of

a Hamiltonian vector field fk,l Xhk ul
i
= −(−1)i fk,l hk−1ul

i [kui∂ui − (k + l)u j∂u j ] for
some fk,l ∈ C. The flow sends both h and ui to functions of (h, ui ),

�1
fk,l X

hk ul
i

: ui �→ ui +O
(

hk−1ul+1
i

)
, h �→ h+(−1)i l fk,l h

kul
i +O

(
h2k−1u2l

i

)
,

where the terms O(h2k−1u2l
i ) are null if k = 0. If H◦�k,l = G+Hk,l hkul

i+O(hkul+1
i )

for some Hk,l ∈ C, then we want

(
G + Hk,l h

kul
i

)
◦ �1

fk,l X
hk ul

i

− G(h) = O
(

hkul+1
i

)
,

Hk,l h
kul

i + λ · (−1)i l fk,l h
kul

i = O
(

hkul+1
i

)
,

fk,l = −(− 1)i Hk,l
λl .

Now that we have constructed the formal symplectic transformation �, we can
conclude by the following Proposition.

Proposition 49 Let H, H̃ : (C2, 0) → (C, 0) be two germs with a non-degenerate
critical point at 0, and let ω, ω̃ be germs of symplectic forms. Then the two pairs
(H, ω), (H̃ , ω̃) are analytically equivalent if and only if they are formally equivalent.

Proof By Theorem 4, the Birkhoff–Siegel normal form is, up to the involution (13),
a complete analytic invariant for each pair. Therefore it is enough to show that it is
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also a formal invariant. This can be seen from the invariance of a formalization of the
formula (15) of Sect. 2.2.1. 
�
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