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Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Nonalcoholic steatohepatitis 
(NASH), a severe form of NAFLD, can lead to hepatocellular carcinoma (HCC) and hepatic failure. The development and 
progression of NAFLD are determined by environmental and genetic factors. The effect of genetic factors has been demon-
strated by familial studies, twin studies and several cross-sectional studies. In the past 10 years, genome-wide association 
studies have revealed several single nucleotide polymorphisms (SNPs) associated with the pathology of NAFLD. Among 
them, the Patatin-like phospholipase domain-containing 3 (PNPLA3) gene variant I148M showed a strong relationship with 
the development and progression of NAFLD, NASH, and NAFLD-related HCC. The transmembrane 6 superfamily member 
2 (TM6SF2) gene variant E167 K was also associated with NAFLD, and it has a relationship with cardiovascular disease. 
Furthermore, several genes have been proposed as candidate genes to be associated with NAFLD based on case–control 
studies. We conducted a comprehensive literature search and review on the genetic background of NAFLD.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon cause of chronic liver disease and results in serious 
public health problems. Globally, about 25% of the adult 
population is estimated to suffer from NAFLD [1]. NAFLD 
has a wide spectrum of liver pathology, ranging from non-
alcoholic fatty liver (NAFL), which is usually benign, to 
nonalcoholic steatohepatitis (NASH), which is characterized 
by steatosis plus features of cellular injury, such as inflam-
mation and hepatocyte ballooning, and may progress to liver 
cirrhosis (LC), hepatic failure and hepatocellular carcinoma 
(HCC) in the absence of significant alcohol consumption [2, 
3]. NASH is now the second indication [4] and is predicted 
to become the main indication for liver transplantation in the 
United States by 2020 [5]. The most common cause of death 
in patients with NAFLD is cardiovascular disease, followed 

by non-liver malignancy and liver-related death [6–8]. It has 
become clear that patients with NASH, especially those with 
advanced fibrosis, are a high-risk group for HCC and death 
from liver-related causes. The risks for disease progression 
and development of NAFLD depend on environmental fac-
tors and multiple genetic factors.

NAFLD is strongly associated with metabolic syndrome, 
including type 2 diabetes mellitus (T2DM), dyslipidemia, 
and obesity. Because of a lifestyle of high-calorie food 
intake and lack of exercise, the prevalence of obesity and 
insulin resistance are increasing. Some dietary habits may 
influence the progression of NAFLD, such as monounsatu-
rated fatty acid consumption [9], fructose consumption [10, 
11], and coffee consumption [12–14]. Furthermore, some 
studies reported that the intestinal microbiome may influ-
ence NAFLD development [15, 16].

On the other hand, some familial and twin studies have 
supported a heritable effect of NAFLD [17–19]. Among 
monozygotic twins, the concordance of disease severity, 
including the degree of fibrosis and steatosis, was greater 
than that among dizygotic twins. The prevalence of NAFLD 
also differs among ethnic groups. NAFLD is most common 
in East Asian Indians, followed by Hispanics, Asians, Cau-
casians, and less frequently, African Americans [20–22]. 
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These genetic backgrounds affect the pathology of NAFLD 
directly or via variability in metabolism and wound healing 
response. Understanding the contribution of genetic back-
ground may have relevance not only to surveillance and 
therapeutic strategies but also to preventative measures for 
developing NAFLD. In this review, we have tried to sum-
marize the literature on the role of genetics in NAFLD.

GWAS on NAFLD

Genome-wide association studies (GWAS) are used to iden-
tify the association between common variants in arrays and 
polymorphic diseases. Because the GWAS approach is called 
a “hypothesis-free method”, it can identify unreported genes 
or biologic pathways. On the other hand, we cannot always 
understand how identified loci contribute to disease progres-
sion. Furthermore, GWAS cannot check all of the genetic 
factors associated with a disease, and the results depend on 
the subjects in the study. However, GWAS are more likely to 
identify genetic risk than candidate gene studies.

Romeo et al. first reported in 2008 that rs738409 C > G 
SNP in the Patatin-like phospholipase domain-containing 

3 (PNPLA3) gene was significantly associated with liver 
steatosis [23]. After that study, several GWAS have been 
performed in different populations and have identified 
phenotypes [24–31] (Table 1). The identified SNPs were 
different depending on the population studied and the 
phenotype. The PNPLA3 rs738409 SNP showed a strong 
relationship with the development of NAFLD or NASH, 
hepatic steatosis and hepatic fibrosis in almost all studies. 
There were 2 studies analyzed the association of genetic 
risk with liver histology in Japanese population [26, 27]. 
NAFLD was diagnosed by liver biopsy in both studies. 
Kawaguchi et al. recruited 529 histologically diagnosed 
NAFLD patients and 932 population controls. They found 
that PNPLA3 rs738409 showed strong association with 
Matteoni type4 subgroup (P = 1.7610216, OR = 2.18, 95% 
CI 1.81–2.63). Kitamoto et al. analyzed 392 biopsy-proven 
NAFLD subjects and 934 control individuals. PNPLA3 
rs738409 was most strongly associated with NAFLD 
after adjusted by age, gender, and BMI (P = 6.8 9 10–14, 
OR = 2.05). Based on these GWAS, PNPLA3 rs738409 
and Transmembrane 6 superfamily member 2 (TM6SF2) 
rs58542926 are thought to be the main contributors to 
NAFLD pathogenesis and progression.

Table 1   Genome-wide association studies of non-alcohol fatty liver disease

Study Population Subjects (N) SNPs Phenotype Gene(s)

Romeo S et al. [23] Multi ethnic 2051 9229 Hepatic fat content PNPLA3 rs738409
Chalasani et al. [24] Non-Hispanic white women 236 324,623 NAS,

hepatic fibrosis,
lobular inflammation,
ALT

FDFT1 rs2645424
PDGFA rs343062
COL13A1 rs1227756, LTBP3 

rs6591182, EFCAB4B 
rs887304

rs2499604, PZP rs6487679, 
rs1421201, 2710833

Speliotes et al. [25] Multi ethnic 7176
592 (biopsy)

− 2.4million Steatosis by CT
histological NAFLD

PNPLA3 rs738409, NCAN 
rs2228603, PPP1R3B 
rs4240624

PNPLA3 rs738409, NCAN 
rs2228603, GCKR rs780094, 
LYPLAL1 rs12137855

Kawaguchi et al. [26] Japanese 529 484,751 Matteoni type 4 PNPLA3 rs738409
Kitamoto et al. [27] Japanese 392 261,540 NAFLD, steatosis, fibrosis, 

NAS
PNPLA3 rs738409, SAMM50 

rs3761472, PARVB 
rs6006611

Feitosa et al. [28] Caucasian 2705 − 2.5million Steatosis by CT PNPLA3 rs738409, PPP1R3B 
rs2126259, ERLIN-CHUK-
CWF19L1 gene cluster

Kozlitina et al. [29] Multi ethnic 4625 247,870 Hepatic fat content by 1H-
MRS

PNPLA3 rs738409, TM6SF2 
rs58542926

DiStefano et al. [30] Multi ethnic 2300 605,718 Hepatic fat content PNPLA3 rs738409, SUGP1 
rs10401969

Adams et al. [31] Australian adolescent 928 2,078,505 NAFLD by US LPPR4 rs12743824, GC 
rs222054, LCP1 rs7324845, 
SLC38A8 rs11864146
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PNPLA3

PNPLA3, also called adiponutrin is the most robust genetic 
variant associated with NAFLD. The first GWAS revealed 
the association of a PNPLA3 variant with hepatic fat con-
tent [23]. The result was validated by other GWAS inde-
pendently, and many candidate studies in various ethnic 
groups clarified the association with histological severity, 
including hepatic fibrosis [32–34]. This relationship has 
been reported in pediatric patients as well, such as His-
panic, Taiwanese, and Caucasian children and adolescents 
[35–37]. The PNPLA3 variant also confers an increased 
risk of NAFLD-related HCC in European and Japanese 
populations [38, 39]. This hepatocarcinogenetic effect 
has been reported not only in patients with NAFLD, but 
also in patients with alcohol-related disease and chronic 
viral hepatitis in a meta-analysis [40]. These effects of 
the I148M substitution were independent from obesity, 
T2DM, and insulin resistance [41, 42]. In an animal model 
and in human hepatocytes, PNPLA3 activity is regulated 
by glucose and insulin via pathways involving the sterol 
regulatory element binding protein 1-c [43]. The I148M 
substitution leads to loss of enzymatic activity of hydro-
lyzed triglycerides and retinyl esters, resulting in the 
accumulation of triglycerides and esters in lipid droplets 
of hepatocytes and hepatic stellate cells up to twofold 
greater than with wild type [44–46]. It also induces hepatic 
inflammation and fibrosis. Moreover, carriers of the I148M 
variant have lower levels of adiponectin, which has an 
anti-inflammatory effect [47] and inhibits the activation 
of pro-fibrotic hepatic stellate cells [48, 49]. In contrast, no 
study has reported an association of PNPLA3 with other 
fibrogenic factors, such as TNF, α-smooth muscle actin, 
and type 1 collagen. In an animal model, the PNPLA3 
deletion produced no change in phenotype; however, 
overexpression and knock-in mutations led to increased 
hepatic fat concentrations [50]. These findings suggest the 
hypothesis that the accumulation of the I148M mutation 
on droplets escapes degradation by the proteasome and 
inhibits the activity of PNPLA3 in hepatocytes [50]. Other 
studies also revealed that the I148M variant was associated 
with the response to lifestyle change [51, 52]. In that study, 
researchers found that liver fat content decreased signifi-
cantly more in the PNPLA3 genotype GG group than in 
the PNPLA3 genotype CC group after a short course of a 
low carbohydrate diet, although patients of both genotypes 
lost similar amounts of body weight [51]. A recent study 
proposed that the downregulation of the I148M mutation 
could be a therapeutic target for NAFLD [53]. Additional 
studies are warranted to determine the utility of PNPLA3 
rs738409 in risk classification of NASH and NAFLD-
related HCC.

TM6SF2

The TM6SF2 variant was shown to associate with hepatic fat 
content by Kozlitina et al. [29]. A validation study revealed 
the association of TM6SF2 with hepatic fibrosis [54]. In 
that study, carriers of the TM6SF2 E167K mutation had 
1.9-fold increased risk of advanced fibrosis independent 
of the PNPLA3 genotype. However, a relationship between 
TM6SF2 E167K and NAFLD was not reported in the Jap-
anese population. Though a plausible reason for this was 
not clear, the discrepancy may be based on the difference 
in minor allele frequency and inter-ethnic variation or an 
underpowered cohort. TM6SF2 is involved in the secretion 
of very low-density lipoprotein from the hepatocyte. It con-
cerns the triglyceride to apolipoprotein B100 pathway. The 
E167K mutation leads to loss of this function and results 
in increasing liver triglyceride content and decreasing cir-
culating lipoproteins. It is well known that carriers of the 
E167K mutation tend to have greater risk of fatty liver, but 
a lower risk of cardiovascular disease [29, 54–56]. Kozlitina 
et al. [29] identified the association of the TM6SF2 vari-
ant with increased hepatic triglyceride content, a reduced 
serum triglyceride level, and low-density lipoprotein cho-
lesterol. They hypothesized that TM6SF2 regulated not only 
hepatic lipoprotein secretion, but also hepatic synthesis of 
triglycerides. Carriers of the E167K form had an approxi-
mately 50% lower risk of developing atherosclerotic carotid 
plaques, and a 40% reduction in the risk of cardiovascular 
events in Western countries [56]. At present, no study has 
determined whether the TM6SF2 variant affects the risk of 
NAFLD-related HCC. Further study regarding the associa-
tion between TM6SF2 and the risk of HCC in the pathogen-
esis of NAFLD is needed.

GCKR

Glucokinase regulator (GCKR) regulates the flow of glucose 
in hepatocytes and de novo lipogenesis. The missense muta-
tion (P446L) of GCKR rs1260326 was associated with liver 
fat content in NAFLD [57]. The P446L mutation leads to a 
reduction in the ability of glucokinase in response to fruc-
tose-6-phosphate, and results in hepatic glucose intake [58]. 
This mutation also leads to a decrease in the serum level of 
glucose and insulin, but an increase in malonyl Co-A, which 
is used as substrate for hepatic lipogenesis and blocks fatty 
acid β-oxidation. This pathway increases hepatic fat accu-
mulation. Recently, several studies reported that mutation 
of GCKR affects not only lipogenesis and liver fat content, 
but also hepatic fibrosis in patients with NAFLD [59, 60]. 
This result was confirmed by a recent meta-analysis [61] 
that revealed the association of GCKR with NAFLD-related 
fibrosis in both the Asian and non-Asian populations.
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Other genetic variants associated 
with metabolism

Several genes were identified in cross-sectional or case–con-
trol studies as potential candidate genes associated with 
NAFLD. Table 2 shows the function and phenotype of these 
candidate genes. There are several candidate genes reported 
besides those in Table 2. In this review, we chose to dis-
cuss four genes associated with insulin signaling and lipid 
metabolism.

Ectonucleotide pyrophosphatase/
phosphodiesterase 1 (ENPP1)

Insulin receptor substrate 1 (IRS1)

Insulin resistance plays a key role in the pathology of 
NAFLD. That is a common feature of NAFLD, T2DM, 
and metabolic syndrome. The genes involved in hepatic 
insulin signaling have been reported to be associated with 
NAFLD. The ENPP1 rs1044498 K121Q mutation leads 
to an interaction between ENPP1 and the insulin recep-
tor, inhibiting signaling. It was also reported that the IRS1 
rs1801278 G972R variant was associated with decreased 
activity of IRS-1, thereby reducing insulin signaling in the 
liver. A large study that included 702 biopsy-proven NAFLD 
patients found that both ENPP1 and IRS-1 SNPs were asso-
ciated with a reduction in insulin signaling activity and 
severe fibrosis [62]. These ENPP1 and IRS1 variants pro-
moted insulin resistance by reducing AKT activation [62].

Peroxisome proliferative activated receptor 
(PPAR)

Lpin1

Peroxisome proliferator-activated nuclear receptors (PPAR) 
play a role in hepatic lipid metabolism. PPAR-α acts as a 

molecular sensor for long-chain fatty acids, eicosanoids, 
and fibrates by upregulation of mitochondrial uptake and 
β-oxidation. PPAR-α activation improves steatosis, inflam-
mation, and fibrosis in NAFLD [63]. Chen et  al. [64] 
reported the association of the PPAR-α V227A variant 
with NAFLD. They described that the V227 isoform has 
lower activity than the A227isoform, resulting in reduced 
lipid catabolism and an increased risk of NAFLD. PPARγ 
improves insulin resistance and has been reported to restore 
adipose tissue insulin sensitivity and decrease free fatty acid 
flux to the liver [65]. PPAR-γ rs1805192 P12A leads to loss 
of function of the gene product, impairing its ability to bind 
DNA and activate transcription. This variant decreases sen-
sitivity to insulin and anti-inflammatory effects. However, 
the association of PPARs with the pathology of NAFLD 
remains controversial [66, 67].

LPIN1 is expressed mainly in liver and adipose tissue. 
LPIN1 plays a role in the synthesis of phospholipids and tri-
glycerides, and regulates fatty acid metabolism [68]. A pre-
vious study reported that carriers of the LPIN1 rs13412852 
TT genotype showed increased expression of LPIN1 and 
had a smaller risk of NAFLD [69]. Variants of LIPIN1 influ-
ence the phenotype not only of NAFLD, but also of other 
metabolic traits [70].

Conclusion

In this review, we found that several genes affect the devel-
opment, histological changes, progression, and carcinogen-
esis of NAFLD in various manners. At present, the PNPLA3 
gene variant is the most powerful and validated genetic fac-
tor for steatosis, fibrosis, disease progression, and HCC in 
multiple ethnic groups. These result support the hypothesis 
that PNPLA3 acts as a main player of disease progression 
in combination with a high-calorie diet or alcohol con-
sumption. However, we cannot understand the pathology 
of NAFLD by only one gene. We must classify the risk 
of NAFLD by combining the potential effects of the risk 
genes in each patient. Further studies about how these risk 
genes influence the pathology of NAFLD are needed. Such 

Table 2   Function and 
phenotype of candidate genes 
associated with non-alcohol 
fatty liver disease

Gene Function Phenotype

PNPLA3 rs738409 Lipid droplet content in hepatocyte Steatosis, fibrosis, NASH, HCC
TM6SF2 rs58542926 VLDL secretion Fibrosis, NAFLD, NASH
LYPLAL1 rs12137855 TG catabolism NAFLD
GCKR rs780094 de novo lipogenesis Fibrosis, NAFLD, NASH
LPIN1 rs13412852 Lipid metabolism Fibrosis, NASH
ENPP1 rs1044498 Insulin signaling inhibitor Fibrosis
IRS1 rs1801278 Insulin signaling Fibrosis
PPARα rs1800206 Lipid metabolism Steatosis, inflammation, fibrosis
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information will help us define surveillance approaches and 
therapeutic strategies, including lifestyle interventions and 
pharmacological therapies.
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