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ABSTRACT

The implementation of artificial intelligence
(AI) and machine learning (ML) techniques in
healthcare has garnered significant attention in
recent years, especially as a result of their
potential to revolutionize personalized medi-
cine. Despite advances in the treatment and
management of asthma, a significant propor-
tion of patients continue to suffer acute exac-
erbations, irrespective of disease severity and
therapeutic regimen. The situation is further
complicated by the constellation of factors that
influence disease activity in a patient with
asthma, such as medical history, biomarker
phenotype, pulmonary function, level of

healthcare access, treatment compliance,
comorbidities, personal habits, and environ-
mental conditions. A growing body of work has
demonstrated the potential for AI and ML to
accurately predict asthma exacerbations while
also capturing the entirety of the patient expe-
rience. However, application in the clinical
setting remains mostly unexplored, and
important questions on the strengths and lim-
itations of this technology remain. This review
presents an overview of the rapidly evolving
landscape of AI and ML integration into asthma
management by providing a snapshot of the
existing scientific evidence and proposing
potential avenues for future applications.
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Key Summary Points

Asthma exacerbation events remain
difficult to avert and approaches for
personalized medicine are lacking.

Each patient’s asthma journey and disease
severity are influenced by a range of
factors including medical history,
biomarker phenotype, pulmonary
function, level of healthcare system
support, compliance to prescribed
therapy, comorbidities, personal habits,
and environmental conditions.

Machine learning (ML) uses mathematical
and statistical methods to detect patterns
across large datasets including electronic
health records (EHR).

ML has the potential to augment clinical
decision-making and provide appropriate
treatment to improve both asthma
prognosis and the overall quality of life.

In this review, we summarize recent
studies that have demonstrated the ability
to predict asthma exacerbations using
different algorithms and propose a few
next steps for this field.

INTRODUCTION

Asthma exacerbations are difficult to predict on
the basis of available data of patients at risk.
Most medical practitioners usually rely on the
patient’s medical history, pulmonary function
test (PFT) results, levels of asthma control, and
treatments; however, it is unclear as to what
proportion of clinicians follow asthma guideli-
nes for the assessment of risk and prevention of
exacerbations or use biomarkers [1, 2]. With
such multiple variables, it is unsurprising that
up to 10 million asthma exacerbations are
reported annually in the USA, constituting the
majority of expenditures devoted to asthma
care [3].

Additionally, management of asthma is a
complex process. Clinically, many patients can
have poor asthma control and/or poor PFT
results; however, they may not seek (or find)
medical help and/or comply with treatments
until they develop severe bronchoconstriction.
Other patients with mild or even asymptomatic
asthma can deteriorate suddenly and end up in
the emergency department (ED), become hos-
pitalized, or even suffer from fatal asthma
attacks [4]. Biomarkers can help pinpoint which
patients are at risk of exacerbations [5–7];
however, the endotypes may not be stable be-
cause of spontaneous, environmentally trig-
gered, or treatment-induced variability [7–9].
Furthermore, healthcare systems can vary by
region, and lack of access is a major challenge
that can lead to undertreatment and deteriora-
tion of health [10–12]. Patient habits and/or
lack of compliance to medications can also
influence the development of exacerbations
[13–15]. Lastly, environmental air quality is a
critical determinant of airway inflammation,
bronchospasm, and asthma deterioration
[16, 17]. All of these factors can be assessed in
the clinic via questionnaires, physical exami-
nations, PFTs, and/or laboratory evaluations.
However, once these initial evaluations are
completed, there is a need for accurate predic-
tion of the probability of future exacerbations
for each individual patient. As clinical factors
evolve, subsequent predictive modeling may be
beneficial for effective disease management in
said patients.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

There are at least two studies that have used
multivariable logistic regression to pinpoint
features which may predict exacerbations. Bla-
key et al. extracted longitudinal medical records
of 118,981 patients with actively treated asthma
from the Optimum Patient Care Research
Database, seeking to predict the number of
exacerbations in a 2-year period. After selecting
predictors with significant univariable associa-
tion, the authors trained multiple multivariate
logistic regression for recurrent asthma attacks
prediction. The strongest features associated
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with future attacks included the following: his-
tory of exacerbations, lung function, smoking
status, blood eosinophilia, age, sex and history
of rhinitis, nasal polyps, eczema, gastroe-
sophageal reflux disease, and obesity. The final
validated models utilized 19 and 16 risk factors
for two or more (area under the receiver oper-
ating characteristic curve (AUC) 0.785) and four
or more (AUC 0.867) attacks over 2 years,
respectively [18].

In addition, Noble et al. trained a multivari-
able logistic regression to predict asthma events
(accident and emergency attendance, hospital-
ization, or death) on a dataset of 61,861 people
with asthma extracted from England and Scot-
land using the Clinical Practice Research Data-
link. The fitted model was validated on 174,240
patients with asthma from Wales and had AUC
of 0.71. Older and underweight patients who
smoked and had history of blood eosinophilia
and past asthmatic attacks had the highest
probability of experiencing asthma-related crisis
events [19]. Since clinicians are not as well sui-
ted to the implementation of complex algo-
rithms as machines, assessment of the
aforementioned features may not be sufficient
to alert patients to their risk of asthma exacer-
bation. Machines may be unable to implement
complex algorithms because data may be
inconsistently captured or maintained in an
unstructured format [20]. Indeed, additional
factors beyond past medical history, current
symptoms, PFTs, and even biomarkers may be
required for predicting future exacerbations.
The patient’s access to medical care, genetic
makeup and expression, habits, and environ-
mental exposures may also impact their asthma
prognosis. Thus, there is a need to integrate the
many characteristics of the ‘‘asthmatic patient’’
using algorithms trained and tested in large,
independent datasets to arrive at an accurate
prognosis of the disease and potentially aug-
ment our ability to predict exacerbations for
each patient individually.

Machine learning (ML) and deep learning
(DL) are fields within artificial intelligence (AI)
that are increasingly being used in medicine
[21, 22]. However, one of the challenges in ML
is the ‘‘no free lunch’’ theorem, which states that
there is no single algorithm that will fit all

datasets or solve all questions [23]. There have
been efforts to—at a minimum—correlate
symptoms and airway function with asthma
exacerbations using ML [24]. Although the
analysis of lung images was one of the first areas
of respiratory medicine to demonstrate
increased diagnostic accuracy with the use of
neural networks [25], the prediction of acute
medical events has become more recently a
major unmet need, particularly during the
COVID-19 pandemic [26]. This need to estab-
lish an accurate prognosis of serious conditions,
such as asthma exacerbations, still persists
today. In this review, we summarize recent
studies that have demonstrated the ability to
predict asthma exacerbations using different
algorithms and propose a few next steps for this
field.

COMPLEXITY OF EXACERBATIONS

More than 10 million asthma exacerbations
occurred in the USA in 2020 [3]. There a need
not only to accurately predict who is at risk of
exacerbations [27] but also to avoid overdiag-
nosis and overtreatment of asthma [28]. Asthma
exacerbations are defined by symptoms of
increased severity that require treatment with
systemic corticosteroids for at least three con-
secutive days [29]. Short bursts of systemic cor-
ticosteroids are effective to treat acute asthma,
but they tend to be overprescribed and can
cause serious side effects [28]. Furthermore,
patients with poorly controlled asthma can
progress to develop exacerbations due to lack of
access to medical care and proper therapies [30],
or lack of compliance to prescribed treatments
[14]. Indeed, providing proper medications has
been shown to reduce the incidence of exacer-
bations in some geographies [31–33]. However,
when applied broadly, such therapeutic
approaches incorrectly assume that every per-
son with asthma is at risk of exacerbations,
resulting in overtreatment, which in turn can
lead to the buildup of unnecessary costs and an
increased incidence of treatment-emergent
adverse events. Incidentally, among well-trea-
ted patients with asthma, exacerbations are
ultimately triggered by environmental insults
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(isolated or in combination) such as respiratory
infections, allergens, and air pollution [34, 35].

Asthma exacerbations are complex and
multidimensional phenomena, and ML can
analyze and predict such medical events if
proper inputs (including intrinsic and external
factors such as patient features and environ-
mental insults, respectively) are provided to
train (or develop), validate, and test said algo-
rithms. One of the key challenges when pre-
dicting asthma exacerbations is that the
analysis of small sample sizes and few determi-
nants of asthma severity may lead to less accu-
rate predictions and limited conclusions
[36, 37]. For example, there are patients with
daily symptoms and/or low forced expiratory
volume in 1 s (FEV1) who do not exacerbate;
conversely, there are patients who seem clini-
cally stable but may go on to develop an acute
asthma attack when several dimensions of the
asthma milieu occur in concert [38]. Several
studies have analyzed levels of asthma
biomarkers, such as increased eosinophils in
peripheral blood/sputum and increased frac-
tional exhaled nitric oxide (FeNO) [5, 6], yet
given the multidimensional aspects of asthma
[39], ML approaches will likely be required in
the future to augment the accuracy of
predictions.

Another potential consequence of acute
asthma is disease relapse in some patients who
are treated in the ED and then sent back to the
ambulatory setting. Although the reported per-
centage varies among studies, median 2-week
relapse rate is considered to be between 4% and
17%, with nearly two-thirds of the patients
experiencing a relapse within the first few weeks
of discharge [40, 41]. Factors associated with
relapse are the same as in any exacerbation [40],
with the additional consideration that some
patients may be discharged without full recov-
ery of airflow obstruction and underlying
inflammation [42], and/or may suffer from
psychosocial challenges making recovery out-
side of the hospital difficult [43, 44]. Even in the
best-case scenario, considering only the
patient’s past medical history, asthma symp-
toms, PFT results, biomarkers, and treatments,
the number of exacerbations remains constant.
Thus, there continues to be a need to increase

our knowledge of asthma and/or consider
including more features of the ‘‘asthmatic’’ cir-
cumstances to predict exacerbations with
greater accuracy using AI (Fig. 1).

MACHINE LEARNING AND DEEP
LEARNING

ML is a subset of AI that allows a machine to
automatically learn from data without explicit
programming. ML consists of algorithms (a
series of steps) that must be trained (developed),
validated, and tested before being deployed for
general use [45]. There exist many algorithms
that can be used in ML (Table 1), which are
mainly classified into three categories: (i) super-
vised learning, (ii) unsupervised learning, and
(iii) reinforcement learning.

In supervised learning, data are labeled, and
the ML model learns how to best map feature
vectors (input) to labels (output), allowing for
the prediction of outcomes for unforeseen data
[45]. This process is called training and gives the
model the ability to produce accurate predic-
tions when it is exposed to new and unlabeled
datasets. Supervised learning is categorized into
two algorithms: regression and classification. In
regression algorithms, the output is a continu-
ous variable (i.e., FEV1), while in classification
algorithms, the output is a category (i.e., hos-
pitalization). Examples of such algorithms
include linear regression and logistic regression
(Fig. 2a). In unsupervised learning, the algo-
rithm acts without guidance as data points are
not labeled or classified. The algorithm discov-
ers patterns in the data that allow for the clas-
sification of similar datapoints together into
clusters. Unsupervised learning algorithms are
categorized into clustering and associations.
Examples of such algorithms are K-means clus-
tering and hierarchical clustering (Fig. 2b). In
reinforcement learning, the algorithm (also
called ‘‘agent’’) learns by trial and error, i.e.,
through interaction with and feedback from the
environment in a manner resembling the
learning process in animals and humans. Rein-
forcement learning is used to train the agent to
perform more complicated tasks and receive a
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reward, or not (Fig. 2c). The latter has not been
used in medicine yet, as far as we know.

Deep learning is a type of ML that involves
training artificial neural networks (ANN) con-
taining several hidden layers on a large dataset.

These ANNs learn to predict the outcome vari-
able, which can be either continuous or cate-
gorical, on the basis of the input. In asthma, DL
models have been trained on patient data for
demographics, medical history, asthma

Fig. 1 The constellation of factors influencing the asth-
matic patient’s journey that may be analyzed using artificial
intelligence to augment clinical decision-making. Patients
with asthma present a unique collection of factors that
influence their disease severity and outcome. The corner-
stones of traditional patient management consist of
assessments of pulmonary function (i.e., spirometry mea-
suring lung capacity and FEV1), biomarker levels (e.g.,
blood eosinophils, IgE, FeNO), and patient-reported
symptoms (e.g., cough, wheezing, shortness of breath,
sleep). However, a myriad of factors together influence the
individual patient’s risk of asthma exacerbation and disease

progression, including both intrinsic factors such as
genomics, comorbidities, and allergic status, and extrinsic
factors such as occupational and environmental exposures,
access to the healthcare system and medications, and
geography. Because asthma exacerbations are complex and
multidimensional phenomena, the use of artificial intelli-
gence may better predict such events if proper inputs
(including intrinsic and extrinsic factors) are provided to
train, validate, and test next-generation treatment algo-
rithms. IgE immunoglobulin E, FeNO fractional exhaled
nitric oxide, FEV1 forced expiratory volume in 1 s
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Table 1 Commonly used machine learning algorithms (with Python and R codes)

Algorithms Objectives References

Linear

regression

Used to estimate real values (independent variables

such as predicted FEV1) based on continues

variables (dependent variable such as height, age,

etc.) [46]

It can be simple or multiple if there is more than

one independent variable

Frank E. Harrell Jr

Regression modeling strategies: with applications

to linear models, logistic and ordinal regression,

and survival analysis

Springer International; 2015

Logistic

regressiona
A classification algorithm used to estimate discrete

values (yes/no, true/false, etc.) [46]

Since it predicts the probability of developing a

certain condition, the values are between 0 and 1

Frank E. Harrell Jr

Regression modeling strategies: with applications

to linear models, logistic and ordinal regression,

and survival analysis

Springer International; 2015

Support vector

machine

(SVM)

A classification algorithm in which the value of

each feature is plotted in a particular coordinate

(known as support vectors) [47]

Data are split by a line (called classifier) equidistant

to the closest point from each group

Ingo Steinwart, Andreas Christmann

Support vector machines

Springer New York; 2008

Naı̈ve Bayes A classification algorithm that assumes

independence between predictors [48]

It is simple, useful in large datasets, and known to

outperform sophisticated classification methods

Thomas Mitchell

Machine learning

McGraw-Hill Education; 1997

Decision tree A supervised learning algorithm mostly used for the

classification of problems with both categorical

and continuous dependent variables [49]

It splits populations into homogenous sets based on

significant attributes (independent variables)

Clinton Sheppard

Tree-based machine learning algorithms: decision

trees, random forests, and boosting

CreateSpace; 2017

Random foresta An ensemble of decision trees

It classifies a new object on the basis of attributes

and the tree ‘‘votes’’ with forest choosing the

classification having the most votes

Combining trees improves the accuracy of the

model [50]

Chris Smith, Mark Koning

Decision trees and random forests: a visual

introduction for beginners

Blue Windmill Media; 2017
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Table 1 continued

Algorithms Objectives References

Gradient

boosting

machines

(GBM)a

Has high prediction power and is used on large

datasets

By combining learning algorithms, gradient

boosting works well with scientific data

XGBoost has high predictive power and accuracy;

regularized boosting helps reduce overfitting [51]

LightGBM is a faster algorithm that uses tree-based

algorithms [52]

Corey Wade, Kevin Glynn

Hands-on gradient boosting with XGBoost and

Scikit-learn: perform accessible machine learning

and extreme gradient boosting with Python

Packt; 2020

Ke G, Meng Q, Finley T, et al.

Lightgbm: a highly efficient gradient boosting

decision tree

Adv Neural Inf Process Syst 2017;30:3149–3157

Recurrent

neural

networks

(RNN)a

Designed to process sequential data such as time

series

Have been used to predict hospital readmissions

[53]

Ralf C. Staudemeyer, Eric Rothstein Morris

Understanding LSTM – a tutorial into long short-

term memory recurrent neural networks

arXiv 1909.09586 [preprint]. 2019

Long short-

term memory

(LSTM)a

A type of RNN designed to handle long-term

dependencies in sequential data [53]

Has been used to predict disease progression

Ralf C. Staudemeyer, Eric Rothstein Morris

Understanding LSTM – a tutorial into long short-

term memory recurrent neural networks

arXiv 1909.09586 [preprint]. 2019

K-nearest

neighbors

(KNN)

Can be used for classification or regression

problems

In classification, it stores all cases and classifies new

cases by a majority vote of k-neighbors measured

by a distance function [54]

The sum of the square of the difference between

the centroid and the data points within a cluster

determines the value of k for that cluster

Antonio Mucherino, Petraq J. Papajorgji, Panos

M. Pardalos

Data mining in agriculture

Springer Science & Business Media; 2009

K-means

clustering

An unsupervised algorithm that solves clustering

problems by picking a k number known as

centroid, and each data point forms a cluster with

the closest centroids [55]

Swati Patel

K-means clustering algorithm: implementation

and critical analysis

Scholars; 2019

Dimensionality

reduction

It identifies highly significant variables from vast

data sets where the data are unstructured or in

great detail [56]

Benyamin Ghojogh, Mark Crowley, Fakhri

Karray, Ali Ghodsi

Elements of dimensionality reduction and

manifold learning

Springer Nature; 2023

aMost commonly used to predict medical events
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phenotype, environmental factors, biomarkers,
as well as PFT results. The trained model can
then be used to predict the likelihood of asthma
exacerbations in the near future on the basis of
the patient’s data in the baseline period. This
approach holds the potential for application in
personalized medicine in asthma (Fig. 2d).

STUDIES USING MACHINE
LEARNING TO PREDICT ASTHMA
EXACERBATIONS

According to the ‘‘no free lunch theorem’’ there is
no single algorithm that can be applied to all
datasets homogeneously, making algorithm
selection a key decision when applying ML
[57, 58]. Thus, the use of ML to analyze features
of asthma creates the possibility to uncover
interactions between all potential features that
can produce clinical outcomes and that may
have not been considered until now, thereby
leading to better asthma care without increas-
ing the burden on patients and healthcare
practitioners.

Original research efforts in ML and asthma
were done in small clinical datasets and/or

using only genomics data. Results were com-
pared with predictions made by clinicians [59],
or those made in genome-wide association
studies (GWAS) [60], resulting in ML models
with lower accuracy in predicting asthma
exacerbations than those based on physicians’
opinions. In 2017, however, Finkelstein and
Jeong interrogated data from 7001 self-reported
records during a 7-day home telemonitoring
window and found that ML algorithms, such as
naı̈ve Bayesian classifier, adaptive Bayesian
network, and support vector machines (SVM),
respectively, were able to predict asthma exac-
erbations on day 8 with a sensitivity of 0.80,
1.00, and 0.84; a specificity of 0.77, 1.00, and
0.80; and an accuracy of 0.77, 1.00, and 0.80
[61]. Predictive modeling included asthma
symptoms, self-reported medication consump-
tion, asthma trigger exposure, and lung func-
tion assessed by peak expiratory flow (PEF).
Although using these parameters demonstrated
promising results, future predictive models for
asthma exacerbation should include other
potentially relevant predictive factors such as
genomic, clinical, sociodemographic, behav-
ioral, and environmental.

Additional studies have also used ML to
predict hospitalizations in children and adults
with acute asthma [62, 63]. One study in chil-
dren with acute asthma seen in the ED com-
pared four ML approaches using features from
29,392 patients (mean age ± SD, 7 ± 4.2 years)
[62]. Data used to predict hospitalizations
included clinical data available at the time of
triage, weather reports, neighborhood charac-
teristics, and viruses circulating in the commu-
nity. Four models were trained and validated,
including decision trees, least absolute shrink-
age and selection operator (LASSO) logistic
regression, random forests, and gradient boost-
ing machines (GBMs), and the area under the
receiver operating characteristic curve (AUC)
was calculated for each model. AUCs for each
model included decision tree, 0.72 (95% confi-
dence interval [CI] 0.66–0.77); logistic regres-
sion, 0.83 (95% CI 0.82–0.83); random forests,
0.82 (95% CI 0.81–0.83); and GBM, 0.84
(95% CI 0.83–0.85). Patient vital signs and
acuity, age, and weight, followed by socioeco-
nomic status and weather-related features, were

bFig. 2 Supervised, unsupervised, reinforcement, and deep
learning algorithms. a Linear regression and logistic
regression are among many supervised learning algorithms
and are trained on labeled data. The label can be either a
continuous outcome (linear regression) or a category
(logistic regression). b K-means clustering and hierarchical
clustering are examples of unsupervised learning algorithms
and use unlabeled data to discover hidden patterns and
data clusters. The output of the supervised learning can be
the clusters’ information, a dendrogram, or other visuals
that highlight notable patterns within the data. c Rein-
forcement learning algorithms train an agent to find the
optimal succession of actions that optimize a given task.
The agent acts within an environment, according to
defined rules and a reward system, and through trial and
error, the agent explores the whole solution space and
eventually identifies the optimal solution. d Deep learning
models are composed of multiple layers of artificial neural
networks and can be trained to predict continuous and
categorical variables, using both structured (i.e., tables) and
unstructured data (i.e., images, time series)
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the most important features predicting hospi-
talizations, with GBM identified as the best
predictor of hospitalization in the study.

In another study, Goto et al. tested four ML
algorithms (LASSO logistic regression, random
forest, GBM, and deep neural network [DNN])
on data from 3206 adults with asthma and
chronic obstructive pulmonary disease (COPD)
exacerbations who visited the ED [63]. In both
patient populations (asthma and COPD), GBM
was the best-performing approach and achieved
the highest discriminative ability (C-statistics
0.80 vs 0.68), reclassification improvement (net
reclassification improvement [NRI] 53%;
P = 0.002), and sensitivity (0.79 vs 0.53) over
the reference model. For the prediction of hos-
pitalizations, random forest provided the high-
est discriminative ability (C-statistics 0.83 vs
0.64), reclassification improvement (NRI 92%;
P\ 0.001), and sensitivity (0.75 vs 0.33).

Zein et al. analyzed data extracted from
electronic health records (EHRs) of 60,302
patients with asthma and tested three different
models (logistic regression, random forests, and
GBM) to predict three different outcomes
occurring in 19,772 patients with acute asthma
[64]. Of the three asthma outcomes, 32.8%
required oral glucocorticoid bursts, 2.9%
required ED visits, and 1.5% required hospital-
izations. The three outcomes were predicted
best by light gradient boosting machine, with
an AUC of 0.88 (95% CI 0.86–0.89). Risk factors
for all three outcomes included age and use of
long-acting b-agonists, high-dose inhaled glu-
cocorticoids, or chronic oral glucocorticoid
therapies. In a subgroup analysis of 9448
patients with spirometry data, adding results
from PFTs did not improve the models’ predic-
tive performances.

More recently, a predictive model of asthma
exacerbations used data downloaded from
ProAir Digihaler� together with clinical and
demographic information [65]. The generated
model predicted an impending exacerbation
over the following 5 days with high diagnostic
accuracy (AUC 0.83). The most significant fac-
tors contributing to the model were features
based on the mean number of inhaler puffs
during the 4 days before prediction. Similarly,
Zhang et al. analyzed 728,535 records of daily

peak expiratory flow and asthma symptoms in
2010 patients [24]. The authors used logistic
regression, decision tree, naı̈ve Bayes, and per-
ceptron algorithms to assess the primary out-
come of exacerbation detection on the same
day, or up to 3 days in the future. The best
model used logistic regression, which showed
an AUC of 0.85 with a sensitivity of 90% and
specificity of 83% for severe asthma
exacerbations.

Tong et al. published results from an accu-
rate model using data from patients with
asthma treated at Intermountain Healthcare
between 2011 and 2018 [66]. The authors
inputted 234 candidate features leading to the
analysis of 82,888 data instances to predict
asthma exacerbations in the following
12 months. The XGBoost algorithm was used
because it deals with missing values and calcu-
lates the importance of each feature according
to its contribution to the model. The final
model, using XGBoost and 71 features in
descending order of their importance, yielded
an AUC of 0.90 with an accuracy of 91%, sen-
sitivity of 70%, and specificity of 91%. The top
10 features associated with exacerbations were
all related to loss of asthma control and African
American race. To calculate the probability of
an asthma exacerbation occurring in children,
Overgaard et al. developed a model that yielded
an AUC of 0.80 using logistic regression,
whereas random forest showed an AUC of 0.79
and perceptron showed an AUC of 0.78 [67].
Their purpose was to further conduct a clinical
trial to assess safety, clinical outcomes, care
quality, care cost, and satisfaction of end users
(e.g., clinicians, patients, and caregivers) com-
paring ML algorithms versus standard care for
clinical decision-making.

ML has also been used to assess the influence
of environmental exposures on asthma exacer-
bations using conditional random forest, con-
ditional tree, and generalized linear models.
Conditional random forest and conditional tree
identified five features (prednisone use, race,
particulate matter exposure, obesity, and gen-
der) to be of significant importance in the
association with exacerbations. The same fea-
tures (except for gender) were replicated using a
generalized linear model [68]. In addition,
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Haque et al. used a DNN regression (DNNR)
model to predict asthma exacerbations on the
basis of Asthma Control Test (ACT) scores,
weather triggers (temperature, humidity, pres-
sure, and windspeed) and demographic data,
with their approach achieving an accuracy of
94% [69].

Another aspect of acute asthma is the num-
ber of readmissions that can occur after the
initial treatment of acute asthma in the ED. In a
study of 81 patients with asthma, Halner et al.
developed multivariate random forest models to
identify predictors of treatment failure defined
as the need for additional systemic corticos-
teroids and/or antibiotics, hospital readmission,
or death within 30 days of the initial ED visit
[70]. Forty-three patients failed treatment,
which was predicted by an 11-variable random
forest model (including medication, history of
exacerbations, symptoms, and quality of life)
with an AUC of 0.81. In this regard, de Hond
et al. recently used home monitoring of peak
flow rates and symptoms in 266 patients to
adjust their asthma medications and avert
exacerbations [71]. These authors compared ML
algorithms (XGBoost vs one-class SVM) with a
clinical rule and logistic regression. The AUCs
were 0.85 for XGBoost and 0.88 for logistic
regression. Clinical application, however,
remains a challenge owing to the low incidence
of events, which may be overly sensitive and
create false alarms [72]. Additionally, because
asthma is the result of the patient interacting
with the environment, both patient activity and
environmental data should be included in any
ML approach to augment clinical decision-
making.

The ML algorithms used in the aforemen-
tioned studies found that the most common
clinical features associated with asthma exacer-
bations were loss of asthma control and poor air
quality or weather changes; intake of medica-
tions and use of PFTs were less clearly linked to
asthma exacerbations with their relevance
depending on the patient populations and set-
tings. Table 2 contains a concise summary of
the studies described above.

PROS AND CONS OF USING
MACHINE LEARNING TO PREDICT
ASTHMA EXACERBATIONS

There are clear advantages to using ML
approaches to predict asthma exacerbations
with greater accuracy than it is being done
today. Such advantages include the more accu-
rate prediction of asthma exacerbation and
prognosis through the analyses of large data-
bases (as mentioned in the studies discussed
above). ML approaches are faster and less
expensive than clinical trials as they reduce the
need for manual data entry and analyses, and
detect patterns that may be more difficult for
human experts to detect [73, 74]. The ability to
automatically integrate the different dimen-
sions that are part of the asthma syndrome and
its timeline of deterioration leading to exacer-
bations can only be achieved using ML owing to
its lesser scope for human error. In this regard,
new features or data patterns that can predict
asthma exacerbations could be detected (as has
been done in other areas of medical care). For
instance, studies have demonstrated that ML
can prevent adverse events such as healthcare-
associated infections, adverse drug events,
venous thromboembolism, surgical complica-
tions, pressure ulcers, falls, decompensation,
and diagnostic errors [75]. Another advantage
of using ML is the ability to implement thera-
peutic measures by predicting the future risk of
deterioration at the point-of-care [76]. Finally,
ML may also be applied retrospectively in
specific patient subgroups to understand/iden-
tify likely clinical outcomes depending on
treatment selected, sometimes described as real-
world evidence (RWE). There exist some ethical
challenges that need to be taken into consider-
ation when planning to use AI in healthcare.
First, informed consent must explain when (and
if) AI has been used to provide a therapeutic
recommendation or to inform prognosis and
risk of future events. Explaining to the patient
the type of AI used and how it has augmented
the accuracy of the prediction is needed, while
‘‘black box’’ algorithms (when the developer
cannot share details of the algorithm) should be
avoided [77]. Black box approaches are those in
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Table 2 Summary of studies employing ML to predict asthma outcomes

References Algorithms
implemented

Predictive features Notes

Farion et al.

[59]

Naı̈ve Bayes Not assessed Predictions made by physicians were more

accurate than those made with the Naı̈ve

Bayes model or based on PRAM score

Xu et al.

[60]

Random

forest

160 SNPs Highest predictive power was obtained by

incorporating the 160 most significant

SNPs

Finkelstein

et al. [61]

Bayesian

classifier,

Adaptive

Bayesian

network,

Support

vector

machines

Not assessed Prediction accuracy drops by decreasing the

prediction time windows (from day 7 to

day 1)

Blakey et al.

[18]

Logistic

regression

History of asthma-related events (acute oral

corticosteroid courses, emergency visits),

frequency of healthcare utilization, lung

function, smoking status, blood

eosinophilia, rhinitis, nasal polyps, eczema,

gastroesophageal reflux disease, obesity, age,

and sex

Patel et al.

[62]

Decision

trees,

Lasso logistic

regression,

Random

forests,

Gradient

boosting

machines

Oxygen saturation, respiratory rate, triage

acuity, pulse rate, weight-for-age z-score,

age, socioeconomic status, and weather

variables

Gradient boosting produced the highest

predictive power
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Table 2 continued

References Algorithms
implemented

Predictive features Notes

Goto et al.

[63]

Lasso

regression,

Random

forest,

XGBoost,

Deep neural

network

Critical care outcome: arrhythmia,

respiratory rate, congestive heart failure,

temperature, oxygen saturation, arrival

mode (ambulance vs walk-in), asthma

status

Hospitalization outcome: age, congestive

heart failure, arrival mode, asthma status,

COPD status, oxygen saturation,

respiratory rate

XGBoost and random forest were the best-

performing algorithms for critical care and

hospitalization prediction, respectively

Zein et al.

[64]

Logistic

regression,

Random

forest,

LightGBM

Non-severe exacerbation outcome: history of

sinusitis, treatment with combination iCS

and LABA or with HDiCS, and

leukotriene inhibitors, high BMI,

eosinophilia, low blood albumin

Emergency department visit outcome: age,

Black/African American race, a history of

non-severe exacerbations, history of severe

asthma, eosinophilia, low blood albumin

Hospitalization outcome: a history of non-

severe exacerbations, low hemoglobin, high

BMI

LightGBM generated the best predictions for

non-severe exacerbation, emergency

department visit, and hospitalization

Noble et al.

[19]

Logistic

regression

Previous hospitalization, older age, being

underweight, smoking, history of asthma

attacks and blood eosinophilia

Lugogo

et al. [65]

Gradient

boosting

machines

Mean number of daily albuterol inhalations

during the 4 days prior to the prediction,

inhalation parameters in the 4 days prior to

prediction (PIF, inhalation volume, and

inhalation duration), and comparison to

the baseline values for these inhalation

parameters

Zhang et al.

[24]

Logistic

regression,

Decision tree,

Naı̈ve Bayes,

Perceptron

algorithms

Not assessed Logistic regression was the best-performing

model
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Table 2 continued

References Algorithms
implemented

Predictive features Notes

Tong et al.

[66]

XGBoost Features related to prior emergency

department visits and asthma medications,

race

Overgaard

et al. [67]

Logistic

regression,

Support

vector

machine,

Random

forest,

Gaussian

Naı̈ve

Bayes,

Perceptron

Not assessed Three best-performing algorithms were

logistic regression, random forest, and

perceptron

Lan et al.

[68]

Conditional

random

forest,

Conditional

tree,

Generalized

linear

model

Top four predictive features were prednisone

usage, race, daily particulate matter

exposure, and obesity

Haque

et al. [69]

Deep neural

network

regression

Not assessed Model was trained to predict ACT score

Halner

et al. [70]

Random

forest

Top five predictors were breathlessness,

sputum purulence, use of long-acting

muscarinic antagonist, number of

unscheduled primary care and emergency

department visits in the previous

12 months, and ICS use

Outcome was treatment failure, defined as

the need for additional SCS and/or

antibiotics, hospital readmission or death

within 30 days of initial emergency

department visit
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which the inner workings of the system are not
easily explained, but they are often used in ML
algorithms that are trained on large amounts of
data. These algorithms can be very accurate at
making predictions but can also be difficult to
interpret, meaning that it is not always clear
why they make the predictions they do. There-
fore, there are several reasons why black box
approaches should be avoided in healthcare.
First, they can lead to a lack of trust between
patients and healthcare providers. Second, black
box approaches can make it difficult to identify
and address bias in healthcare algorithms.
Third, black box approaches can make it diffi-
cult to improve healthcare algorithms over
time. If it is not clear how an algorithm works, it
can be difficult to identify the factors that
contribute to its accuracy and to make changes
that can improve its performance. This can lead
to algorithms that are less accurate and less
effective over time.

Additionally, the data currently available for
use in AI are often unstructured, simply not in
any documented form, and/or disputed. High-
quality, large, annotated databases may prove
to be quite fruitful in minimizing patient harm
in the future (caused by potentially incorrect
predictions) [78]. Until this happens, patients
must be informed of potential pitfalls when
implementing AI in healthcare decisions.
Because all AI input is developed by humans, it
is subject to human bias. This can occur when

algorithms are trained in limited demographic
groups leading to a lack of generalizability and
unintended social bias. If the data are biased,
the algorithm will perpetuate these biases,
leading to incorrect predictions [79]. Finally,
with regards to data privacy, EHRs contain
confidential patient information; searching
such data using algorithms may constitute a
breach of patient privacy.

CONCLUSION

Despite the use of inhaled corticosteroids,
bronchodilators, leukotriene modifiers, and
biologics for T2-high and T2-low asthma, some
patients with asthma continue to suffer from
acute exacerbations. Predicting asthma exacer-
bations with better accuracy using disease
management programs and RWE can signifi-
cantly reduce asthma-related morbidity and
healthcare costs.

Each patient’s asthma journey and disease
severity are influenced by a constellation of
factors, including their medical history, bio-
marker phenotype, pulmonary function, level
of healthcare system support, compliance to
prescribed therapy, comorbidities, personal
habits, and environmental conditions. Such
aspects of the patient’s experience can be ana-
lyzed using ML to augment clinical decision-
making and provide appropriate treatment to

Table 2 continued

References Algorithms
implemented

Predictive features Notes

de Hond

et al. [71]

XGBoost,

Support

vector

machines,

Logistic

regression

Not assessed Logistic regression provided the best

predictive performance

FEV1 forced expiratory volume in 1 s, PRAM pediatric respiratory assessment measure, SNPs single nucleotide polymor-
phisms, iCS inhaled corticosteroids, LABA long-acting beta agonists, HDiCS high-dose inhaled corticosteroids,
ACT Asthma Control Test, SCS systemic corticosteroids
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improve both asthma prognosis and the overall
quality of life.

It must be noted that there are two metrics
used to evaluate performance of an ML model
in binary classification tasks: precision and recall.
These measure how accurate and how complete
the model’s positive predictions are, respec-
tively. In general, it is desirable to have both
high precision and high recall. However, in a
clinical diagnosis system, one may prioritize
recall over precision because it is more impor-
tant to identify all patients at risk of exacerba-
tions, even if some of the patients with less
severe asthma may present with comparatively
lower risk of exacerbations.

Additionally, while ML works well in very
large and/or well-labeled datasets, it may be
difficult to apply ML directly in smaller and/or
less defined datasets. In such circumstances, an
initial step of natural language processing (NLP)
could help provide a curated dataset as input to
the ML model. Clinical NLP can be applied to
clinician notes to extract clinical features such
as clinic visits, hospital treatments, and PFTs
among other features in the patient timeline
that can serve as ML inputs. Furthermore, the
interpretability of ML algorithms by patients
and healthcare professionals can be improved
by using simpler algorithms that can explain
their predictions in plain language, or by visu-
alizing the algorithm’s decision-making process
that can then be audited by humans.
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