
REVIEW

Possible Preventative/Rehabilitative Role of Gliflozins
in OSA and T2DM. A Systematic Literature Review-
Based Hypothesis

Vincenzo Maria Monda . Francesca Porcellati . Felice Strollo .

Alessandro Fucili . Marcello Monesi . Ersilia Satta . Sandro Gentile

Received: April 14, 2021 / Accepted: May 13, 2021 / Published online: July 17, 2021
� The Author(s) 2021

ABSTRACT

Obstructive sleep apnoea (OSA) is characterized
by frequent apnoea episodes during sleep due to
upper airway obstruction. The present review
summarizes current knowledge on inter-rela-
tionships between OSA and type 2 diabetes
mellitus (T2DM) and suggests the former as a
possible target for sodium-glucose co-trans-
porter-2 inhibitors (SGLT-2i). Based on patho-
physiological mechanisms underlying OSA

onset and renal SGLT-2 effects, we suggest that
SGLT-2i indications might expand beyond cur-
rent ones, including glucose, lipids, uric acid,
blood pressure, and body weight control as well
as chronic heart failure and kidney disease
prevention.
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Key Summary Points

Obstructive sleep apnoea (OSA) is a
syndrome often accompanying type 2
diabetes mellitus (T2DM) and
precipitating severe cardiovascular events

The authors conducted a thorough,
systematic literature search to analyze all
interrelations known to date

This review summarizes current
knowledge on inter-relationships between
OSA and T2DM and on gliflozins (SGLT-
2is), i.e., innovative glucose-lowering
drugs increasingly extensively utilized in
T2DM because of their inherent null
hypoglycaemic risk

Gliflozins also prove effective against
impaired cardiovascular and renal
function, and one of them, at least, does
so even in the absence of T2DM

Based on the underlying pharmacological
mechanisms, gliflozins might also be
promising as preventative, rehabilitative,
and therapeutic tools against OSA

DIGITAL FEATURES

This article is published with digital features,
including a summary slide to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14547447.

INTRODUCTION

Frequent episodes of apnoea characterize
obstructive sleep apnoea (OSA) during sleep due
to upper airways obstruction [1–2]. Its diagnosis
relies on an altered oxygen desaturation index
(ODI) [3], apnoea/hypopnoea index (AHI), res-
piratory disturbance index (RDI) and respiratory
effort-related arousals (RERAs) [4–6],

polysomnography (PSG) [7], and especially the
association of typical symptoms (e.g., unre-
freshing sleep, daytime sleepiness, fatigue or
insomnia, awakening with a gasping or choking
sensation, loud snoring, or witnessed apnoeas)
with an RDI C 5 events per hour of sleep.

Despite being known for decades, OSA still
has controversial clinical features, including
unrefreshing sleep, daytime fatigue, and
impaired concentration, requiring further
investigation [8–10].

According to the so-called Chicago criteria
[11], OSA’s severity is given by the AHI value as
follows: absent (\ 5), mild (5–14), moderate
(15–29), and severe (C 30) [2].

Aim

The present review aims to summarize current
knowledge on inter-relationships between OSA
and type 2 diabetes mellitus (T2DM) and sug-
gests the former as a possible target for sodium-
glucose co-transporter-2 inhibitors (SGLT-2i).
This way, SGLT-2i indications might expand
further beyond current ones, including glucose,
lipids, uric acid, blood pressure, and body
weight control as well as chronic heart failure
and kidney disease prevention.

METHODS

The information contained in the present
review comes from a thorough analysis of the
literature concerning T2DM, OSA, and
SGLT2.is. Online databases (PubMed, Embase,
Scopus, and Web of Science) were systematically
searched for English-language publications
dealing with any relationship between T2DM,
related complications, or frequently associated
diseases and OSA up to October 2020. The ref-
erence list of included papers also served as an
additional source of information on the topic. A
group of keywords was used in the systematic
search, including: (‘‘OSA’’ or ‘‘T2DM’’ or ‘‘T2DM
complication’’) AND (‘‘T2DM comorbidities’’ OR
‘‘cardiometabolic’’ OR glycaemia OR ‘‘insulin
resistance’’ OR ‘‘inflammatory Cytokines’’ OR
‘‘obesity’’ OR ‘‘leptin’’ OR ‘‘SGLT2-1) AND
(’’trial‘‘ OR ’’randomization*‘‘ OR ’’control‘‘ OR
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’’clinical‘‘ OR ’’meta-analysis‘‘). Studies meeting
the following criteria were excluded: \ 2-week
duration, non-randomized clinical trials, and
cross-sectional studies.

Two independent reviewers (MM and SG)
completed the data extraction process accord-
ing to eligibility criteria. First, they evaluated
paper quality by the bias assessment tool,
according to the following domains: random
sequence generation (selection bias), allocation
concealment (selection bias), blinding of par-
ticipants and personnel (performance bias),
blinding of outcome assessment (detection
bias), incomplete outcome data (attrition bias),
and selective reporting (reporting bias). Then,
they classified each domain as: ‘‘low risk of
bias’’, ‘‘high risk of bias’’, or ‘‘unclear risk of
bias’’. Finally, based on the results obtained
from the domains, they defined the overall
quality of such studies as good (low risk for
more than three domains), acceptable (low risk
for three domains), and poor (low risk for less
than three domains). This method allowed
selecting 66 highly specific papers and 138
related publications.

No statistical analysis was possible or
required as our paper is a review.

RESULTS

We systematized all the information collected
from the literature under separate sections
devoted to individual conditions and organ-
specific pathologies.

Epidemiology

OSA has an estimated 3:1 to 5:1 male-to-female
ratio [12] and is 2–3-fold more prevalent in
older adults ([65 years) [13–14]. Among mid-
dle-aged people, estimated symptomatic OSA’s
prevalence is about 4% in men and 2% in
women [15], and asymptomatic OSA’s preva-
lence is 20–30%, with a failed detection risk as
high as 93% in women and 82% in men [16].
However, in the overall male adult population,
it is even as high as 50% [17–18], with a con-
tinuously increasing trend within the

developed countries, partly due to the parallel
increase of the obesity rate [19].

Indeed, a major risk factor for OSA is visceral
obesity [12, 20–22]. The higher the obesity
degree, the more severe OSA is, with a close
association with hypertension, coronary and
cerebral vascular disease, and significantly
increased all-cause mortality among people
with untreated sleep disorders regardless of age,
sex, and body mass index (BMI) [23]. In aged
subjects, the ODI proved to be significantly
associated with T2DM and three components of
the metabolic syndrome, including hyper-
glycemia, hypertriglyceridemia, and essential
arterial hypertension (EAH) [24].

OSA and T2DM

An extremely variable prevalence of OSA in
T2DM has been reported [25–30], mostly rang-
ing from 24% to 36% [31–32], and sometimes
even 70% [12]. The risk for T2DM in patients
with OSA, in turn, has been well known for
decades. It ranges 30–71% and is higher for an
AHI[30 [31–34]. In addition, diabetes-related
foot disease, insulin treatment, obesity, coro-
nary heart disease (CHD), and depression are
the most relevant risk factors for OSA in T2DM
patients [35].

OSA and Autonomic Nervous System
Dysfunction

The pathophysiological link between T2DM
and OSA might be, at least in part, the activa-
tion of the sympathetic branch of the auto-
nomic nervous system (ANS) by acute hypoxia
occurring during sleep apnoea/hypopnoea epi-
sodes and consequent night respiratory effort-
related arousals (RERAs) [36], eventually exac-
erbated by hypercapnia [37]. Consequential
massive catecholamine release results in insulin
resistance both directly and through increased
cortisol output [38], contributing to a feed-for-
ward cascade of adverse events generated by
sleep loss, sleep fragmentation, hypoxia, and
leading to weight gain, insulin resistance, and
T2DM [39].
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Moreover, aortic and carotid chemorecep-
tors, which regulate the SNS activity in response
to changes in pH values, hypoxia, and hyper-
capnia, are activated, especially in patients with
OSA and metabolic syndrome [40–41]. In nor-
mal sleep, despite eliciting increased central SNS
outflow, hypoxic or hypercapnic chemoreflex
activation triggers hyperventilation as well,
which, in turn, inhibits SNS activity [40, 42–43].
Moreover, chemoreceptor-related SNS activa-
tion increases blood pressure (BP), which
attenuates chemoreflex outputs through carotid
arterial baroreceptors 43, i.e., the mechanism
underlying the 10–20% nighttime, sleep stage-
related BP lowering compared to waking hours
observed in healthy subjects, known as ‘‘noc-
turnal BP dipping’’ [44–45].

Conversely, the peripheral chemoreflex trig-
gered by apnoea-dependent hypoxia and
hypercapnia without hyperventilation results in
SNS-dependent vasoconstriction [40] and, when
repeating over time, impairs carotid sinus and
aortic baroreceptor sensitivity [46]. Conse-
quently, any longstanding apnoea/hypopnoea
syndrome may cause baroreceptors to ‘‘reset’’ at
higher baseline BP levels throughout the day
[40], thus precipitating chronic SNS activation
[47–48] with increased BP and heart rate (HR).
EAH and other adverse cardiovascular outcomes
[40] will follow soon, thus suggesting to take the
‘‘non-dipping’’ phenomenon as a clinical mar-
ker of increased risk for OSA in hypertensive
patients [40]. However, nighttime continuous
positive airway pressure (CPAP) can counteract
both chemoreceptor over-activation and
baroreceptor hyporesponsiveness [49–52].

Therefore, OSA can exacerbate preexisting
autonomic nervous system (ANS) dysfunction
in T2DM patients. Indeed, patients with
EAH ? T2DM undergo more prominent
peripheral SNS activation signs and insulin
levels than those with either disease [53], which
suggests that ANS dysfunction may be related to
increased plasma insulin levels in those patients
[53].

Moreover, in people with T2DM and car-
diovascular autonomic neuropathy (CAN) an
imbalance between SNS and parasympathetic
vagus nerve (VN) activity was described due to
either an absolute or a relative decrease in VN

firing rate [54]. This may represent another self-
sustained pathophysiological mechanism
underlying SNS hyperactivity in the presence of
OSA [12].

As opposed to what was observed in type 1
diabetes mellitus (T1DM), in patients with
recent-onset T2DM, the decrease in cardiac VN
activity and baroreflex sensitivity is strongly
associated with hepatic steatosis, thus suggest-
ing the latter to have a role in early
hypoparasympathetic-type CAN in T2DM [55].
However, to describe this mechanism in greater
detail, we have to outline that, despite insulin
resistance contributing to early cardiovagal
suppression in both DM types, the lower glu-
cagon-stimulated insulin levels compensatorily
increase parasympathetic tone in T1DM [56].
CAN has been reported to occur early in T2DM
with a prevalence of 1.8%—or up to 15.3%
when defined by the presence of at least two
borderline and one pathological test, suggesting
the need for ruling out CAN as early as possible
in patients with T2DM [57].

According to some authors, OSA may induce
resistance to body weight (BW)-lowering effects
exerted by leptin [58] through b-3 lipolytic
adipose tissue receptors [59]. The underlying
mechanism seems to be SNS hyperactivity-re-
lated receptor downregulation with compen-
satory increased leptin concentrations [60] and
consequent increased pro-inflammatory cyto-
kine secretion [61–62]. Also, due to the selective
nature of leptin-resistance, i.e., preserving car-
diovascular effects [63], leptin-associated
enhanced sympathetic nerve outflow [60]
increases BP [64] and HR, thus paving the way
to cardiovascular complications [65–66].

OSA and Diabetic Peripheral Neuropathy

A strong association also exists between OSA
and diabetic peripheral neuropathy (DPN),
being the rate of distal electroneurographically
detected polyneuropathy twice as high in
patients with newly diagnosed OSA as in con-
trols (71% vs. 33%, respectively, p\0.01) and
improving significantly after nasal continuous
positive airway pressure treatment (CPAP)
[67–68].
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DPN seems to have a 35.2% rate in mixed
T1DM and T2DM [69] and to be significantly
associated with OSA in T2DM patients [70].
Indeed, OSA occurs more frequently in T2DM
patients with DPN [71], where it comes prefer-
entially with lower intra-epidermal nerve fiber
density, poly-adenosine-diphosphoribose poly-
merase (PARP) activation, and diabetic foot
ulceration [72], most likely due to increased
nitrosative/oxidative stress, and impaired
microvascular regulation [70].

OSA and Diabetic Kidney Disease

OSA is also significantly associated with diabetic
kidney disease (DKD)—even at its early stages—
and any other diabetes-related complications in
T2DM [73], probably as a result of AH [74].

Baseline OSA parameters, especially AHI, are
independent predictors of future estimated
glomerular filtration rate (eGFR) absolute value
and change over time (i.e., 2.5 years on aver-
age). After controlling for multiple con-
founders, including OSA, the serum
nitrotyrosine concentration emerges as an
independent predictor of final eGFR and of
eGFR change over time [75].

Also, CAN is an independent predictor of
9.6-year eGFR decline [76], with a significant
association with CKD onset [77], thus suggest-
ing that CAN can further exacerbate OSA-re-
lated damage to the kidney in patients with
T2DM and OSA [75].

OSA was also associated with CKD in
patients without diabetes in several cross-sec-
tional and longitudinal observational studies,
mainly depending on disease severity [78–82].
Moreover, patients with end-stage renal disease
(ESRD) have a 50% to 60% prevalence of OSA
[83–85] in favour of a two-way and mutual
association between CKD and OSA [86].

OSA and Diabetic Retinopathy

Although the association between OSA and
diabetic retinopathy (DR) has been a contro-
versial issue in the past [87], a recent, large
meta-analysis suggests OSA is significantly
associated with increased DR risk in both DM

types [88]. The association between DR (29%
non-proliferative [NPDR] and 48% proliferative
[PDR]) and sleep-disordered breathing (SDB) is
robust [88–90]. Also, intermittent nocturnal
hypoxia and related desaturation/reoxygena-
tion phenomena are supposed to be the main
underlying mechanisms [88–90], with inter-
mittent nocturnal hypoxia and related desatu-
ration/reoxygenation phenomena supposed to
be the main underlying mechanisms [89–90]
together with the nocturnal ‘‘non-dipping’’
phenomenon and daytime BP variability inde-
pendently increasing the risk for cardiovascular
diseases [91] and retinopathy in patients with
T2DM [92]. Also, OSA is known to be an inde-
pendent factor predicting progression to pre-
proliferative/proliferative DR (OR, 5.2,95% CI
1.2–23.0, p = 0.03) [91], thus likely having a
prominent role in the pathogenesis of severe
sight-threatening clinical pictures [93].

Macrovascular Complications

OSA is associated with diabetic macrovascular
complications, most often coronary heart dis-
ease (CHD) and stroke, atrial fibrillation (AF),
and heart failure (HF) [94], and SDB acts as a
predictor of incident CHD, AF, and HF [95].

Several data collected in obese patients with
T2DM show the most severe AHI scores associ-
ated with an increased risk of major CV events
[96–98]. For example, the cross-sectional, lon-
gitudinal adult-population-based Wisconsin
Sleep Cohort Study showed that moderate to
severe SDB (AHI[ 20) was significantly associ-
ated with the prevalence of stroke over the next
4 years and might even contribute to the
occurrence of such an event [99].

In the Sleep Heart Health Study (SHHS)—a
multi-centre, prospective cohort study on car-
diovascular consequences of OSA initiated in
1994—the association between OSA and stroke
proved significant only in men after controlling
for all possible covariates (OR 2.86, CI 1.10,
7.39) [100]. Also, after adjusting for multiple
risk factors, OSA proved to be a significant pre-
dictor of incident CHD (myocardial infarction,
revascularization procedure, or CHD death)
only in men B 70 years of age [101].
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In conclusion, OSA seems to be associated
with an increased risk for stroke rather than
CHD.

Pathophysiology of T2DM Micro-
macrovascular Complications in Patients
with OSA

The bidirectional association between OSA and
T2DM also involves microvascular and
macrovascular complications [102–103].
Advanced glycation end product (AGE) accu-
mulation along with increased protein kinase C,
polyol, and hexosamine pathway activity could
lead to the overexpression of reactive oxygen
species (ROS) and pro-inflammatory cytokines,
all of which have a role in diabetic complica-
tions [70, 104–108]. Indeed, some papers sug-
gest an association between OSA and markedly
increased intracellular ROS concentrations [in-
cluding mainly superoxide ion (O-), nitric
oxide (NO), and hydrogen peroxide (H2O2)],
which, by overwhelming antioxidant capacity,
chemically modify lipidic, protidic, and DNA
macromolecules [109–114].

Based on such mechanisms, chronic inter-
mittent hypoxia (CIH) proves to induce overall
pancreatic beta-cell dysfunction in mice
through increased mitochondrial ROS concen-
trations, resulting in insulin resistance, defec-
tive proinsulin processing, and impaired
glucose-stimulated insulin secretion. A mito-
chondrial ROS-scavenger treatment, in turn,
can restore such changes [111].

Thus, referring to OSA-diabetes interactions,
repeated nocturnal hypoxia/re-oxygenation
episodes contribute to common pathogenic
mechanisms of micro- and macro-vascular dia-
betic complications. This occurs essentially
through apnoeic-dependent lower oxygen
availability and subsequent reoxygenation-re-
lated ROS formation at breath resumption
[102], further increasing oxidative stress-related
systemic inflammation, endothelial cell dys-
function, SNS, and renin-angiotensin system
activation in a self-sustained vicious cycle [102].

Indeed, exceptionally high levels of pro-in-
flammatory cytokines including tumor necrosis
factor (TNF)-a, interleukin-6 (IL-6) and IL-8, and

C-reactive protein—also widely recognized as
significant cardiovascular risk markers—are in
common in both OSA [115–118] and T2DM
patients [119–121] and decrease after continu-
ous positive airway pressure (C-PAP) treatment
[122].

Also, AGE generation and tissue accrual
resulting from covalent, non-enzymatic bind-
ing between glucides (endowed with reducing
properties) and lipid, protein, or nucleic acid
amine residues cause cell damage, eventually
contributing to diabetic microvascular compli-
cations in people with T2DM and OSA [102].
However, CIH is known to induce elevated cir-
culating AGE levels as a function of OSA sever-
ity in nondiabetic patients too [123–124] and,
in that case, may play a crucial role in insulin
resistance, thus entailing a high risk for T2DM
onset [125].

Another pathophysiological link between
OSA and diabetic micro-/macrovascular com-
plications is the upregulation of RAS, which can
be detrimental to renal function [86]. Indeed,
several cross-sectional [126–127] and longitu-
dinal studies [128–130] showed a CKD-to-OSA
association even in patients without T2DM. For
example, in a study carried out in China on
1259 critically ill patients (183 with a history of
OSA), the incidence of acute kidney injury (AKI)
in patients with OSA was higher compared with
those without OSA (41 vs. 57%, p\0.001) and,
at multivariate analysis controlling for age,
gender, race, and chronic and acute risk factors,
an independent association was apparent
between OSA and AKI (OR 1.53, 95% CI
1.04–2.24, p = 0.031) [131–132]. Such a detri-
mental effect of OSA on renal function may be
attenuated by long-term C-PAP therapy [132]
through improved insulin resistance, especially
in the case of associated obesity [133].

In conclusion, C-PAP treatment of OSA may
improve T2DM-related insulin resistance and
inflammatory status, thus reducing the pro-
gression of micro-/macrovascular T2DM com-
plications. However, the effects of other
therapeutic interventions on patients with
T2DM and OSA still await clarification.

4200 Adv Ther (2021) 38:4195–4214



Can Innovative Antihyperglycaemic
Drugs Improve Both OSA and Its Clinical
Consequences?

Besides exerting impressive antihyperglycaemic
effects, SGLT-2is prove favourable at both the
cardiovascular and renal levels [134–142]. The
four currently available drugs from this class
(canagliflozin, dapagliflozin, empagliflozin, and
ertugliflozin) ensure 90% active tubular resorp-
tion inhibition of glucose from glomerular fil-
trate [143–146], despite the remaining 10%
being still reabsorbed through SGLT-1 receptors
[147].

The already mentioned T2DM-related over-
active SNS causes widespread kidney chemore-
ceptors and baroreceptors to send activating
signals back to the brain, thus triggering a self-
sustained mechanism involving RAS stimula-
tion, increased systemic BP, and CKD progres-
sion [148]. Contrarily, SGLT-2is seem to reduce
SNS overactivity at least partially through
increased renal tubular glucose resorption [149],
thus strongly contributing to observed lower
cardiovascular risk and hospitalization rates
[150–151].

Based on animal models of DKD [152–154],
the mechanism behind favourable SGLT-2i
renal effects seems to be the activation of the so-
called tubule-glomerular feedback (TGF) as
described below. TGF consists of the A1-adeno-
sine receptor-mediated afferent glomerular
arteriole vasoconstriction [155] in response to
increased NaCl load to distal tubule [156–157].
Briefly, adenosine is known to act as a paracrine
signal through three receptor types, i.e., A1, A2
(further classified into high-affinity A2a and
low-affinity A2b subtypes), and A3 [157]. A2a
and A2b receptor activation attenuates TGF
response by inhibiting afferent glomerular
arteriole vasoconstriction through adenylate
cyclase-dependent cyclic adenose monophos-
phate (c-AMP) generation [158–159]. Contrar-
ily, c-AMP production is inhibited by A1
receptor activation, while A3 receptor function
is still unclear [158]. Such physiological mech-
anisms allow the kidney to contribute to BP
regulation through renin release by the cells
from the juxtaglomerular apparatus (JGA).
These cells ‘‘interpret’’ increased NaCl load to

the distal tubular region as a sign of extracellu-
lar fluid expansion, thus activating TGF and
causing afferent glomerular arteriole vasocon-
striction [160]. Therefore, it is conceivable that
TGF activation is the physiological mechanism
responsible for reduced SNS overactivation
contributing to cardiovascular and renal SGLT-
2i benefits as referred to OSA [150].

An additional favourable SGLT-2i effect on
OSA, also resulting from the TGF activation
mentioned above, may come from the recently
identified evidence that, as opposed to T1DM
patients [161], the glucose-dependent osmotic
diuretic effect of SGLT-2i is not associated with
increased RAS activity in T2DM patients [162].
Also, an experimental study performed in the
T2DM animal model showed that the plasma
renin activity or serum aldosterone level did not
increase after dapagliflozin treatment [163].

Another possible favourable effect of SGLT-
2is on clinical signs of OSA might come from
increased hematocrit (Ht), which might further
contribute to a reduced cardiovascular death
(CD) rate [164]. Indeed, SGLT-i stimulation
activates the adenosine-triphosphate (ATP)-de-
pendent Na ? -K ? pump to actively export
intracellular Na ? into the blood vessels against
a concentration gradient, thus depleting ATP
and O2 reserve [165]. The consequent pO2

decrease determines functional exhaustion of
renal tubular cells, thus inducing pro-inflam-
matory cytokine release, progressive interstitial
injury, and subsequent fibrosis [166] through
the transformation of fibroblasts into myofi-
broblasts [167], which, due to their lower ery-
thropoietin secretory capacity, contribute to
typical DKD-related anaemia [168]. Ht slowly
increases within the first 2 months into SGLT-2i
treatment independently of haemoconcentra-
tion and settles down after that [169]. Indeed,
opposite to what was observed for the diuretic
agent hydrochlorothiazide, erythropietin levels
and reticulocyte count seem to increase in
T2DM following dapagliflozin administration
[170]. Indeed, opposite to what is observed for
the diuretic agent hydrochlorothiazide, ery-
thropietin levels and reticolocyte count seem to
increase in T2DM following dapagliflozin
administration [170]. Furthermore, increased
erythropoietin levels (63%, p = 0.0078) were
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found following empagliflozin treatment in
patients with T2DM with preserved renal func-
tion (eGFR C 60 ml�min-1 �1.73 m-2) compared
to control subjects [171].

Finally, SGLT-2i-related weight loss, due to
visceral and subcutaneous adipose tissue
reduction [172–174], may have a favourable
effect on OSA. As shown in animal models of
T2DM and metabolic syndrome, it depends on a
sustained shift in energy substrates from car-
bohydrates to lipids with enhanced fatty-acid
betaoxidation-related lipolysis [175–179],
which proved to improve liver steatosis in
T2DM patients and in T2DM animal models
[180–184] and, as observed with canagliflozin,
CHD-associated epicardial fat accumulation
[185–187].

CONCLUSIONS AND FUTURE
PERSPECTIVES

As already shown for HF and CKD, the phar-
macological properties of SGLT-2is are sugges-
tive of a potential role in the treatment of OSA
independently of T2DM [136, 139, 141]. The
most likely mechanisms involved in such ben-
eficial effects of SGLT-2is on OSA are reported in
Fig. 1 and can be summarized as follows: (1)
sympathetic activity inhibiting effects
[150, 188], expected to improve both associated
CAN and cardiovascular and renal outcomes
significantly [54]; (2) direct benefits on renal
function [140–141], preventing associated CAN
from further self-sustaining kidney function
impairment [76–77, 86]; (3) Ht increasing
effects, expected to reduce nighttime hypoxia
[189–191].

Fig. 1 The putative favourable effects of SGLT-2is on
OSA. CAN cardiovascular autonomic neuropathy, HT
haematocrit, OSA obstructive sleep apnoea, PSG

polysomnography, RAS renin angiotensin system, SGLT-
2is sodium/glucose co-transporter-2 inhibitors, SNS sym-
pathetic nervous system. See text for details
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Currently, only a few, yet promising, data are
available on the effects of SGLT2-i in T2DM
patients with OSAS, showing a marked decrease
of AHI (31.9 ± 18.0 to 18.8 ± 11.5 events/h;
p = 0.003), HbA1c, body weight, and BMI in the
absence of any BP changes [192–193]. Also, in a
metformin add-on study, differently from gli-
mepiride, dapagliflozin significantly decreased
the AHI and Epworth Somnolence Scale,
triglycerides, and systolic and diastolic BP and
increased oxygen saturation and high-density
lipoprotein cholesterol (HDL-C) [161, 193–195].

Moreover, empagliflozin proved beneficial
for cardiovascular and renal outcomes regard-
less of OSA but could also reduce the risk for
OSA [196] by counteracting the hyperproduc-
tion and the hyperactivity of leptin [197],
whose levels are elevated in OSA patients [65].
The latter hypothesis is still controversial [198].
However, based on a recent meta-analysis of ten
randomized controlled trials, SGLT2i treatment
is associated with decreased leptin and
increased adiponectin levels in T2DM patients,
eventually contributing to metabolic SGLT-2i
benefits [199].

In conclusion, it is conceivable that the use
of SGLT-2is will represent a promising preven-
tative, rehabilitative, and therapeutic approach
for OSA patients regardless of coexisting dia-
betes by also slowing CKD progression and
managing CAN, both known to be closely
associated with OSA and T2DM. Thus, these
drugs might exert beneficial effects on CAN,
and, as CAN is a very early diabetes and OSA
complication [57], might be particularly indi-
cated in the early stages of both diseases to
reduce associated mortality risk [54, 188].

Indeed, expected OSA benefits might add to
the already established cardiovascular and renal
preventative effect of dapagliflozin in animal
T2DM models [163], and in humans, even in
the absence of T2DM as well [200].

Further clinical studies involving patients
with and without diabetes are needed to con-
firm our hypothesis on SGLT-2is benefits in OSA
rehabilitation and management and assess
whether such benefits reflect a single drug or a
whole class effect.
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