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Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in 
healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been 
widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial 
stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. 
The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. 
It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes 
in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke 
remains unknown and requires further investigation.
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Background

Muscle weakness, aberrant muscle tone, joint contractures, and 
other sequelae caused by a stroke can result in abnormal gait 
and increase the risk of falling, causing great inconvenience to 

the daily life activities of the patients. Normal gait is associated 
with good balance, postural control, adequate muscle strength, 
and rhythmic motor development. Additionally, patients need 
to have relevant motor learning skills such as environmental 
adaptation and information integration [1]. Clinically, most 
conventional rehabilitation therapies—including physical ther-
apy and occupational therapy—are used to help patients walk 
more easily by improving muscle strength and muscle tone 
in the affected limb. However, their abnormal gait pattern is 
difficult to correct. This abnormal asymmetrical gait may also 
lead to abnormal joint loading in the lower limb, resulting in 
joint injury, pain, and deformity [2], forming an irregular gait 
pattern and raising the risk of falling. For improving abnormal 
gait, new techniques like neuromodulation targeting the cer-
ebral cortex can be combined to improve the patient’s postural 
control and motor learning ability from the “top-down” to cor-
rect the issue. This is in addition to the traditional “bottom-up” 
rehabilitation therapy, which reshapes the injured cortex and 
subcortical network through movement and proprioceptive 
training of the affected limb. Non-invasive brain stimulation 
(NIBS) is the primary method for neuromodulation, including 
transcranial magnetic stimulation (TMS), transcranial direct 
current stimulation (tDCS), transcranial alternating current 
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stimulation (tACS), etc., producing long-term potentiation by 
modulating cortical excitability. Transcranial direct current 
stimulation (tDCS), transcranial alternating current stimula-
tion (tACS), and similar techniques alter the excitability of 
the cerebral cortex to produce long-term potentiation (LTP) 
or long-term depression (LTP). Long-term potentiation (LTP) 
or long-term depression (LTD) regulates cortical metabolism 
and electrophysiological activity by modulating cortical excit-
ability [3], which has been used in treating various neurologi-
cal diseases [4]. The primary motor cortex has been primar-
ily targeted in recent studies of NIBS interventions for lower 
extremity dysfunction following stroke, but the effects are 
uneven [5–8].

Due to the extensive connection between the cerebellum 
and the cortex, neocortex, and inferior spinal tracts, the cer-
ebellum can regulate posture control, balance support, and 
motor learning during walking [9, 10]. Additionally, studies 
have proved that most patients with supratentorial injuries have 
structurally sound cerebellum with a high level of plasticity 
[11–13]. Therefore, from the perspective of gait and motor 
learning theory, researchers have considered the research sig-
nificance and viability of the cerebellum as a new target to 
improve gait abnormalities.

In contrast to other non-invasive brain stimulation (NIBS) 
techniques, transcranial alternating current stimulation (tACS) 
can selectively influence oscillations at the stimulated fre-
quency through a targeted paradigm of periodic and mild 
perturbations. This capability allows for a more precise inves-
tigation of the mechanistic role of the cerebellum in walking 
and motor learning. It can aid in selecting methods for reshap-
ing the motor brain network in stroke patients [14]. However, 
existing literature has only demonstrated the enhancement of 
lower limb function in healthy individuals with 50 Hz, specifi-
cally in the gamma frequency range, tACS, and this approach 
has yet to be applied to stroke patients.

Therefore, we will summarize the crucial roles of the cer-
ebellum and gamma frequency oscillations in walking and 
motor learning. This will serve as a foundation to explore 
the application of gamma frequency cerebellar transcranial 
alternating current stimulation (tACS) in improving walking 
function in stroke patients. We conducted a comprehensive 
search on PubMed, Embase, and Web of Science, using key-
words such as “cerebellum,” “gamma oscillations,” “tACS,” 
“post-stroke cortical reshaping,” “walking,” and “motor 
learning.” We compiled and categorized the obtained con-
tent for presentation in this review.

Cerebellum and Gait

The cerebellum is an anatomically complex region of vari-
ous structures involved in motor planning, learning, execu-
tion, and movement patterning. According to structural and 

functional neuroimaging studies of the neural basis of bal-
ance, the cerebellum is the most critical brain region for con-
trolling balance, and postural control is directly correlated 
with cerebellar gray matter volume [15–17]. Poor balance 
and coordination and frozen gait can be caused by cerebellar 
hypoplasia or damage to the cerebellar structures [18]. The 
cerebellum can maintain balance by integrating somatosen-
sory input from the head and proximal parts of the body and 
direct connections to the contralateral cortical motor area 
[5, 19, 20]. Additionally, a study in post-stroke populations 
has shown a direct correlation between walking ability dur-
ing recovery and the degree of cerebellar activation [21]. It 
is clear that the cerebellum plays a crucial regulatory role 
in balance movements and that each of its various parts is 
important for postural control and motor regulation.

Cerebellar Involvement in Balance and Postural 
Control in Walking

The cerebellar vermis and nodes are the vestibular cerebel-
lum (cerebellum), and the cerebellar earth and middle por-
tion of the hemispheres are referred to as the spinal cerebel-
lum (old cerebellum). The combined synergy of each part 
plays a significant role [22] in muscle tone, posture, balance 
control, and limb coordination. Among them, the cerebellum 
is one of the supraspinal walking generators for anticipatory 
postural adjustment, walking initiation, and speed regula-
tion. It is connected to the spinal motor neurons through the 
brainstem [23]. The sensorimotor cortex, parietal lobe, vis-
ual cortex, thalamus, basal ganglia, cerebellum, and subtha-
lamic and midbrain (cuneate and pontine peduncle nuclei), 
as well as the vestibular, red, and olivary nuclei [24] that 
descend into the brainstem, are among the neural networks 
involved in walking. The cerebellum plays a crucial role in 
walking because of its extensive and intricate connectivity to 
these structures. According to the classical optimal feedback 
control theory [25] of postural control, the cerebellum plays 
a significant role in walking by being able to derive the best 
flexible multi-joint combinations of movement schemes and 
output them downward using the basic sensory integration 
information acquired with brain regions like the sensorimo-
tor cortex, visual cortex, and thalamus as well as the pre-
diction of movement sensations [26] by brain regions like 
the sensorimotor cortex and parietal cortex. An important 
location for the integration of feedback data is the vestibular 
cerebellum. The cerebellar nodes, the earthworm, the lob-
ule, and the pars cerebellar are just a few of the midline and 
caudal cerebellum structures where vestibular protrusions 
from the vestibular nuclei can be found. These structures are 
primarily involved in integrating vestibular information to 
control the head and trunk position during movement. The 
spinal motor centers, basal ganglia, and frontal lobes [27] 
are also affected by the vestibular cerebellum’s projections, 
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allowing for limb coordination and fine-tuning posture dur-
ing walking through visual [28, 29] and proprioceptive feed-
back. The cerebellum, cortex, and spinal cord control static 
postural functions [30] like head and trunk tilt. This circuit 
can also fine-tune limb movements during walking, allow-
ing the trunk or limbs to return to their original movement 
patterns and maintain dynamic balance after being perturbed 
by the outside world. To adapt to internal and external dis-
turbances, this motor pattern depends on a complex interplay 
between the vestibular, visual, and proprioceptive systems 
of the spinal cord, supraspinal motor networks, and sensory 
feedback, in which the cerebellum plays a key role.

Cerebellar Involvement in Motor Learning 
in Walking

In addition to postural control and balance coordination, the 
cerebellar structures’ interconnectedness can significantly 
affect gait in terms of its function in motor learning. First, the 
cerebellum can be crucial for learning new skills, and studies 
[31, 32] on animals have revealed that the paramedian lobule 
of the cerebellum’s cellular dendrites changes as new skills 
are learned. Lower activity in the cerebellar cortex’s lobules 
impacts how learned automatic tasks in the upper limbs are 
carried out [33]. Since “error prediction and correction” has 
long been thought to be the primary mechanism underlying 
cerebellar motor learning, olivary nucleus-cerebellar activ-
ity has been shown to enhance motor commands, and issue 
sustained motor commands through synaptic plasticity. The 
“trigger and store” theory [34] postulates that neural tracts 
from the olivary nucleus-cerebellar pathway connect to var-
ious cerebellum regions (like cerebellar cortical cells and 
nuclei). Plasticity occurs between these regions at multiple 
rates to correct or avoid errors, like completing classical asso-
ciative motor learning, and like the blink reflex. Patients with 
primary cerebellar hypoplasia have been shown [35] to have 
impaired blink reflexes, and patients with cerebellar stroke 
perform significantly worse [36]on continuous finger-tapping 
tasks and sequential tasks in consolidation when compared 
to unaffected controls. Learning new cognitive operations is 
also influenced by the extensive cerebellar-neocortical con-
nectivity 5 that results in cortico-cerebellar plasticity, and this 
motor learning also takes the form of learning new sequences 
[37] and predicting and correcting errors [38].

A recent study [39] demonstrates that depending on the 
pertinent loops and differences in signaling, motor learn-
ing patterns in the cerebellar-motor cortex, cerebellar-fron-
toparietal network, and cerebellar-spinal cord have com-
plex and higher-level influences, including “prediction and 
measurement of movement” in addition to new skill learn-
ing and error prediction correction, and they suggest that 
NMDA [40] receptor-dominated LTD loops in cerebellar 
parallel fiber-Purkinje cells [41] (or molecular lamina) are 

responsible. Thus, the cerebellum can play a significant role 
in associative motor learning and creating and maintaining 
sequential movements thanks to connections between the 
olivary nucleus and cerebellum and the cerebellum and the 
neocortex. This can be observed throughout the entire gait 
cycle of a human. Still, it is particularly evident when walk-
ing because gait trajectories and speeds must be constantly 
adjusted to maintain uninterrupted walking movements to 
accommodate environmental constraints like shifting road 
and terrain conditions [42].

Progress in the Study of the Effects of Cerebellar 
NIBS on Walking

Numerous NIBS interventions [43–45] targeting the cerebel-
lum have been tested in recent years to enhance motor learn-
ing from various perspectives, proving that the cerebellum 
has multiple effects on motor learning via different pathways. 
Belkhiria C et al. [46] discovered that when faced with a 
route change or needing to pass through a scene with nar-
row terrain, activation of the cerebellar-red nucleus and cer-
ebellar striatum was linked to motor readiness and sustained 
attention by functional MRI [47]. Koch G et al. [48] used 
TMS’s intermittent theta burst rhythm stimulation patterns 
to improve Berg Balance Scale scores and walking function 
of stroke patients. At the same time, EEG revealed specific 
activation of the parietal lobe, which is consistent with the 
combined effect of cerebellar effects on motor and frontopa-
rietal motor learning networks to improve gait. Studies focus-
ing on the modulation of normal and stroke gait at various 
targets of cerebellar NIBS in combination with traditional 
rehabilitation techniques like conventional physiotherapy or 
walking-assisted robots have grown in number [49, 50] This 
is due to the high plasticity of the cerebellum in movement 
and motor learning and the non-invasive and user-friendly 
benefits of NIBS. With bilateral high-accuracy cerebellar 
tDCS interventions in the dentate nucleus of the cerebellum 
and VIIb–IX in the lower extremity region of patients with 
posterior stage stroke, respectively, Solanki D et al. [51] dem-
onstrated improved scores on the 10-m walk test, Time Up 
and Go, and Berg Balance Scale. The findings of Picelli A’s 
team [52, 53] lend credence to the notion that augmenting 
robot-assisted gait training in chronic stroke patients with 
cathodal tDCS stimulation of the contralateral cerebellar 
hemisphere and cathodal DC stimulation can be beneficial.

Gamma Band Has a Significant Impact 
on Movement and Walking

EEG oscillations produced by neurons during brain activ-
ity are typically divided into five bands: beta (13–30 Hz), 
alpha (8–13 Hz), theta (4–8 Hz), delta (1–4 Hz), and gamma 
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(> 30 Hz) [54]. Among them, inhibitory interneurons and 
pyramidal cells [55] interact to produce EEG oscillations 
in the gamma band. Gamma oscillations affect perception, 
movement, memory, and emotion differently through exci-
tation-inhibition and inhibition-inhibition control of the spe-
cific synaptic connections between inhibitory interneurons 
and their peripheral excitatory neurons. Gamma rhythms 
are categorized as low gamma (25–40 Hz), medium gamma 
(40–65 Hz), and high gamma (65–85 Hz) [56] by the vari-
ous options for spatial information processing in the pri-
mary visual cortex. The basal ganglia–thalamic–cortex is the 
primary circuit of human movement. And localized single-
point transient gamma oscillations can be activated and form 
a gamma oscillation network [51] in multiple brain regions 
by coupling phase and amplitude, thus creating coherence 
with theta waves [57] in key brain regions such as hippocam-
pal pus and prefrontal to influence motor learning. After 
a stroke, the cortical network oscillations’ excitation and 
inhibition are out of balance and out of sync, affecting the 
injured lesion locally [58] and the functional connectivity 
between distal cortical loops. Exogenous gamma neuro-
modulation has been shown to improve blood flow, motor 
function [59] and brain reorganization in the acute phase 
through cross-regional interference with spontaneous EEG 
oscillatory networks in cortical regions. Gamma frequency 
oscillations are believed to play a significant role in typi-
cal walking and the motor initiation and learning processes 
associated with walking.

It has been demonstrated that the gamma band oscilla-
tions in the brain itself influence gait throughout the cycle 
and activate various brain areas to create stable walking net-
works. Brain EEG detected ERD-ERS (event-related desyn-
chronization (ERD); event-related synchronization (ERS)) 
lateralization [60]in the cerebellar beta-gamma frequency 
band during gait initiation, i.e., during leg swing and the 
double-support phase [61]. ERD-ERS was also found in 
the primary motor cortex, premotor cortex, and thalamus 
throughout the gait cycle. Additionally, restricted rhythmic 
oscillation of the upper limb during walking reduces beta-
gamma ERD-ERS in the supplementary motor area (SMA) 
[62]. Additionally, the gait cycle and the coupling of the high 
and low gamma frequency bands in the sensorimotor cor-
tex are closely related, and modifications to their coupling 
form affect the gait rhythm [63]. According to another study 
[64], the pontocerebellar pedunculopontine nucleus exhibits 
intrinsic oscillations in the gamma frequency band, which 
is crucial for subcortical rhythmic walking. Therefore, we 
postulate that the initiation of walking, the transition and 
coordination of the swing and support phases, and the main-
tenance of rhythm in walking are all significantly influenced 
by the brain’s gamma-band oscillations.

The process of regaining motor function after a stroke 
is broadly analogous [65] to that of motor learning, and in 

normal subjects, activated cortical regions, particularly the 
cerebellum, play a significant and influential role in the later 
functional recovery [66]. Rhythmic oscillations between 
regions of the sensorimotor cortex [67], parietal lobe, and 
primary motor cortex [68] can be modulated and synergized 
by the cerebellum, thus regulating walking-related factors 
such as sensory input and muscle tone during movement. It 
has been demonstrated that [69] the thalamus, motor-sensory 
cortical areas, and motor cortical areas can all be excited 
by gamma-band oscillations in the cerebellum via specific 
neuronal synaptic structures.

Gamma‑Band Cerebellar tACS for Improving 
Motor Function

Overview of tACS

TACS, a noninvasive neuromodulation technique, uses weak 
sinusoidal electric fields to modify cortical activity. Through 
a more focused stimulation paradigm, tACS periodic, weak 
perturbations can selectively affect oscillations at the applied 
stimulus frequency [70]. Exogenous sinusoidal alternating 
current (tACS) of various frequencies directly interacts with 
neuronal activity sustained during rest or in the task state, 
impacting oscillations in particular regional brain networks 
by entraining, synchronizing, or interfering with them [71]. 
However, the underlying mechanisms by which it modifies 
the spatiotemporal dynamics of large-scale cortical network 
dynamics are still up for discussion. The effects of tACS 
are highly variable, with different pulse frequencies, phases, 
and duration of action modulated to bring the cortex into 
excitation-inhibition balance [72], in contrast to the NIBS 
approach, which produces sustained, long-duration effects 
by altering the excitability of the cerebral cortex, including 
TMS and tDCS, thereby regulating cortical metabolism and 
electrophysiological activity [73]and targeting the threshold 
of neuronal membrane potential [74].

The contraindications of tACS as a type of transcutane-
ous electrical stimulation (tES) can be found in the list of 
clinical contraindications for tES, which includes patients 
with epilepsy, metal in the head, pacemakers, and other 
implanted materials [75]. Even though tDCS and tACS 
fall under the same category of tES, differences in their 
mechanisms of action and protocol design (including cur-
rent intensity and target setting) result in differences in their 
tolerance, discomfort, and safety. For example, the anodal 
stimulation of tDCS tends to cause varying degrees of skin 
discomfort, such as tingling, itching, and burning when the 
current intensity reaches 2 mA, mainly due to mild tran-
sient skin effects caused by the vascular expansion effect 
induced by tES [76]. At the same time, tACS had lower skin 
discomfort and no significant difference compared to sham 
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stimulation [77]. Due to the activation of the retinal neural 
firing caused by the placement of the tACS electrode in the 
frontal and occipital regions, which occurs only during the 
intervention [78], “optical hallucinations” or “phosphonic 
responses” are caused. These are perceptions of flickering 
light without actual visual input. The ipsilateral mandible 
was suggested as a secondary electrode placement for cer-
ebellar tACS based on findings from a recent study [79] on 
electrode placement for cerebellar tACS that the cerebel-
lar tACS intervention caused little skin sensation and high-
intensity currents in the eye only when the electrodes were 
positioned close to the frontal and orbital regions, resulting 
in “optical hallucinations” as a side effect during the tACS 
intervention. As a result, cerebellar tACS is a painless and 
secure treatment option. To ensure the safety of the patient’s 
treatment, the treatment process also necessitates observa-
tion, measurement, and questioning of the patient’s blood 
pressure, heart rate, or any discomfort that may be present. 
This is followed by a prompt explanation or adjustment of 
the treatment plan to the patient's tolerance.

Research Progress on Cerebellar tACS in the Gamma 
Band

Early in 1995, it was found that a conditional stimulation 
of 90% AMT given to the contralateral cerebellum 5 ~ 7 ms 
before M1 stimulation could reduce MEP, and the reduction 
of MEP was related to the intensity of the conditioned stimu-
lation, by Ugawa Y et al [80, 81]. They discovered that this 
reduced MEP and that the degree of the MEP reduction cor-
related with the intensity of the conditioned stimulus. One of 
the main ways the cerebellum is involved in motor function 
is through a phenomenon known as cerebellum-brain inhi-
bition (CBI). This phenomenon is thought to be formed by 
the formation of a dentate-thalamic pathway dominated by 
Purkinje cells (PC) in the motor areas of the cerebellum for 
the inhibition of the contralateral motor cortex, which can 
be used to determine the strength of cerebellar-cortical con-
nections, primarily involving parallel fibers, PC, and Golgi 
[82]. CBI increased, and MEP decreased after 300-Hz tACS, 
while CBI decreased, MEP increased, and finger-tapping 
task time decreased in healthy subjects after 50-Hz true-
stimulation tACS, according to research by Naro A et al. [83, 
84] using parallel fiber, PC, and Golgi firing frequencies of 
10 Hz, 50 Hz, and 300 Hz to control 50-Hz sham-stimulation 
tACS on the cerebellum, respectively. Only 50 Hz caused an 
increase in MEP in the ipsilateral lower extremities when 
the same team applied the same tACS frequency setting to 
the lower extremities of healthy subjects. Based on this find-
ing, the researchers hypothesized that 50-Hz ctACS might 
prevent PC-forming cerebellar LTD from increasing MEP 
14. Based on the results of the studies mentioned above [35, 
36], we can conclude that cerebellar tACS intervention in 

the 50-Hz gamma band has effects on cerebellar PC that 
go beyond simple LTD interference. There is insufficient 
evidence that PC is involved in CBI [85], so CBI is primar-
ily used to explain cerebellar-cortical connections and is 
not sufficient, although the gamma band of tACS is thought 
to induce LTD-like plasticity changes [86] in the primary 
motor circuits of the brain. Additionally, different Purkinje 
cell synapses have other functions that include facilitation-
inhibition and inhibition-inhibition. These functions can 
selectively inhibit peripheral muscles unrelated to motor 
production from improving cortical signaling to active 
muscles during locomotion, making cerebellum activation 
a convergent enhancement. Therefore, we prefer 50-Hz 
gamma band cerebellar tACS on walking, which may be 
connected to the cerebellum’s influence on walking balance, 
enhanced postural regulation before and during exercise, and 
the gamma band itself.

It has been shown that [87, 88] tACS in the gamma band 
of the M1-cerebellum improves visuomotor tracking ability 
in healthy individuals compared to M1 alone, as well as an 
increase in the number and speed of muscle fiber recruit-
ment, representing motor ability.

Exogenous gamma oscillations produced by tACS in the 
primary motor cortex can significantly decrease the abduc-
tion reaction time [89] of the nonlethal thumb, whereas the 
coherence of cerebellar gamma-band oscillations with theta 
oscillations at 4–8 Hz in the hippocampus itself dominates 
skill learning and memory retrieval. This indicates that 
gamma-band changes in the cerebellum not only support 
the gamma band’s ability to synchronize motor-related brain 
regions like sensory and motor cortices [90] but also fur-
ther improve motor performance by enhancing the activa-
tion of neural networks related to motor learning, such as 
vision and memory. This aligns with the earlier assertion 
that tACS intervention in the cerebellum’s gamma band can 
activate the cross-regional brain area. Improved upper limb 
function has been achieved using 50-Hz gamma cerebellar 
tACS, which uses gamma frequency band entrainment of 
the cerebellar inhibitory pathway Purkinje cell-parallel fib-
ers. This technique enhances the learning of fixed-sequence 
movements and subsequently improves the mobility of pat-
terned activities in daily life [91]. The SMA cerebellum was 
a better target than the supplementary motor area in another 
trial [92] of gamma-band tACS intervention on the upper 
extremity in healthy subjects.

Studies on the upper extremity have demonstrated that 
tACS in the gamma band acting on the cerebellum can sup-
port motor relearning in post-stroke patients either through 
its oscillations or through coherence with oscillations in 
other frequency bands in adjacent brain regions of the circuit 
[93], although tACS has received less attention about the use 
of motor learning theory to improve walking. Therefore, we 
hypothesize that tACS intervention in the gamma band can 



	 The Cerebellum

1 3

Ta
bl

e 
1  

S
um

m
ar

y 
of

 th
e 

ap
pl

ic
at

io
n 

of
 c

er
eb

el
la

r g
am

m
a 

os
ci

lla
tio

ns
 in

 m
ot

io
n

A
ut

ho
r, 

Ye
ar

Sa
m

pl
e 

si
ze

 
(N

)

D
om

ai
n

Ty
pe

s o
f t

ria
ls

 a
nd

 
gr

ou
p

C
oh

or
t

St
im

ul
at

io
n 

pa
ra

m
-

et
er

s
D

ur
at

io
n 

an
d 

co
ur

se
A

ss
es

sm
en

t c
on

te
nt

O
ut

co
m

es

K
oo

im
an

 e
t a

l.
(2

02
0)

 [6
1]

14
Re

-le
ar

n 
w

al
ki

ng
; 

ga
it 

pa
tte

rn
O

bs
er

va
tio

na
l s

tu
dy

; 
no

ne
H

ea
lth

y 
pa

rti
ci

pa
nt

s
N

on
e

N
ot

 m
en

tio
ne

d
W

al
k 

on
 a

 tr
ea

dm
ill

 
w

ith
ou

t (
on

e 
bl

oc
k,

 
4 

m
in

) a
nd

 w
ith

 a
 

du
m

m
y 

pr
os

th
e-

si
s (

th
re

e 
bl

oc
ks

, 
3 ×

 4 
m

in
)

G
ai

t a
na

ly
si

s, 
EE

G

W
ee

rs
in

k 
JB

 e
t a

l.
(2

01
9)

 [6
2]

20
G

ai
t-r

el
at

ed
 a

rm
 

sw
in

g;
 fo

ur
-li

m
b 

co
-o

rd
in

at
io

n

O
bs

er
va

tio
na

l s
tu

dy
; 

no
ne

H
ea

lth
y 

pa
rti

ci
pa

nt
s

N
on

e
N

ot
 m

en
tio

ne
d

W
al

ki
ng

 w
ith

ou
t a

nd
 

w
ith

 a
rm

 sw
in

g;
 

tw
o 

se
ss

io
ns

 c
on

-
du

ct
ed

 o
n 

th
e 

sa
m

e 
da

y 
w

ith
 a

pp
ro

xi
-

m
at

el
y 

10
 m

in
 in

 
be

tw
ee

n

G
ai

t a
na

ly
si

s, 
EE

G

Se
eb

er
 M

 e
t a

l.
(2

01
5)

 [6
3]

10
R

hy
th

m
ic

ity
 o

f 
w

al
ki

ng
O

bs
er

va
tio

na
l s

tu
dy

; 
no

ne
H

ea
lth

y 
pa

rti
ci

pa
nt

s
N

on
e

N
ot

 m
en

tio
ne

d
Fo

ur
 ru

ns
 (6

 m
in

 
ea

ch
) o

f a
ct

iv
e 

w
al

ki
ng

 a
nd

 th
re

e 
ru

ns
 o

f 1
23

 u
pr

ig
ht

 
st

an
di

ng
 (3

 m
in

 
ea

ch
) i

n 
a 

ro
bo

tic
 

ga
it 

or
th

os
is

EE
G

N
ar

o 
A

 e
t a

l.(
20

16
) 

[8
3]

25
M

ot
or

 a
da

pt
at

io
n

C
ro

ss
ov

er
 st

ud
y;

 
no

ne
H

ea
lth

y 
pa

rti
ci

pa
nt

s
10

, 5
0,

 a
nd

 3
00

 H
z 

an
d 

a 
sh

am
 tA

C
S,

 
2 

m
A

Im
m

ed
ia

te
ly

, 1
5 

m
in

, 
an

d 
30

 m
in

Ea
ch

 su
bj

ec
t p

ra
c-

tic
ed

 a
ll 

th
e 

co
nd

i-
tio

ni
ng

 p
ro

to
co

ls
 in

 
a 

ra
nd

om
 o

rd
er

 o
f 

sti
m

ul
at

io
n,

 w
ith

 a
 

1-
w

ee
k 

in
te

rv
al

M
EP

, C
B

I, 
LI

C
I, 

EE
G

N
ar

o 
A

 e
t a

l.(
20

17
) 

[8
4]

15
M

ot
or

 a
ct

iv
ity

C
ro

ss
ov

er
 st

ud
y;

 
no

ne
H

ea
lth

y 
pa

rti
ci

pa
nt

s
10

, 5
0,

 a
nd

 3
00

 H
z 

an
d 

a 
sh

am
 tA

C
S,

 
2 

m
A

Im
m

ed
ia

te
ly

, 3
0 

m
in

, 
an

d 
60

 m
in

Ea
ch

 su
bj

ec
t p

ra
c-

tic
ed

 a
ll 

th
e 

co
nd

i-
tio

ni
ng

 p
ro

to
co

ls
 in

 
a 

ra
nd

om
 o

rd
er

 o
f 

sti
m

ul
at

io
n,

 w
ith

 a
 

1-
w

ee
k 

in
te

rv
al

W
M

FT
, M

EP
, C

B
I, 

EE
G

N
ar

o 
A

 e
t a

l.(
20

17
) 

[1
4]

25
G

ai
t c

on
tro

l
C

ro
ss

ov
er

 st
ud

y;
 

no
ne

H
ea

lth
y 

pa
rti

ci
pa

nt
s

10
, 5

0,
 a

nd
 3

00
 H

z 
an

d 
a 

sh
am

 tA
C

S,
 

2 
m

A

Im
m

ed
ia

te
ly

, 2
0 

m
in

, 
60

 m
in

, a
nd

 2
 h

Ea
ch

 su
bj

ec
t p

ra
c-

tic
ed

 a
ll 

th
e 

co
nd

i-
tio

ni
ng

 p
ro

to
co

ls
 in

 
a 

ra
nd

om
 o

rd
er

 o
f 

sti
m

ul
at

io
n,

 w
ith

 a
 

1-
w

ee
k 

in
te

rv
al

M
EP

, C
B

I, 
ga

it 
an

al
ys

is



The Cerebellum	

1 3

tA
C

S 
tra

ns
cr

an
ia

l a
lte

rn
at

in
g 

cu
rr

en
t s

tim
ul

at
io

n,
 E

EG
 e

le
ct

ro
en

ce
ph

al
og

ra
m

, M
EP

 m
ot

or
 e

vo
ke

d 
po

te
nt

ia
l, 

C
BI

 c
er

eb
el

lu
m

-b
ra

in
 in

hi
bi

tio
n,

 L
IC

I l
on

g-
in

te
rv

al
 in

tra
co

rti
ca

l i
nh

ib
iti

on
, W

M
FT

 
W

ol
f m

ot
or

 fu
nc

tio
n 

te
st,

 S
RT

T​ 
se

ria
l r

ea
ct

io
n 

tim
e 

ta
sk

Ta
bl

e 
1  

(c
on

tin
ue

d)

A
ut

ho
r, 

Ye
ar

Sa
m

pl
e 

si
ze

 
(N

)

D
om

ai
n

Ty
pe

s o
f t

ria
ls

 a
nd

 
gr

ou
p

C
oh

or
t

St
im

ul
at

io
n 

pa
ra

m
-

et
er

s
D

ur
at

io
n 

an
d 

co
ur

se
A

ss
es

sm
en

t c
on

te
nt

O
ut

co
m

es

M
iy

ag
uc

hi
 S

 e
t a

l.
(2

02
0)

 [8
7]

30
M

ot
or

 le
ar

ni
ng

RC
T;

 2
he

al
th

y 
pa

rti
ci

pa
nt

s
70

 H
z,

 1
 m

A
 tA

C
S 

on
 th

e 
rig

ht
 M

1 
an

d 
le

ft 
ce

re
be

lla
r 

he
m

is
ph

er
e 

a 
sh

am
 

tA
C

S

D
ur

in
g 

tA
C

S,
 d

ay
 

2 ~
 5

N
ot

 m
en

tio
ne

d
EM

G
, v

is
uo

m
ot

or
 

co
nt

ro
l t

as
k 

er
ro

r 
ra

te

A
kk

ad
, H

 e
t a

l. 
(2

02
1)

 [
89

]

58
M

ot
or

 le
ar

ni
ng

RC
T;

 3
H

ea
lth

y 
pa

rti
ci

pa
nt

s
75

 H
z 

(C
4)

—
6 

H
z 

(P
z)

, t
A

C
S 

2 
m

A
; 

up
pe

r p
an

el
 o

r 
lo

w
er

 p
an

el
 o

r 
sh

am

D
ur

in
g 

tA
C

S
N

ot
 m

en
tio

ne
d

B
eh

av
io

ra
l t

as
k

G
iu

sti
ni

an
i, 

A
 e

t a
l. 

(2
01

9)
 [

91
]

17
M

ot
or

 le
ar

ni
ng

C
ro

ss
ov

er
 st

ud
y;

 
no

ne
H

ea
lth

y 
pa

rti
ci

pa
nt

s
40

 H
z,

 1
 H

z,
 o

r s
ha

m
 

tA
C

S.
 S

tim
ul

at
io

n 
in

te
ns

ity
 w

as
 se

t 
at

 2
 m

A
 p

ea
k-

to
-

pe
ak

, c
or

re
sp

on
d-

in
g 

to
 0

.0
8 

m
A

/
cm

2  c
ur

re
nt

 d
en

si
ty

 
ov

er
 th

e 
M

1 
ho

ts
po

t

D
ur

in
g 

tA
C

S
Th

e 
ex

pe
rim

en
t 

in
cl

ud
ed

 th
re

e 
se

s-
si

on
s, 

pe
rfo

rm
ed

 a
t 

le
as

t 3
 d

ay
s a

pa
rt,

 
on

e 
fo

r e
ac

h 
sti

m
u-

la
tio

n 
fr

eq
ue

nc
y 

(4
0 

H
z,

 1
 H

z,
 o

r 
sh

am
). 

Th
e 

se
s-

si
on

s o
rd

er
 w

as
 

co
un

te
rb

al
an

ce
d 

ac
ro

ss
 su

bj
ec

ts

SR
TT

、
M

EP



	 The Cerebellum

1 3

have a corresponding effect on gait and posture by activating 
the motor learning network, and its theory and mechanism 
are worth further exploring and have some research signifi-
cance and clinical value. We summarize the current gamma 
band in motion literature in Table 1.

Summary and Prospect

The goal of clinical treatment has been to improve pos-
tural control, and correct and prevent the occurrence of gait 
abnormalities so that patients can better reintegrate into their 
families and society. Rehabilitation of walking and balance 
after stroke has been the focus of clinical treatment. The 
cerebellum, which plays a crucial role in balance, postural 
control, muscle tone, and lower limb coordination in both 
healthy individuals and stroke patients, has recently gained 
attention as a second NIBS target after the primary motor 
cortex due to its relatively intact structural preservation, high 
plasticity, and these characteristics in patients after episodic 
stroke. It has been demonstrated that the gamma frequency 
of tACS is an exogenous frequency band that enhances 
motor learning. The gamma band is also an important EEG-
generating segment of the cerebellum itself at the beginning 
of the swing phase of the gait cycle and during rhythmic 
movement changes. The gamma-band cerebellar tACS has 
been demonstrated to enhance lower limb MEP and upper 
limb function in healthy people. However, no study has been 
able to explain how repeated cerebellar tACS at gamma 
frequency interventions in stroke patients affect the neural 
circuits linked to abnormal gait, postural control, balance, 
and motor learning, or what the long-lasting effects are. Is 
there a particular frequency or band with the best efficacy for 
movement or motor learning with multiple targets, numerous 
NIBS approaches, combined interventions with conventional 
rehabilitation approaches targeting the affected neuromus-
cular, and various wavelengths in the gamma band? Addi-
tionally, the cerebellum’s anatomical makeup and functional 
mechanisms are intricate, and high-precision cerebellar 
neuromodulation is an excellent way to explain available 
mechanisms that merit more research.
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