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Abstract
Dysarthria is a common and debilitating symptom of many neurodegenerative diseases, including those resulting in ataxia. 
Changes to speech lead to significant reductions in quality of life, impacting the speaker in most daily activities. Recognition 
of its importance as an objective outcome measure in clinical trials for ataxia is growing. Its viability as an endpoint across 
the disease spectrum (i.e. pre-symptomatic onwards) means that trials can recruit ambulant individuals and later-stage indi-
viduals who are often excluded because of difficulty completing lower limb tasks. Here we discuss the key considerations 
for speech testing in clinical trials including hardware selection, suitability of tasks and their role in protocols for trials and 
propose a core set of tasks for speech testing in clinical trials. Test batteries could include forms suitable for remote short, 
sensitive and easy to use, with norms available in several languages. The use of artificial intelligence also could improve 
accuracy and automaticity of analytical pipelines in clinic and trials.
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Introduction

Ataxia leads to changes in speech [1–6]. These changes 
worsen as the disease progresses [7] and can improve with 
effective treatment [8–10]. Subtle changes can even occur 
prior to disease onset [3]. Broadly, the ataxia speech pheno-
type is characterised by a reduced rate of speech, imprecise 
production of consonants, distorted vowels [1, 11], dyspho-
nia [12] and hypernasality [13]. The dysarthric profile also 
includes poor vocal control (incoordination of pitch and 
loudness) and diminished breath support [14]. These defi-
cits, in part, are the result of mis-timed and inaccurately tar-
geted articulatory movements resulting in slower and slurred 
speech [15, 16]. Combined, dysarthria resulting from ataxia 
impacts naturalness and intelligibility. Dysarthria can lead 
to daily disadvantage and prevent simple communication 
exchanges from occurring (e.g. signalling food preferences, 
need for toileting). It can also trigger altered self-identity 
[17] and impede or prevent both social and professional 
interactions [18], leading to daily disadvantage, producing 
social marginalisation [19] and underemployment [18]. Sev-
enty percent of people with a communication disorder are 
unemployed or in the lowest income brackets [20].
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Despite the debilitating daily impact of dysarthria, objec-
tive measurement of speech is rarely addressed in ataxia 
clinical practice, clinical trials and research. This may be 
due to the relatively limited influence of speech on over-
all scores in commonly used disease severity scales (i.e. 
SARA, ICARS, mFARS) [21]. On the other hand, speech is 
considered key feature for measurement in patients (https:// 
www. ataxia. org/ ataxi apfdd/), becoming the most impor-
tant quality of life when individuals become non-ambulant 
[22, 23]. When it is examined, published cohort studies are 
often small and restricted to specialised centres which are 
informative, but their generalizability is limited. There also 
is limited published longitudinal and natural history data and 
inadequate evidence-based interventions for speech [24, 25]. 
In clinical disciplines involved in managing ataxia, decisions 
about disease-related dysarthria are mainly based on subjec-
tive assessment of speech symptoms. Yet a strong body of 
evidence has consistently shown that more precise speech 
measurement can increase sensitivity of clinical decisions 
and provide greater information on the nature of neurologi-
cal change as well as determining the potential benefits of 
pharmaceutical and behavioural therapies aimed at forestall-
ing symptomatic progression [9, 10].

For over a century, speech disorders have been described 
by what the listener can subjectively hear, despite early 
attempts at quantification [26]. Advances in signal process-
ing, cloud computing and hardware and remote data cap-
ture provide an opportunity to exploit the intrinsic utility 
of speech as a marker of disease progression and treatment 
response (see Fig. 1). Digital technologies have the potential 
to surpass clinical judgement for accuracy and accessibility 
as they can yield objective outcomes and can be adminis-
tered in the clinic or home. Here we outline considerations 
for use of speech as a marker of performance and quality of 
life in clinical trials. We also provide recommendations for 
protocol design, hardware and software selection, features 
of importance for describing change and disease state, links 
to patient reported outcomes, existing datasets and ongoing 
natural history studies.

Hardware and Software Selection

Audio files are typically recorded and stored for post testing 
analysis1. A microphone is used to capture speech and it 
is an important determinant of signal quality. Microphone 
quality and suitability for recording speech is determined 
by its frequency response and range, directionality, polar 

pattern and power supply (see [27, 28] for details). Signal 
fidelity is also influenced by file format, sampling rate, phys-
ical elements of the device and noise. Captured audio can be 
stored in a lossless format (e.g. .wav), preserving all aspects 
of the signal within the predetermined sampling rate. Ele-
ments of speech important for communication fall within the 
first 5KHz, with a minimum suggested sampling rate twice 
the maximum frequency of interest [29]. Thus, to ensure 
adequate fidelity, it is recommended that files be sampled at 
a minimum of 16KHz, 8-bit quantization with post recording 
down-sampling completed if necessary. Noise can enter the 
signal through several sources including the environment 
(e.g. other speakers, air conditioning), low-quality or poorly 
insulated wiring, or inappropriate positioning of the micro-
phone (e.g. too close/far, or variable distance to source). 
Portability, ease of use and budget also guide decisions 
about utility of recording set ups (see [30–32] for example 
comparisons between devices).

Specific hardware recommendations are not included 
in this review as technology is constantly evolving; each 
study or testing environment will likely benefit from a con-
figuration tailored to the specific use case. For example, for 
large community samples, a bring-your-own device may be 
selected by investigators, or similarly, provisioned portable 
devices may be selected for use in a clinical trial that only 
interact with specific microphone solutions. Readers are 
encouraged to read published comparative studies [30–32] 
or tutorials [27, 28] for more information to assist with hard-
ware selection.

Software, apps and digital interfaces used to capture 
speech should allow for modification or set minimum 
standards when collecting audio. A significant proportion 
of speech capture software now provides cloud storage of 
audio rather than on-device storage. Remote storage can 
assist in data dissemination, access to analytic platforms 
and secure storage. It is recommended that systems used 
to capture and store audio encrypt data at rest and in transit 
are not directly identifiable beyond the audio file itself and 
meet multi-region privacy regulations outlined in the Health 
Insurance Portability and Accountability Act (HIPAA) and 
Europe’s General Data Protection Regulations (GDPR).

Stimuli and Use

Speech protocols should be theory driven and influenced 
by strong empirical evidence supporting their use. The 
motivation for testing also shapes protocol design. For 
example, assessment for characterisation is not necessar-
ily well suited to detecting change from treatment [33, 
34]. Characterisation of speech deficits requires an in-
depth investigation describing specific impairments (e.g. 
voice quality), their impact on function (e.g. intelligibil-
ity) and their influence on participation (e.g. quality of 

1 There are circumstances where a microphone is not used (e.g. elec-
troglottography) and where data are not stored on the device (e.g. 
contemporaneous analysis of filtered components of the waveform or 
spectrogram, on device).

https://www.ataxia.org/ataxiapfdd/
https://www.ataxia.org/ataxiapfdd/
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life). Characterisation protocols may include speaking in 
a variety of contexts, across multiple tasks, and include 
listener ratings alongside patient reported outcomes. Bat-
teries that support investigation of key speech domains of 
prosody, voice, articulation, resonance and respiration are 
appropriate for phenotyping studies. Tasks could focus on 
connected speech (e.g. conversation) to assess articulation, 
prosody and resonance, and challenge activities such as 
diadochokinesis (DDK) (i.e. PATA) for timing, coordina-
tion and articulation, and maximum phonation time (MPT) 
(for breath support and voice quality). Maximal challenge 
tasks such as MPT or DDK and oral motor mobility tasks 
such as those in cranial nerve exams may be appropriate to 
measure performance across severity levels. They can test 
a speaker’s maximal abilities, provide data on severity and 
are independent of language. Beyond singular measures 
of severity, global features like intelligibility and natural-
ness of spontaneous speech bring together information on 
all speech subsystems and are a strong reflection of daily 
life difficulties. Measures of intelligibility can be derived 
via standardised clinician perceptual scores or via com-
posite measures of multiple acoustic features. Speech to 
text tools can also provide an estimate of intelligibility; 
however, these estimates are dynamic as they are built 
on models that are constantly evolving. It is possible to 
rely on these tools in circumstances where measures are 
based on a specific version of the model; that model can be 
“frozen” for persistent use [35]. Accuracy of speech to text 

models also vary based on sex, accent, age and language 
of the speaker [36].

Testing for the purpose of detecting change in perfor-
mance can be achieved through a brief, easy-to-administer 
and complete battery that is motivating and provides capac-
ity for comparison over multiple time points (see [34] for 
discussion on tracking change in speech studies). Perfor-
mance should remain stable in the absence of true change, 
and change when central nervous system function is com-
promised, through disease or physiology (e.g. fatigue) [37].

We know that speech is sensitive to disease in ataxia 
(see Table S1 for exemplar studies); however, it is rare for 
other influencing factors to be considered in study design. 
Speech changes with fatigue [37], repeated application [33], 
depression [38], altered feedback [34], the role of the asses-
sor [39], the duration of the sample [40], phonetic context 
[41] and emotional states like boredom [42]. The influence 
these factors exert on speech production highlights the need 
for informed protocol design when the aim is monitor-
ing change. Further, recognition that cerebellar disorders 
can lead to concomitant cognitive deficits [43] alongside 
motor dysfunction dictates the need for speech protocols 
to include simple, brief tasks that fit along a continuum of 
motor/cognitive complexity [44]. A similar model of assess-
ment has been applied to other neurodegenerative diseases 
with motor and cognitive decline (e.g. Huntington’s disease 
[45] and Fronto-temporal dementia [46]). Protocol establish-
ment should be developed alongside intrinsic properties of 

Fig. 1  Considerations for using 
speech as a clinical outcome 
measure
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methods for analysing data and the features they yield. These 
include listener-based judgement, standardised assessments 
for measuring aspects of speech (e.g. [47]), instrumental 
assessments (e.g. electromagnetic articulography) or acous-
tic analysis.

Analysis Platforms and Features

To establish the suitability of tasks (and analysis algorithms) 
for tracking change, they should be subjected to both stabil-
ity and sensitivity challenges [33, 41]. Stability can be evalu-
ated by eliciting speech repeatedly over brief and extended 
inter-recording intervals. This is designed to examine sus-
ceptibility and robustness of tasks and features to change. It 
is important to interrogate error or noise arising from tech-
nological issues relating to equipment or biological change 
like diurnal variability, altered motivation or fatigue. Follow-
ing establishment of task and feature stability (the absence 
of change), sensitivity needs to be considered. Tasks and 
features may be stable because they are truly robust to noise, 
or they may simply be insensitive to change and therefore 
unsuitable for tracking change. Sensitivity can be estimated 
through challenges like sustained wakefulness [37], noise 
[44] or disease itself compared to a norm [5, 48].

Unlike a decade ago, there are now a plethora of software 
solutions for collecting and analysing speech data. When 
selecting appropriate digital resources for speech, there 
are data security, quality and usability features to consider. 
Ensure data are secure, encrypted at rest and in transit, are 
not stored alongside any personally identifiable information 
and are not altered (e.g. compressed) before storage. If using 
normative data provided by a software provider, check its 
veracity and suitability for comparison with your own data-
set. There are reputable software options available from aca-
demic and commercial entities as well as normative datasets.

Protocol Design

Batteries for the assessment of dysarthric speech have been 
developed in some languages, such as the MonPaGe bat-
tery (French) [48] and the Bogenhausen Dysarthria Scales 
(BoDyS) (German) [49]. But the challenge for improving 
research in ataxia is now to develop trans-linguistic batteries 
that can be used as biomarkers in international multicen-
tric studies. Such protocols include language-independent 
tasks like prolonged vowel production and syllable repeti-
tion. Although there is considerable overlap between sites, 
investigators and batteries, the ad hoc approach to study 
design for each study or each language do not allow for 
multi-centre or inter-pathology comparison. The scientific 
and clinical community need to develop all together a core 
of the protocol that would be short, sensitive and easy to use, 
with norms available in several languages. There are some 

exemplar initiatives bringing protocols together including 
the SpeechATAXIA project established within the Ataxia 
Global Initiative (https:// ataxia- global- initi ative. net/ proje cts/ 
speech- ataxia- a- multi natio nal- multi langu age- conso rtia- for- 
speech- in- hered itary- ataxi as/), the Friedreich ataxia Clinical 
Outcomes Study (FA-COMS) run by the Friedreich's Ataxia 
Research Alliance (https:// www. curefa. org/ clini cal- trials- 
active- enrol ling/ clini cal- outco me- measu res- in- fried reich-
s- ataxia- a- natur al- histo ry- study) and the new FA Global 
Clinical Consortium (FA-GCC) which combines FA-COMS 
and EFACTS (the European Friedreich’s Ataxia Consortium 
for Translational Studies).

Speech studies can be run face to face in the clinic or 
remotely at home. Data can be collected on specialised audio 
equipment or consumer grade devices. Users can bring their 
own device (BYOD) to studies or use provisioned setups 
where hardware are provided by investigators. BYOD and 
remote testing can be advantageous in some settings and 
may provide freedom of users to complete tests when and 
where they choose. There is also an ability for investigators 
to collect data in what is perceived to be more ecologically 
valid testing conditions, such as in the home during daily 
activities. The latter leads to legitimate concerns around 
privacy and data use. Out-of-clinic recordings can also be 
hindered by reduced sound quality through non-provisioned 
devices or background noise for example.

Potential Application of Machine Learning 
and Data‑Driven Statistical Models

Artificial intelligence (AI) and big data analysis are methods 
that may enhance our ability to identify symptom onset or 
monitor disease progression in ataxia. Attempts to expand 
its use in diagnosis are underway [50]. The purpose is not 
to consider each single digital parameter as a biomarker 
but to define all the relevant information contained in the 
speech signal and use them as a parsimonious subset as 
determined by machine learning (ML) and deep learning 
(DL) algorithms. Learning feature representations is a cen-
tral tenet of deep learning—the model can learn patterns 
directly from the audio time series that are informative for 
downstream tasks such as disease classification or sever-
ity estimation. Machine learning models can be trained in a 
supervised or unsupervised manner. In supervised learning, 
the sample data is already labelled, and it is used to train 
a classification or regression model. Then unlabelled data 
is given to this trained system for labelling (e.g. classify) 
based on the features. In unsupervised learning, the training 
set is not labelled. The system itself learns the structure of 
the data, for example to identify clusters or latent factors. 
In both the methods, selection of features plays an impor-
tant role, as does the sample data dimension used to train 
the model. There are some ML studies seeking to separate 

https://ataxia-global-initiative.net/projects/speech-ataxia-a-multinational-multilanguage-consortia-for-speech-in-hereditary-ataxias/
https://ataxia-global-initiative.net/projects/speech-ataxia-a-multinational-multilanguage-consortia-for-speech-in-hereditary-ataxias/
https://ataxia-global-initiative.net/projects/speech-ataxia-a-multinational-multilanguage-consortia-for-speech-in-hereditary-ataxias/
https://www.curefa.org/clinical-trials-active-enrolling/clinical-outcome-measures-in-friedreich-s-ataxia-a-natural-history-study
https://www.curefa.org/clinical-trials-active-enrolling/clinical-outcome-measures-in-friedreich-s-ataxia-a-natural-history-study
https://www.curefa.org/clinical-trials-active-enrolling/clinical-outcome-measures-in-friedreich-s-ataxia-a-natural-history-study
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ataxic speakers from healthy speakers [51–54]; however, 
the value of this exercise is diminished by the knowledge 
that ataxia is a multi-faceted disease group requiring multi-
modal assessments for diagnosis. An alternative or addi-
tional and potentially more valuable use of ML for speech 
draws on communication outcomes that are meaningful for 
patients and clinicians, such as intelligibility and natural-
ness [55]. This approach treats speech as an outcome in its 
own right, in addition to its role as a subcomponent of a 
diagnostic workup. In addition to those papers cited, we can 
gain insight into AI utility from other neurological disorders 
with similar symptoms [36, 54, 56]. As mentioned, binary or 
ternary classifiers are commonly used to distinguish between 
the healthy and pathological conditions [56, 57]. Often these 
discriminative models apply very simple feed-forward arti-
ficial neural networks (ANN) and super vector machines 
(SVM) [56, 57]. There are also studies that use binary or ter-
nary classifiers to discriminate different levels of dysarthria 
severity using the Mahalanobis distance and reaching 95% 
or higher accuracy in splitting groups [51]. Other binary 
algorithms examples are linear discriminant analysis (LDA) 
and k-nearest neighbour but with lower accuracy [54]. As is 
the case with other behavioural markers, adding sensitivity 
beyond binary outcomes (e.g. adding levels of intelligibility) 
can lead to decreases in accuracy [58]. Some recent exam-
ples of hierarchical machine-learning model (combination 
of machine and deep learning algorithms) revealed promis-
ing results in ataxic groups [55, 59–61]. It is reasonable to 
assume AI will have role in future clinical practice, but it is 
important to understand its current limitations; for example, 
AI requires suitable and sufficient data [57].

Conclusion

Speech disorder caused by hereditary ataxia triggers 
altered self-identity, and impedes social and professional 
interactions, leading to daily disadvantage, producing 
social marginalisation and underemployment. These 
changes typically worsen as the disease progresses but may 
improve with treatment. Subtle changes can even occur 
prior to diagnosis. The centrality of speech in daily life 
highlights its importance in clinical care and as a marker 
of brain health. We have provided clear information on the 
practical and theoretical factors driving protocol design, 
data collection, features of interest and links to meaning-
fulness for stakeholders.
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