Skip to main content

Advertisement

Log in

Genetic Epidemiology and Clinical Characteristics of Patients with Spinocerebellar Ataxias in an Unexplored Brazilian State, Using Strategies for Resource-Limited Settings

  • Research
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias (SCAs) have a worldwide average prevalence of 2.7 cases per 100,000 individuals, with significant geographic variability. This study aimed to develop resource-limited strategies to detect and characterize the frequency and genetic-clinical profile of SCAs in an unexplored population from Alagoas State, a low Human Development Index state in northeastern Brazil. Active search strategies were employed to identify individuals with a diagnosis or clinical suspicion of SCAs, and a protocol for clinical and molecular evaluation was applied in collaboration with a reference center in Neurogenetics. A total of 73 individuals with SCAs were identified, with a minimum estimated prevalence of 2.17 cases per 100,000 inhabitants. SCA3 was the most common type (75.3%), followed by SCA7 (15.1%), SCA1 (6.8%), and SCA2 (2.7%). Patients with SCA3 subphenotype 2 were the most predominant. Detailed analysis of patients with SCA3 and SCA7 revealed age at onset and clinical features congruent with other studies, with gait disturbance and reduced visual capacity in SCA7 as the main initial manifestations. The study also identified many asymptomatic individuals at risk of developing SCAs. These findings demonstrate that simple and collaborative strategies can enhance the detection capacity of rare diseases such as SCAs in resource-limited settings and that Alagoas State has a minimum estimated prevalence of SCAs similar to the world average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5(1):24.

    Article  PubMed  Google Scholar 

  2. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83.

    Article  PubMed  Google Scholar 

  3. Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Comm. 2022;4(2):fcac030.

    Article  Google Scholar 

  4. Hersheson J, Haworth A, Houlden H. The inherited ataxias: genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Hum Mutat. 2012;33(9):1324–32.

    Article  CAS  PubMed  Google Scholar 

  5. Teive HA, Meira AT, Camargo CH, Munhoz RP. The geographic diversity of spinocerebellar ataxias (SCAs) in the Americas: a systematic review. Mov Disord Clin Pract. 2019;6(7):531–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Teive HA, Arruda WO, Trevisol-Bittencourt PC. Machado-Joseph disease: description of 5 members of a family. Arq Neuropsiquiatr. 1991;49:172–9.

    Article  CAS  PubMed  Google Scholar 

  7. Silveira I, Lopes-Cendes KS, Maciel P, Gaspar C, Coutinho P, et al. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology. 1996;46:214–8.

    Article  CAS  PubMed  Google Scholar 

  8. Nascimento FA, Rodrigues VO, Pelloso FC, Camargo CH, Moro A, Raskin S, Ashizawa T, Teive HA. Spinocerebellar ataxias in Southern Brazil: Genotypic and phenotypic evaluation of 213 families. Clin Neurol Neurosurg. 2019;1(184):105427.

    Article  Google Scholar 

  9. Lopes-Cendes I, Teive HG, Calcagnotto ME, Da Costa JC, Cardoso F, Viana E, et al. Frequency of the different mutations causing spinocerebellar ataxia (SCA1, SCA2, MJD/SCA3 and DRPLA) in a large group of Brazilian patients. Arq Neuropsiquiatr. 1997;55:519–29.

    Article  CAS  PubMed  Google Scholar 

  10. Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, do Céu Moreira M, Mendonça P, Ferreirinha F, Sequeiros J, Giugliani R. A survey of spinocerebellar ataxia in South Brazil–66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease–causing mutations. J Neurol. 2001;248:870–6.

    Article  CAS  PubMed  Google Scholar 

  11. Teive HAG, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC, et al. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology. 2004;63:1509–12.

    Article  CAS  PubMed  Google Scholar 

  12. Trott A, Jardim LB, Ludwig HT, Saute JA, Artigalás O, Kieling C, Wanderley HY, Rieder CR, Monte TL, Socal M, Alonso I. Spinocerebellar ataxias in 114 Brazilian families: clinical and molecular findings. Clin Genet. 2006;70(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cintra VP, Lourenço CM, Marques SE, de Oliveira LM, Tumas V, Marques W Jr. Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci. 2014;347(1-2):375–9.

    Article  PubMed  Google Scholar 

  14. De Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil - frequencies and modulating effects of related genes. Cerebellum. 2014;13:17–28.

    Article  CAS  PubMed  Google Scholar 

  15. Teive HAG, Moro A, Arruda WO, Raskin S, Teive GMG, Dalabrida N, et al. Itajaí, Santa Catarina - Azorean ancestry and spinocerebellar ataxia type 3. Arq Neuropsiquiatr. Associacao Arquivos de Neuro-Psiquiatria. 2016;74:858–60.

    Article  Google Scholar 

  16. Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, Ashizawa T. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics. 2012;67:443–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jardim LB, Hasan A, Kuo SH, Magaña JJ, Franca M Jr, Marques W Jr, Camejo C, Santana-da-Silva LC, Leão EE, Espíndola G, Canals F. An Exploratory Survey on the Care for Ataxic Patients in the American Continents and the Caribbean. The Cerebellum. 2022;7:1.

    Google Scholar 

  18. Estatística IB de G e. Alagoas | Cidades e Estados | IBGE [Internet]. [cited 2022 May 4]. Available from: https://www.ibge.gov.br/cidades-e-estados/al.html

  19. IPEA. Radar IDHM: evolução do IDHM e de seus índices componentes no período de 2012 a 2017 [Internet]. 2019 [:65. Available from: http://www.atlasbrasil.org.br/

  20. Schmitz-Hübsch T, Du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  PubMed  Google Scholar 

  21. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arquivos de neuro-psiquiatria. 2010;68:228–30.

    Article  PubMed  Google Scholar 

  22. Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, et al. Inventory of non-ataxia signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12:418–28.

    Article  CAS  PubMed  Google Scholar 

  23. Kieling C, Rieder CRM, Silva ACF, Saute JAM, Cecchin CR, Monte TL, et al. A neurological examination score for the assessment of spinocerebellar ataxia 3 (SCA3). Eur J Neurol. 2008;15:371–6.

    Article  CAS  PubMed  Google Scholar 

  24. Junior GV, Junior GV, Von Stockler S, Duvalier AM. AVALIAÇÃO E VALIDAÇÃO DA ESCALA BARTHEL PARA A LÍNGUA PORTUGUESA FALADA NO BRASIL. Rev CPAQV - Cent Pesqui Avançadas em Qual Vida - CPAQV J. 2009 . Available from: http://www.cpaqv.org/revista/CPAQV/ojs-2.3.7/index.php?journal=CPAQV&page=article&op=view&path[]=589;1(2):2009.

    Google Scholar 

  25. Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28:703–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lin CC, Ashizawa T, Kuo SH. Collaborative efforts for spinocerebellar ataxia research in the United States: CRC-SCA and READISCA. Front Neurol. 2020;26(11):902.

    Article  Google Scholar 

  27. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14:590–605.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, Do Céu Moreira M, et al. A survey of spinocerebellar ataxia South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol. 2001;248:870–6.

    Article  CAS  PubMed  Google Scholar 

  29. Prestes PR, Saraiva‐Pereira ML, Silveira I, Sequeiros J, Jardim LB. Machado‐Joseph disease enhances genetic fitness: a comparison between affected and unaffected women and between MJD and the general population. Ann Hum Genet. 2008;72(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  30. De Neves MF, Pereira R, Vianna R, Beuttenmüller De Araújo RR, Góes GL. Revisiting the genetic ancestry of Brazilians using autosomal AIM-Indels. PLoS One. 2013;8(9):e75145.

    Article  Google Scholar 

  31. Schaan AP, Costa L, Santos D, Modesto A, Amador M, Lopes C, Rabenhorst SH, Montenegro R, Souza BD, Lopes T, Yoshioka FK. mtDNA structure: the women who formed the Brazilian Northeast. BMC Evol Biol. 2017;17:1–2.

    Article  Google Scholar 

  32. Santos S, Pequeno AA, Galvão CR, Pessoa AL, Almeida ED, Pereira JC, Medeiros JL, Kok F. As causas da deficiência física em municípios do nordeste brasileiro e estimativa de custos de serviços especializados. Ciência & Saúde Coletiva. 2014;19:559–68.

    Article  Google Scholar 

  33. Linhares SDC, Horta WG, Marques W. Spinocerebellar ataxia type 7 (SCA7): family princeps’ history, genealogy and geographical distribution. Arq Neuropsiquiatr. Associacao Arquivos de Neuro-Psiquiatria. 2006;64:222–7.

    Article  Google Scholar 

  34. Rangel DM, Nóbrega PR, Saraiva-Pereira ML, Jardim LB, Braga-Neto P. A case series of hereditary cerebellar ataxias in a highly consanguineous population from Northeast Brazil. Parkinsonism Relat Disord. 2019;1(61):193–7.

    Article  Google Scholar 

  35. de Albuquerque MVC, Pedroso JL, Braga-Neto P, Barsottini OGP. Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias. Arq Neuropsiquiatr. Associacao Arquivos de Neuro-Psiquiatria. 2015;73:18–21.

    Article  Google Scholar 

  36. Alvarenga MP, Siciliani LC, Carvalho RS, Ganimi MC, Penna PS. Spinocerebellar ataxia in a cohort of patients from Rio de Janeiro. Neurol Sci. 2022;43(8):4997–5005.

    Article  PubMed  Google Scholar 

  37. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.

    Article  CAS  PubMed  Google Scholar 

  38. Jonasson J, Juvonen V, Sistonen P, Ignatius J, Johansson D, Björck EJ, Wahlström J, Melberg A, Holmgren G, Forsgren L, Holmberg M. Evidence for a common Spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur J Hum Genet. 2000;8(12):918–22.

    Article  CAS  PubMed  Google Scholar 

  39. Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci. 2003;216:47–54.

    Article  PubMed  Google Scholar 

  40. Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cerecedo-Zapata CM, Maldonado-Rodríguez M, Jano-Ito JS, et al. Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet. 2014;85:159–65.

    Article  PubMed  Google Scholar 

  41. de Oliveira Scott SS, Pedroso JL, Barsottini OG, França-Junior MC, Braga-Neto P. Natural history and epidemiology of the spinocerebellar ataxias: insights from the first description to nowadays. J Neurol Sci. 2020:417.

  42. de Mattos EP, Musskopf MK, Leotti VB, Saraiva-Pereira ML, Jardim LB. Genetic risk factors for modulation of age at onset in Machado-Joseph disease/spinocerebellar ataxia type 3: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2019;90(2):203–10.

    Article  PubMed  Google Scholar 

  43. Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord, vol. 23. John Wiley and Sons Inc.; 2008. p. 2232–8.

    Google Scholar 

  44. Bah MG, Rodriguez D, Cazeneuve C, Mochel F, Devos DA, Suppiej A, Roubertie A, Meunier I, Gitiaux C, Curie A, Klapczynski F. Deciphering the natural history of SCA7 in children. Eur J Neurol. 2020;27(11):2267–76.

    Article  CAS  PubMed  Google Scholar 

  45. Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Machado-Joseph disease in South Brazil: clinical and molecular characterization of kindreds. Acta Neurol Scand. 2001;104:224–31.

    Article  CAS  PubMed  Google Scholar 

  46. Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HAG. Spinocerebellar ataxia type 3: subphenotypes in a cohort of brazilian patients. Arq Neuropsiquiatr. Associacao Arquivos de Neuro-Psiquiatria. 2014;72:659–62.

    Article  Google Scholar 

  47. Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Karsten Hauser T, et al. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain. 2015;138:3316–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design (Moraes DBV, Marques Jr W, Gitaí LLG, Tumas V); and/or the acquisition, analysis, or interpretation of data (Moraes DBV, Coradine TLC, Silva EVL, Marques Jr W, Gitaí LLG, Tumas V); and/or made substantial contributions in writing and reviewing the manuscript (Moraes DBV, Gitaí LLG, Sobreira-Neto MA, Tumas V).

Corresponding authors

Correspondence to Lívia Leite Góes Gitaí or Vitor Tumas.

Ethics declarations

Ethics Approval

The study was approved by the Institutional Ethics Committee of Federal University of Alagoas and all patients have signed written informed consent to participate and to publish prior to enrolment in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Table S1 Frequency of geographic distribution of SCA patients submitted to clinical evaluation. Figure S1: Correlation between the number of abnormal CAG repeats and age of onset in SCA3 and SCA7. Figure S2: Correlation between scores on severity assessment scales and duration of disease in SCA3 and SCA7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, D.B.V., Coradine, T.L.C., Silva, E.V.L. et al. Genetic Epidemiology and Clinical Characteristics of Patients with Spinocerebellar Ataxias in an Unexplored Brazilian State, Using Strategies for Resource-Limited Settings. Cerebellum 23, 609–619 (2024). https://doi.org/10.1007/s12311-023-01581-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01581-x

Keywords

Navigation