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Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, 
neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presum-
ably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar 
transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy par-
ticipants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from 
a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants’ 
accuracy to discriminate static sad facial expressions, but it increased participants’ accuracy to discriminate dynamic sad 
facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits 
in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which 
can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which 
can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models 
constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others’ 
actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals’ social 
and emotional behaviors during interactions.
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Introduction

Facial emotional expressions are a primary form of nonver-
bal communication and play a critical role in human interac-
tions [1], since the ability to accurately perceive and inter-
pret them is essential for successful social communication 
[2, 3]. While the role of the cerebral cortex in facial emotion 
perception has been extensively investigated [1, 4–10], the 
contribution of the cerebellum to this process is compara-
tively less understood. However, recent lesion, neuroimag-
ing, and neuromodulation studies have increasingly provided 

compelling evidence that the cerebellum—for more than a 
century thought to be exclusively involved in motor coor-
dination and learning—is actually involved in high-level 
cognitive functions [11–15] including social cognition [11, 
16–32] and emotion processing [33–51]. More specifically, 
a difference has been proposed between the anterior lobe of 
the cerebellum, more engaged in sensorimotor control, and 
the posterior lobe, more engaged in cognitive, social, and 
emotional functions [12, 14, 30, 31, 37, 44, 52]. Concerning 
the role of the cerebellum in emotion processing, most of the 
studies carried out so far have exploited emotion discrimi-
nation and recognition tasks in which static images (photo-
graphs) depicting facial emotional expressions are presented 
to patients/participants [16, 52–68]. Based on these findings, 
it is therefore conceivable that the cerebellum is involved in 
the perception of facial emotional expressions, especially in 
response to negative emotions (i.e., sadness, anger, and fear) 
and aversive stimuli [16, 36, 37, 41, 46, 52–54, 56, 58, 59, 
62, 65, 67, 69–76]. In fact, neuroimaging evidence showed 
emotion-specific activations in the cerebellum (along with 
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the posterior cingulate and fusiform gyrus) in response to 
negative, but not positive, facial emotions [67]. According 
to this view, posterior areas of the cerebellum would rapidly 
kick off a set of ancestral defense mechanisms, such as fight-
or-flight motor reactions (in response to potentially danger-
ous stimuli coming from outside) which in turn involve more 
anterior cerebellar areas [34, 70, 73, 77, 78].

Although several operating mechanisms of the cerebel-
lum are still not fully understood, it seems plausible to state 
that both the motor and the non-motor (i.e., cognitive/social/
emotional) cerebellum work through operating principles 
that are analogous [13, 15, 79]. The recent view is that 
the cerebellum is continuously involved in two adaptive 
and interdependent functions: prediction and anticipation. 
More specifically, cerebellar operational models and circuits 
would detect and anticipate the presence of temporal and 
spatial patterns from physical cues, make accurate predic-
tions of prospective outcomes on the basis of these cues, 
and prepare to respond accordingly [15, 23, 80–86]. Within 
this framework, it has been suggested that the operational 
mode of the cerebellum in prediction and anticipation pro-
cesses—even beyond the motor domain—is a time-related 
“sequence detection” [15, 80, 82, 87–91]. The cerebellar 
automatic mechanism of prediction (i.e., generating expecta-
tions) and anticipation (i.e., preparing for future events) of 
sequences, as well as the rapid adjustment of such predic-
tions based on dynamic environmental information, would 
be one of the leading processes underlying the understand-
ing of other individuals’ behaviors and mental states during 
social interactions [18, 22, 23, 25, 88, 92–94]. Nevertheless, 
to date, no human study has explored the causal role of the 
cerebellum in this putative prediction/anticipation mecha-
nism within the specific domain of facial emotion process-
ing. One way to investigate this process in the field of emo-
tions is by exploiting the presentation of dynamic emotional 
facial expressions, which have been gradually recognized as 
a more sensitive and ecologically valid stimulus compared 
to the static presentation of emotional faces [95]. In this 
regard, dynamic negative emotions, as opposed to positive 
emotions, have been shown to elicit activation patterns in the 
cerebellum (along with the left inferior frontal gyrus and the 
pars orbitalis [66]).

In recent years, the use of non-invasive brain stimula-
tion techniques (e.g., transcranial magnetic stimulation and 
transcranial electrical stimulation) for studying cerebellar 
functions in non-motor domains (such as cognition, social 
behavior, and emotion) has substantially increased [25, 59, 
60, 65, 75, 92, 96–105]. These techniques can help neuro-
scientists to provide causal links between cerebellar activity 
and behavior. In this study, we exploited cerebellar transcra-
nial random-noise stimulation (ctRNS; i.e., a non-invasive 
technique of electrical brain stimulation, the usefulness of 
which has already been proven in several cognitive and 

emotional processes in the neocortex [106–111]) in order 
to causally verify the role of the cerebellum in predicting 
and anticipating sequences of facial emotional expressions 
changing over time. This specific stimulation technique can 
be applied either at low or high frequency with different 
effects on the target area of the brain, and cortical stimula-
tion research showed that high-frequency tRNS led to excita-
tory effects [112]. Here, we used an emotion discrimination 
task in which participants were required to quickly respond 
to videos of faces that progressively evolved from a neutral 
to either a negative (sad) or a positive (happy) emotional 
expression [113]. Based on the above-mentioned evidence 
that the cerebellum would play a role in the processing of 
emotional expressions, especially for negative valence, 
and that its operational mechanism would include the abil-
ity to understand the timing and predict the outcomes of 
physical and social action sequences, we hypothesized that 
high-frequency ctRNS over the posterior cerebellum could 
enhance participants’ performance in a discrimination task 
of dynamic—especially negative—facial expressions of 
emotion.

Materials and Methods

Participants

Thirty-two participants took part in the study (16 females, 
mean age ± standard deviation: 24.56 ± 3.5 years). Hand-
edness was assessed by using the Edinburgh Handedness 
Inventory [114, 115], according to which the handedness 
score ranges from − 100 (totally left-handed) to + 100 
(totally right-handed): the mean handedness score was 46.97 
(± 42.26) including four left-handed. All participants were 
free from any history of psychiatric or neurological disorders 
and gave written consent before taking part to the experi-
ment. The whole procedure was carried out in accordance 
with the principles of the Declaration of Helsinki and was 
approved by the Institutional Review Board of Psychology 
of the Department of Psychological, Health and Territorial 
Sciences—University “G. d’Annunzio” of Chieti-Pescara 
(protocol number: IRBP/22002).

ctRNS and General Procedure

High-frequency ctRNS was delivered by a battery-driven, 
constant current stimulator (DC-Stimulator, NeuroConn 
GmbH, Germany) through a pair of surface saline-soaked 
sponge electrodes, one measuring 5 cm × 5 cm and the other 
measuring 5 cm × 10 cm, kept firm by elastic bands. A ran-
dom noise current was applied for 20 min with an intensity 
of 1.5 mA and with a 0 mA offset. Random frequencies 
ranged from 100 to 640 Hz (high frequency), according to 
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safety guidelines, with a ramping period of 15 s both at the 
beginning and at the end of the stimulation.

All participants took part in two different stimulation 
sessions (ctRNS and sham), carried out on 2 different days 
separated by at least 24 h. The smallest electrode was cen-
tered on the cerebellar cortex (the center of the electrode was 
placed 2 cm below the inion [25]), and the largest electrode 
was placed on the left or right shoulder (balanced between 
participants). In the sham condition, the current was turned 
off after 15 s, and the order of the two sessions was coun-
terbalanced across participants. The task started 5 min after 
the beginning of the stimulation and was carried out online 
(see Fig. 1). The experiment was run using E-Prime 3.0 soft-
ware (Psychology Software Tools, Inc., Pittsburgh, PA) on 
a Windows personal computer. Participants were required 
to comfortably sit in a quiet room, at about 57 cm from the 
computer screen.

At the end of each session, participants were required to 
complete a questionnaire investigating their sensation con-
cerning stimulation [116]. None of the participants reported 
feeling strong pain or burning sensations, a minority of them 
(16%) reported feeling mild pain and burning sensations in 
both sessions.

Stimuli and Procedure

The task comprised a static and a dynamic condition. The 
static condition used color photographs of face images (reso-
lution of 2.835 × 3.543 pixels) from the FACES database 
[117]. Photos of 12 males and 12 females displaying happy 
and sad facial expressions were selected. The images were 
also flipped horizontally, so the final set of stimuli com-
prised 96 static faces. In the dynamic condition, stimuli con-
sisted of video clips (frame rate of 30 fps and resolution of 
384 × 480 pixels) obtained by morphing faces selected from 
the Dynamic FACES database [113]. The videos started 

with the presentation of a neutral face that progressively 
evolved into a happy or sad expression (see Fig. 2 C). Each 

Fig. 1  A Schematic representa-
tion of electrodes placement 
(smaller electrode centered on 
the cerebellar cortex with the 
center placed 2 cm below the 
inion, and a larger electrode 
placed on the left shoulder); 
B timeline of real ctRNS 
condition; C timeline of sham 
condition

Fig. 2  Timeline of experimental trials for A static (sad) condition and 
B dynamic (happy) condition; C sample of a video stimulus show-
ing morph images captured every 400 ms from the start of the video 
(from neutral to happy expression). The photographs/video depict 
the person corresponding to the n. 140, taken respectively from the 
FACES and Dynamic FACES databases (permitted for publication 
according to the FACES Platform Release Agreement)
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video had a duration of two seconds: morphing took place 
in the first second and was followed by one second in which 
the expression was static. Videos from the same actors of 
the static session (12 males and 12 females) were selected. 
The videos were also flipped horizontally, so the final set of 
stimuli comprised 96 video clips.

In each stimulation session (ctRNS and sham), partici-
pants performed both the static and the dynamic condition, 
in a counterbalanced order. In each condition, 96 trials were 
presented (either images or video alternatively). In each 
trial, a black fixation cross was presented for 500 ms, and it 
was followed by either an image or a video presented in the 
center of the screen for a maximum of 2 s or until partici-
pants gave the response. Then, after the presentation of an 
interstimulus interval (ISI) lasting 1 s, the next trial started. 
Participants were asked to classify each stimulus as happy 
or sad, stopping the presentation of the image or interrupting 
the morphing video as soon as they recognized the emotion 
displayed (see Fig. 2 A and B). Responses were provided by 
pressing two different keys with the right hand, correspond-
ing to the happy and the sad expression, respectively (the 
association between key and response was balanced across 
participants).

Results

Data analysis was based on the proportion of cor-
rect responses (accuracy) in categorizing the emotional 
expressions (calculated by dividing the number of correct 
responses by the total number of stimuli and multiplying by 
100%) and on the response times (RTs) in milliseconds for 
correct responses (calculated from the begin of the presenta-
tion of the static or dynamic stimulus). Responses with RTs 
values deviating by more than two standard deviations from 
the subject’s mean for any condition (static and dynamic) 
were excluded. Accuracy and RTs were used as the depend-
ent variables in two repeated measures analyses of variance 
(ANOVA) with the stimulus (static, dynamic), emotion 
(happy, sad), and session (ctRNS, sham) as within-subjects 
factors. All statistical analyses were computed by means of 
Statistica 8.0 software (StatSoft. Inc., Tulsa, USA) and when 
needed, the Duncan test was used for post-hoc comparisons 
(p < 0.05).

As regards accuracy, the main effect of emotion was 
significant (F1,31 = 7.61, p = 0.009, ηp2 = 0.20), showing 
a higher accuracy for happy (92.04 ± 0.79) than for sad 
faces (90.26 ± 0.51). The interaction among stimulus, emo-
tion, and session was significant (F1,31 = 6.07, p = 0.022, 
ηp2 = 0.16; Fig. 3), and post hoc comparisons revealed 
that in the static condition, sad expression was categorized 
worse during ctRNS than during sham (p < 0.001); however, 

in the dynamic condition sad expression was categorized 
better during ctRNS than during sham (p = 0.045). No dif-
ference was observed for happy expression in both static and 
dynamic conditions.

As regards RTs, the main effect of the stimulus was sig-
nificant (F1,31 = 129.50, p < 0.001, ηp2 = 0.81), with higher 
RTs for dynamic (725.96 ± 21.91 ms) than for static stimuli 
(559.89 ± 21.89 ms). The main effect of emotion was also 
significant (F1,31 = 61.59, p < 0.001, ηp2 = 0.67), with higher 
RTs for sad (658.51 ± 21.36 ms) than for happy expression 
(627.34 ± 20.11 ms). The interaction between stimulus and 
emotion (F1,31 = 12.26, p = 0.001, ηp2 = 0.28) showed that 
the happy expression was categorized faster than the sad 
expression, in both static (p < 0.001) and dynamic condi-
tions (p < 0.001).

Discussion

In this study, we investigated the causal role of the poste-
rior cerebellum in categorizing positive (happy) and nega-
tive (sad) facial emotions, presented as static and—impor-
tantly—as dynamic stimuli. This is the first neuromodulation 
study making use of this type of stimuli in cerebellar 
research, although a number of neuroimaging studies have 
included the cerebellum among the structures involved in 
the neural pathways for the perception of dynamic facial 
emotions [52, 95, 118–121]. In addition, for the sake of 
comparison with previous cerebellar studies on emotion 
processing, we still used a set of static emotional images of 

Fig. 3  Interaction among stimulus (static, dynamic), emotion (happy, 
sad), and session (ctRNS, sham) on the accuracy (percentage of cor-
rect responses) in the categorization of emotional expression. Bars 
represent standard errors and asterisks show significant differences
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facial expressions. Our hypothesis was that high-frequency 
ctRNS over the posterior cerebellum would enhance partici-
pants’ performance in emotion discrimination, especially in 
response to dynamic negative (i.e., sad) facial expressions.

First of all, results unsurprisingly showed that partici-
pants performed better (in terms of higher accuracy and 
lower RTs) for happy than for sad facial expressions. In this 
regard, it has been suggested that the teeth exposure during 
a happy smile produces a circumscribed contrasting lumi-
nance in the mouth area capable of capturing the observer’s 
attention and thus facilitating the detection of happiness as 
shown both through discrimination and visual search tasks 
[122–124].

More interestingly, results showed a triple significant 
interaction revealing an inverse pattern of participants’ per-
formance accuracy in response to negative static vs. dynamic 
stimuli during ctRNS. In fact, while on the one hand ctRNS 
compared to the sham condition significantly reduced partic-
ipants’ accuracy to discriminate static sad facial expressions, 
on the other hand, ctRNS significantly increased partici-
pants’ accuracy to discriminate dynamic sad facial expres-
sions. As no difference was found in response to the positive 
(i.e., happy) stimuli, our findings primarily confirm the idea 
that the posterior cerebellum is selectively involved in a cir-
cuit for the discrimination of the static facial cues deriving 
from negative emotional expressions [16, 36, 37, 41, 46, 
52–54, 56, 58, 59, 62, 65, 67, 69–76] and that this circuit 
can be altered by high-frequency ctRNS applied over the 
posterior cerebellum. As suggested by previous studies, this 
might be due to the greater biological and evolutionary sali-
ence of negative emotions, along with the crucial role of the 
cerebellum in the consequent preparation of a rapid motor 
response [34, 70, 73, 77, 78]. However, since our results 
showed that ctRNS selectively and oppositely altered partici-
pants’ performance accuracy for static—with a decrease—
and dynamic—with an increase—sad facial expressions, we 
speculate that two different circuits exist for the process-
ing of negative emotional stimuli in the cerebellum: a first 
time-independent mechanism which can be selectively dis-
rupted by ctRNS, and a second time-dependent mechanism 
of predictive “sequence detection” which can be selectively 
enhanced by ctRNS. It has to be noted that our speculations 
must be considered with caution due to some possible limi-
tations of the study. First, based on previous studies (e.g., 
[25]), we used the inion as a reference for the placement of 
the cephalic electrode, but only the use of neuronavigation 
could ensure that the same target area is stimulated in all 
participants. In this regard, it can be pointed out that the size 
of the electrodes used in the tES protocol is quite large to 
avoid the need for a high spatial resolution, but this issue can 
be at the basis of inter-individual differences in the targeted 
cerebellar area. However, the electrode montage we used 
on the posterior cerebellum provides us with a reasonable 

certainty that we modulated cerebellar activity in the pos-
terior vermal and paravermal areas, as well as the adjacent 
regions of the posterior cerebellar hemispheres. Second, the 
literature about ctRNS is not so wide to conclusively support 
either the facilitatory or inhibitory effects of this stimula-
tion set-up on the cerebellar cortex. Nevertheless, the use 
of random noise stimulation should ensure that stochastic 
resonance effects occur, so that we can be confident about 
the overall excitatory induction of the targeted area [125]. 
Even in this regard, however, neuroimaging studies investi-
gating the direct effect of hf-tRNS applied on the cerebellum 
are needed to directly corroborate its effect. Furthermore, 
even if, at a pure statistical level, the three-way interaction 
revealed a participants’ lower accuracy in the discrimination 
of static sad expressions and a higher accuracy in the dis-
crimination of dynamic sad expressions (with respect to the 
corresponding sham conditions), the mean accuracies of the 
sample show that this latter difference seems to be attribut-
able to a decreased accuracy for the dynamic sad stimuli in 
sham condition, more than to an enhancement of the perfor-
mance during the active stimulation. This means that if we 
consider only the sham sessions, the participants’ accuracy 
is lowest in the dynamic-sad condition than in all the other 
static and dynamic conditions. This difference among the 
sham sessions can suggest that sadness is not so simple to 
detect as the happiness expression. As specified above, in 
fact, this is in line with the evidence of a facilitation in the 
detection of smiling faces, possibly due to teeth exposure 
[122–124]. Importantly, the contrasting patterns obtained for 
static vs. dynamic sad expressions are in line with the spe-
cific role of ctRNS in sadness perception. Finally, it should 
be noted that dynamic emotions should have increased par-
ticipants’ perceived realism of facial expressions, because 
dynamic compared to static stimuli facilitate the processing 
of complex and changing cues that constantly occur during 
real social interactions [95, 126–129].

Conclusion

This study showed that a cerebellar automatic mechanism 
of predicting and anticipating temporal sequences exists 
not only for the prediction of social action sequences, but 
also for predicting the behavioral outcome of emotional 
sequences (i.e., dynamic facial expressions). Since this abil-
ity can be differentially altered by ctRNS applied over the 
posterior cerebellum for static and dynamic stimuli, we can 
conclude that it could be a different mechanism compared 
to that investigated so far by most of the studies carried out 
in the emotional domain [16, 36, 37, 41, 46, 52–54, 56, 58, 
59, 62, 65, 67, 69–76]. In fact, it is possible that this mech-
anism is part of the already-known cerebellar operational 
models constantly engaged in the rapid adjustment of social 
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predictions based on dynamic environmental information, 
which are presumably at the root of the understanding of 
other individuals’ social and emotional behaviors during 
interactions [18, 22, 23, 25, 92–94]. In our opinion, these 
findings support the recent idea of the cerebellum as the cen-
tral coordinator of the structures involved in the “predictive 
brain” [80, 91]. Finally, the present study showed that ctRNS 
is a useful technique for altering the activity of the cerebel-
lum, although further studies are needed to better understand 
the dimensions and directionality of such alterations, as well 
as the existence of such a putative mechanism of predictive 
“sequence detection,” specifically involved in the emotional 
processing of negative facial expressions.
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