Skip to main content
Log in

Cerebellar Microstructural Abnormalities in Obsessive–Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies

  • REVIEW
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Previous neuroimaging studies have suggested that obsessive–compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive–compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD’s complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  2. Lui S, Zhou XJ, Sweeney JA, Gong Q. Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology. 2016;281(2):357–72.

    Article  PubMed  Google Scholar 

  3. Aouizerate B, Guehl D, Cuny E, Rougier A, Bioulac B, Tignol J, et al. Pathophysiology of obsessive–compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol. 2004;72(3):195–221.

    Article  PubMed  Google Scholar 

  4. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32(3):525–49.

    Article  PubMed  Google Scholar 

  5. De Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM, et al. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry. 2014;171(3):340–9.

    Article  PubMed  Google Scholar 

  6. Rotge J-Y, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, et al. Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology. 2010;35(3):686–91.

    Article  CAS  PubMed  Google Scholar 

  7. Eng GK, Sim K, Chen S-HA. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev. 2015;52:233–57.

    Article  PubMed  Google Scholar 

  8. Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta-and mega-analysis. Am J Psychiatry. 2017;174(1):60–9.

    Article  PubMed  Google Scholar 

  9. Gürsel DA, Avram M, Sorg C, Brandl F, Koch K. Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev. 2018;87:151–60.

    Article  PubMed  Google Scholar 

  10. Piras F, Piras F, Abe Y, Agarwal SM, Anticevic A, Ameis S, et al. White matter microstructure and its relation to clinical features of obsessive–compulsive disorder: findings from the ENIGMA OCD Working Group. Transl Psychiatry. 2021;11(1):1–11.

    Article  Google Scholar 

  11. Boedhoe PS, Schmaal L, Abe Y, Alonso P, Ameis SH, Anticevic A, et al. Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA Obsessive-Compulsive Disorder Working Group. Am J Psychiatry. 2018;175(5):453–62.

    Article  PubMed  Google Scholar 

  12. Koch K, Reeß TJ, Rus OG, Zimmer C, Zaudig M. Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): a review. J Psychiatr Res. 2014;54:26–35.

    Article  PubMed  Google Scholar 

  13. Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM, et al. White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Arch Gen Psychiatry. 2005;62(7):782–90.

    Article  PubMed  Google Scholar 

  14. Cannistraro PA, Makris N, Howard JD, Wedig MM, Hodge SM, Wilhelm S, et al. A diffusion tensor imaging study of white matter in obsessive–compulsive disorder. Depress Anxiety. 2007;24(6):440–6.

    Article  PubMed  Google Scholar 

  15. Lochner C, Fouché J-P, du Plessis S, Spottiswoode B, Seedat S, Fineberg N, et al. Evidence for fractional anisotropy and mean diffusivity white matter abnormalities in the internal capsule and cingulum in patients with obsessive–compulsive disorder. J Psychiatry Neurosci. 2012;37(3):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saito Y, Nobuhara K, Okugawa G, Takase K, Sugimoto T, Horiuchi M, et al. Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study. Radiology. 2008;246(2):536–42.

    Article  PubMed  Google Scholar 

  17. Lupo M, Siciliano L, Leggio M. From cerebellar alterations to mood disorders: a systematic review. Neurosci Biobehav Rev. 2019;103:21–8.

    Article  PubMed  Google Scholar 

  18. Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, et al. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2013;39(4):797–806.

    Article  PubMed  Google Scholar 

  19. Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghazi Sherbaf F, Mojtahed Zadeh M, Haghshomar M, Aarabi MH. Posterior limb of the internal capsule predicts poor quality of life in patients with Parkinson’s disease: connectometry approach. Acta Neurol Belg. 2019;119(1):95–100.

    Article  PubMed  Google Scholar 

  21. Hu X, Du M, Chen L, Li L, Zhou M, Zhang L, et al. Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neurosci Biobehav Rev. 2017;78:91–103.

    Article  PubMed  Google Scholar 

  22. Xu T, Zhao Q, Wang P, Fan Q, Chen J, Zhang H, et al. Altered resting-state cerebellar-cerebral functional connectivity in obsessive-compulsive disorder. Psychol Med. 2019;49(7):1156–65.

    Article  PubMed  Google Scholar 

  23. Ranzenberger LR, Snyder T. Diffusion Tensor Imaging. 2022 Jul 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 30726046.

  24. Wheeler-Kingshott CAM, Cercignani M. About, “axial” and “radial” diffusivities. Magn Reson Med. 2009;61(5):1255–60.

    Article  PubMed  Google Scholar 

  25. Van Hecke, W., Emsell, L., & Sunaert, S. (Eds.). (2016). Diffusion tensor imaging: a practical handbook (pp. 1-440). New York: Springer. https://doi.org/10.1007/978-1-4939-3118-7.

  26. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

    Article  PubMed  Google Scholar 

  27. Bollettini I, Mazza MG, Muzzarelli L, Dallaspezia S, Poletti S, Vai B, et al. White matter alterations associate with onset symptom dimension in obsessive-compulsive disorder. Psychiatry Clin Neurosci. 2018;72(1):13–27.

    Article  PubMed  Google Scholar 

  28. den Braber A, van ’t Ent D, Boomsma DI, Cath DC, Veltman DJ, Thompson PM, et al. White matter differences in monozygotic twins discordant or concordant for obsessive-compulsive symptoms: a combined diffusion tensor imaging/voxel-based morphometry study. Biol Psychiatry. 2011;70(10):969–77.

    Article  Google Scholar 

  29. Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L, et al. Disorganization of anatomical connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol Dis. 2010;37(2):468–76.

    Article  CAS  PubMed  Google Scholar 

  30. Gassó P, Ortiz AE, Mas S, Morer A, Calvo A, Bargalló N, et al. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive-compulsive disorder. J Affect Disord. 2015;186:284–92.

    Article  PubMed  Google Scholar 

  31. Glahn A, Prell T, Grosskreutz J, Peschel T, Müller-Vahl KR. Obsessive-compulsive disorder is a heterogeneous disorder: evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry. 2015;15:135.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hartmann T, Vandborg S, Rosenberg R, Sørensen L, Videbech P. Increased fractional anisotropy in cerebellum in obsessive-compulsive disorder. Acta Neuropsychiatr. 2016;28(3):141–8.

    Article  PubMed  Google Scholar 

  33. Jayarajan RN, Venkatasubramanian G, Viswanath B, Janardhan Reddy YC, Srinath S, Vasudev MK, et al. White matter abnormalities in children and adolescents with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety. 2012;29(9):780–8.

    Article  PubMed  Google Scholar 

  34. Kim SG, Jung WH, Kim SN, Jang JH, Kwon JS. Alterations of gray and white matter networks in patients with obsessive-compulsive disorder: a multimodal fusion analysis of structural MRI and DTI using mCCA+jICA. PLoS One. 2015;10(6):e0127118.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lázaro L, Calvo A, Ortiz AG, Ortiz AE, Morer A, Moreno E, et al. Microstructural brain abnormalities and symptom dimensions in child and adolescent patients with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety. 2014;31(12):1007–17.

    Article  PubMed  Google Scholar 

  36. Rus OG, Reess TJ, Wagner G, Zimmer C, Zaudig M, Koch K. Functional and structural connectivity of the amygdala in obsessive-compulsive disorder. Neuroimage Clin. 2017;13:246–55.

    Article  PubMed  Google Scholar 

  37. Tikoo S, Suppa A, Tommasin S, Giannì C, Conte G, Mirabella G et al (2021) The cerebellum in drug-naive children with Tourette syndrome and obsessive-compulsive disorder. Cerebellum.

  38. Wang YM, Yang ZY, Cai XL, Zhou HY, Zhang RT, Yang HX, et al. Identifying schizo-obsessive comorbidity by tract-based spatial statistics and probabilistic tractography. Schizophr Bull. 2020;46(2):442–53.

    PubMed  Google Scholar 

  39. Yagi M, Hirano Y, Nakazato M, Nemoto K, Ishikawa K, Sutoh C, et al. Relationship between symptom dimensions and white matter alterations in obsessive-compulsive disorder. Acta Neuropsychiatr. 2017;29(3):153–63.

    Article  PubMed  Google Scholar 

  40. Zarei M, Mataix-Cols D, Heyman I, Hough M, Doherty J, Burge L, et al. Changes in gray matter volume and white matter microstructure in adolescents with obsessive-compulsive disorder. Biol Psychiatry. 2011;70(11):1083–90.

    Article  PubMed  Google Scholar 

  41. Zhong Z, Yang X, Cao R, Li P, Li Z, Lv L, et al. Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: changes after cognitive behavioral therapy. Brain Behav. 2019;9(2):e01201. https://doi.org/10.1002/brb3.1201.

  42. Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, et al. Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging. Front Psychiatry. 2018;9:524.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cabrera B, Romero-Rebollar C, Jiménez-Ángeles L, Genis-Mendoza AD, Flores J, Lanzagorta N, et al. Neuroanatomical features and its usefulness in classification of patients with PANDAS. CNS Spectr. 2019;24(5):533–43.

    Article  PubMed  Google Scholar 

  44. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):1006–11.

    Article  CAS  PubMed  Google Scholar 

  45. Scahill L, Riddle MA, McSwiggin-Hardin M, Ort SI, King RA, Goodman WK, et al. Children’s Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry. 1997;36(6):844–52.

    Article  CAS  PubMed  Google Scholar 

  46. Tikoo S, Suppa A, Tommasin S, Giannì C, Conte G, Mirabella G et al The cerebellum in drug-naive children with Tourette syndrome and obsessive-compulsive disorder. Cerebellum.

  47. Hartmann T, borg S, Rosenberg R, Sørensen L, Videbech P. Increased fractional anisotropy in cerebellum in obsessive-compulsive disorder. Acta Neuropsychiatr. 2016;28(3):141–8.

    Article  PubMed  Google Scholar 

  48. Gassó P, Ortiz AE, Mas S, Morer A, Calvo A, Bargalló N, et al. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive-compulsive disorder. J Affect Disord. 2015;186:284–92.

    Article  PubMed  Google Scholar 

  49. Jayarajan RN, Venkatasubramanian G, Viswanath B, Janardhan Reddy YC, Srinath S, Vasudev MK, et al. White matter abnormalities in children and adolescents with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety. 2012;29(9):780–8.

    Article  PubMed  Google Scholar 

  50. Lázaro L, Calvo A, Ortiz AG, Ortiz AE, Morer A, Moreno E, et al. Microstructural brain abnormalities and symptom dimensions in child and adolescent patients with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety. 2014;31(12):1007–17.

    Article  PubMed  Google Scholar 

  51. Schwartzman A, Dougherty RF, Taylor JE. Cross-subject comparison of principal diffusion direction maps. Magn Reson Med: Off J Int Soc Magn Reson Med. 2005;53(6):1423–31. https://doi.org/10.1002/mrm.20503.

    Article  Google Scholar 

  52. Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  53. Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW, et al. A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch Gen Psychiatry. 2007;64(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  54. Van Velzen LS, Kelly S, Isaev D, Aleman A, Aftanas LI, Bauer J, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry. 2020;25(7):1511–25.

    Article  PubMed  Google Scholar 

  55. Schmithorst VJ, Holland SK, Dardzinski BJ. Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp. 2008;29(6):696–710.

    Article  PubMed  Google Scholar 

  56. Wang YM, Yang ZY, Cai XL, Zhou HY, Zhang RT, Yang HX, et al. Identifying schizo-obsessive comorbidity by tract-based spatial statistics and probabilistic tractography. Schizophr Bull. 2020;46(2):442–53.

    PubMed  Google Scholar 

  57. Murayama K, Tomiyama H, Tsuruta S, Ohono A, Kang M, Hasuzawa S, et al. Aberrant resting-state cerebellar-cerebral functional connectivity in unmedicated patients with obsessive-compulsive disorder. Front Psychiatry. 2021;12.

  58. Zhang H, Wang B, Li K, Wang X, Li X, Zhu J, et al. Altered functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical circuit in obsessive-compulsive disorder. Front Psychiatry. 2019:522.

  59. Haghshomar M, Shobeiri P, Seyedi SA, Abbasi-Feijani F, Poopak A, Sotoudeh H, et al. Cerebellar microstructural abnormalities in Parkinson’s disease: a systematic review of diffusion tensor imaging studies. Cerebellum. 2022:1–27.

  60. Ghazi Sherbaf F, Aarabi MH, Hosein Yazdi M, Haghshomar M. White matter microstructure in fetal alcohol spectrum disorders: a systematic review of diffusion tensor imaging studies. Hum Brain Mapp. 2019;40(3):1017–36.

    Article  PubMed  Google Scholar 

  61. Lu M, Yang C, Chu T, Wu S. Cerebral white matter changes in young healthy individuals with high trait anxiety: a tract-based spatial statistics study. Front Neurol. 2018:704.

  62. Toniolo S, Serra L, Olivito G, Caltagirone C, Mercuri NB, Marra C, et al. Cerebellar white matter disruption in Alzheimer’s disease patients: a diffusion tensor imaging study. J Alzheimers Dis. 2020;74(2):615–24. https://doi.org/10.3233/JAD-191125.

  63. Haghshomar M, Mirghaderi SP, Shobeiri P, James A, Zarei M. White matter abnormalities in paediatric obsessive-compulsive disorder: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav. 2023 Jun;17(3):343-366. Epub 2023 Mar 20. https://doi.org/10.1007/s11682-023-00761-x. 

  64. Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L, et al. Disorganization of anatomical connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol Dis. 2010;37(2):468–76. https://doi.org/10.1016/j.nbd.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  65. Yagi M, Hirano Y, Nakazato M, Nemoto K, Ishikawa K, Sutoh C, et al. Relationship between symptom dimensions and white matter alterations in obsessive-compulsive disorder. Acta Neuropsychiatr. 2017;29(3):153–63.

    Article  PubMed  Google Scholar 

  66. Alvarenga PG, do Rosário MC, Batistuzzo MC, Diniz JB, Shavitt RG, Duran FL, et al. Obsessive-compulsive symptom dimensions correlate to specific gray matter volumes in treatment-naïve patients. J Psychiatr Res. 2012;46(12):1635-42. https://doi.org/10.1016/j.jpsychires.2012.09.002.

  67. Ha TH, Kang D-H, Park JS, Jang JH, Jung WH, Choi J-S, et al. White matter alterations in male patients with obsessive–compulsive disorder. NeuroReport. 2009;20(7):735–9.

    Article  PubMed  Google Scholar 

  68. Murphy DL, Timpano KR, Wheaton MG, Greenberg BD, Miguel EC. Obsessive-compulsive disorder and its related disorders: a reappraisal of obsessive-compulsive spectrum concepts. Dialogues Clin Neurosci. 2010;12(2):131-48. https://doi.org/10.31887/DCNS.2010.12.2/dmurphy

  69. Wang Q, Cheung C, Deng W, Li M, Huang C, Ma X, et al. White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychol Med. 2013;43(11):2301–9.

    Article  CAS  PubMed  Google Scholar 

  70. Insel KC, Reminger SL, Hsiao C-P. White matter hyperintensities and medication adherence. Biol Res Nurs. 2008;10(2):121–7.

    Article  PubMed  Google Scholar 

  71. Seiger R, Gryglewski G, Klobl M, Kautzky A, Godbersen GM, Rischka L, et al. The influence of acute SSRI administration on white matter microstructure in patients suffering from major depressive disorder and healthy controls. Int J Neuropsychopharmacol. 2021;24(7):542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sijens PE, Mostert JP, Irwan R, Potze JH, Oudkerk M, De Keyser J. Impact of fluoxetine on the human brain in multiple sclerosis as quantified by proton magnetic resonance spectroscopy and diffusion tensor imaging. Psychiatry Res: Neuroimaging. 2008;164(3):274–82.

    Article  CAS  Google Scholar 

  73. Konopaske GT, Dorph-Petersen K-A, Sweet RA, Pierri JN, Zhang W, Sampson AR, et al. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiat. 2008;63(8):759–65. https://doi.org/10.1016/j.biopsych.2007.08.018.

    Article  CAS  PubMed  Google Scholar 

  74. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connectivity. 2011;1(6):423–46.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sagarwala R, Nasrallah HA. A systematic review of diffusion tensor imaging studies in drug-naïve OCD patients before and after pharmacotherapy. Ann Clin Psychiatry: Off J Am Acad Clin Psychiatr. 2020;32(1):42–7.

    Google Scholar 

  76. Li F, Huang X, Tang W, Yang Y, Li B, Kemp GJ, et al. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Hum Brain Mapp. 2014;35(6):2643–51.

    Article  PubMed  Google Scholar 

  77. Yang X, Hu X, Tang W, Li B, Yang Y, Gong Q, et al. Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data. BMC Psychiatry. 2019;19(1):1–8.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the authors of the included articles in this systematic review due to sharing the relevant data.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PS and MH; literature search and data extraction: PS and SHS; formal analysis and investigation: SHS; writing—original draft preparation: PS, SHS, MH, and SK; writing—review and editing: SF, HS, AK, and SK. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Parnian Shobeiri.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any part with the requirement of informed consent for subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobeiri, P., Hosseini Shabanan, S., Haghshomar, M. et al. Cerebellar Microstructural Abnormalities in Obsessive–Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies. Cerebellum 23, 778–801 (2024). https://doi.org/10.1007/s12311-023-01573-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01573-x

Keywords

Navigation