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Abstract

This Cerebellar Classic highlights the landmark discovery of the innervation of the cerebellar cortex and cerebellar nuclei
by noradrenergic and serotoninergic axons emanating, respectively, from the locus coeruleus and the raphé nuclei. Since
then, modulation of the activity of cerebellar neurons by the monoamine systems has been studied extensively, as well as
their reorganization and modifications during development, plasticity, and disease. The discovery of noradrenergic and sero-
toninergic innervation of the cerebellum has been a crucial step in understanding the neurochemical relationships between
brainstem nuclei and the cerebellum, and the attempts to treat cerebellar ataxias pharmacologically. The large neurochemical
repertoire of the cerebellum represents one of the complexities and challenges in the modern appraisal of cerebellar disorders.
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Divergent or “global” neural systems imply situations,
whereby a relatively small number of neurons innervate
a much larger number of terminal domains, in contrast
to so-called “point-to-point” systems, where each neuron
only contacts a few target nerve cells [1]. Since the time of
Ramoén y Cajal, the cerebellum had classically been consid-
ered a point-to-point system. With the discovery in the 1960s
of the cerebellar monoaminergic innervation by neurons of
the locus coeruleus and the raphé nuclei, the cerebellum
has become a structure where “point-to-point” and “global”
neural circuits converge. Moreover, monoamines may exert a
widespread effect on neurons besides those receiving physi-
cal synaptic appositions—that is, they may subserve a par-
acrine function [2].

In the human brain, the locus coeruleus contains an aver-
age of 50,000 noradrenergic neurons [3, 4], while in rodents
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it contains about 3,000 cells [5]. The dorsal raphé nuclei of
the human brain contain around 130,000-200,000 seroto-
ninergic neurons [6], while that number in rodents is about
8,000-9,000 cells [7, 8]. Thus, the thousands of neurons
in both these anatomical systems influence the physiologi-
cal activity of extensively divergent domains that comprise
several billion neurons, from the telencephalon to the spinal
cord.

The Cerebellar Classic [9] by the pioneer Swedish neu-
roscientists Nils-Erik Andén, Kjell Fuxe, and Urban Unger-
stedt revisited here has broadened the sources of afferent
input to the cerebellum beyond the “traditional” climbing
and mossy fibers. It has also paved the way for studies on
the fate and reorganization of cerebellar monoamine sys-
tems in human diseases [10] and in experimental models of
cerebellar degeneration [11-21], as well the elucidation of
phylogenetic [22, 23], ontogenetic [24-26], developmental
plasticity [27-29], and reinnervation issues [30].

Andén and colleagues [9] studied central monoamine
neurons and their unmyelinated axons by means of fluores-
cence histochemistry after removing the cerebral cortex and
cerebellum by suction with a fine glass cannula. In biochem-
ical measurements, they found the mean concentration of
norepinephrine in the normal rat cerebellum to be 0.18 pg/g,
representing approximately 8% of the total brain amount;
the mean concentration of serotonin was 0.07 pg/g or about
2.5% of the total brain amount. The authors concluded that
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most, if not all, norepinephrine nerve terminals in the cer-
ebral cortex and the cerebellum belonged to axons originat-
ing from noradrenergic cell bodies primarily located in the
reticular formation of the medulla oblongata and the pons.
They further articulated the idea that the same noradrener-
gic neuron may innervate both the cerebral cortex and the
cerebellum. That last organizing principle of the anatomical
projections of coerulear noradrenergic neurons was subse-
quently confirmed with the identification of collateral axons
in the cerebellar cortex, the cerebellar nuclei, and other areas
of the central nervous system, including the cerebral cortex,
the diencephalon, and the spinal cord [31, 32].

The monoaminergic innervation of the cerebellar cortex
comprises norepinephrine- and serotonin-containing axons
(Fig. 1) [9, 31]. The origin of the noradrenergic projection
lies in neurons of the dorsal part of the locus coeruleus
[33-35], the nucleus subcoeruleus, and fields A5/A7 [22,
36, 37]. Furthermore, horseradish peroxidase (HRP) tracing
experiments in rats showed heavy innervation of the locus
coeruleus by all raphé nuclei, in addition to many extra-
raphé brainstem sources [38], suggesting close interactions
between the two main brainstem monoaminergic nodes that
target the cerebellar circuitry. Using fluorescence histochem-
istry, researchers have found that the noradrenergic inner-
vation of the cerebellar cortex is more pronounced than its
serotoninergic innervation [31]. Electron microscopic stud-
ies have shown that, in the rodent cerebellum, norepineph-
rine-containing axons are apposed to Purkinje cell dendrites
[39, 40].

Fig.1 (A) Serotonin-immunoreactive fibers in the mouse cerebellum,
displaying their typical axonal varicosities. Sternberger peroxidase-
antiperoxidase (PAP) method, dark-field illumination, x40 [18]. (B)
Electron micrograph of a monoaminergic varicosity or bouton en
passant in the molecular layer of the cerebellum of a “Purkinje cell
degeneration” (Agtpbp1”*YAgtpbpl PY) mutant mouse, containing
small granular vesicles (40-60 nm in diameter) and a large granular
vesicle (90-110 nm in diameter). Potassium permanganate (KMnO,)
fixation method, ultrathin section stained with uranyl acetate and lead
citrate, X 24,000 [16]
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Physiological experiments have indicated a neuromodu-
latory role for norepinephrine [41, 42] and serotonin [43],
both adjusting the activity of other synaptic inputs to the
Purkinje cells rather than exerting a strict excitatory or
inhibitory effect. The presence of a and f adrenergic recep-
tors on Purkinje cells suggests the existence of bidirectional
mechanisms of regulation that allow noradrenergic affer-
ents to refine the signals arriving at Purkinje cells, includ-
ing the parallel fiber input, under specific arousal states or
during motor skill learning [44]. Cerebellar catecholamines,
especially in the lateral cerebellar nucleus, might modulate
certain aspects of cognitive and affective behavior, such as
sensorimotor integration, associative fear learning, response
inhibition, and working memory [45].

Serotonin-containing axons originate in neurons of the
dorsal raphé nuclei of the pons and of the medullary and pon-
tine reticular formation [46—48], and are distributed through-
out the cerebellar cortex of the rat [9, 31, 48, 49] and the
mouse [18]. A small contingent of serotonin terminals belong
to typical mossy fibers; these are confined to the granule cell
layer and establish synapses on dendrites of granule cells [24,
50]. The vast majority of serotonin nerve terminals belong
to finer beaded axons of the so-called “diffuse system” and
are distributed to all cerebellar cortical layers [50]. Serotonin
axon terminals innervate the dendrites of Purkinje and gran-
ule cells; the parallel fibers; as well as basket, stellate, and
Golgi cells and neurons of the cerebellar nuclei [24, 46, 48,
50]. Iontophoretic application of serotonin and electrophysi-
ological stimulation of the raphé nuclei modulate the firing
of Purkinje cells [43, 51-53]. Moreover, serotonin modulates
the glutamate-induced excitation and the y-aminobutyric acid
(GABA)-elicited inhibition of Purkinje cells [54, 55].

With regard to the “third monoamine,” dopamine (3,4-dihy-
droxyphenethylamine), the cerebellum had not been considered
an elective dopaminergic region, and the very small amounts of
dopamine detected in it were thought to represent an intermediary
product in the metabolism of norepinephrine [56]. Later studies
have suggested the presence of a small dopaminergic contingent
in the cerebella of rodents and primates [57-59], as well as the
expression of dopamine D;—D; receptors and dopamine trans-
porters [21]. Still, the density of dopamine D, receptors in the
cerebellum represents about 1% of their density in the striatum
[60]. Although unequivocal evidence on the functional role of a
cerebellar dopaminergic system is still lacking, its involvement
in associative and projective circuits has been discussed [61].

This Cerebellar Classic highlights a milestone in the
elucidation of the neurochemistry of the cerebellum, whose
main transmitters and neuromodulators also include glu-
tamate, GABA, acetylcholine, nitric oxide, endocannabi-
noids, and neuropeptides. This large neurochemical arsenal
is one the features of the cerebellum; they are involved in the
numerous motor/non-motor functions of the cerebellum
and have variable impacts on cerebellar ataxias.
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Appendix

Monoamine Pathways to the Cerebellum and
Cerebral Cortex

From previous work! it is known that the noradrenaline
(NA) and 5-hydroxytryptamine (5-HT) nerve terminals of
the rat cerebral cortex derive from axons which originate
from NA and 5-HT cell bodies in the lower brain stem and
ascend mainly in the medial forebrain bundle. After
axotomy retrograde changes occur in those cell bodies and
monoamines accumulate in the neuron proximal to the
lesion?3. Using these principles the effect of removal of
the cerebral cortex and cerebellum on the central mono-
amine neurons has been studied with the help of the histo-
chemical fluorescence method 5.

Adult male Sprague-Dawley rats were used both in the
histochemical and biochemical experiments. In about half
of the animals used for histochemistry the cerebral cortex
was removed uni- or bilaterally. In some cases the cortex
was transversely cut at the level of anterior commissure.
In these operations the scull was opened and the dura re-
moved so that as much as possible of the cerebral cortex
was exposed. The lesions were performed by means of
suction with a fine glass cannula. In the other animals
taken for histochemistry as much as possible of the cerebel-
lum was removed in an analogous way. All operations
were performed in ether anaesthesia. At different time-
intervals after the operation the animals were killed by
decapitation under light chloroform anaesthesia. The
various parts of the brain were dissected out, freeze-dried,
treated with formaldehyde gas for 1 h, embedded,
mounted and examined as described previously®7.

In the biochemical experiments the concentration of
NA and 5-HT in the cerebellum, the cerebral cortex, the
amygdala and the hippocampus were determined spectro-
photofluorimetrically after cation exchange chromato-
graphy8-10,

Removal of cerebral cortex. Usually more than 2/; of the
cortex were removed. In most cases the basal layers were
preserved. At all time-intervals (1-5 days) studied there
was a marked accumulation of NA and 5-HT in axons
running fronto-occipitally in the cingulum frontal but
not occipital to the place of the lesion (Figure 1). The
axons could be traced frontal for several mm and were
seen to enter the cingulum just frontal to the septal area.

The axons were very thin and appeared to be un-
myelinated. In no case did monoamine-containing cell
bodies appear in the remaining parts of the cortex. Some-
times the damage penetrated also into the subcortical
structures. In these cases an accumulation of catechol-
amines (CA) and 5-HT, respectively, was observed in a
large number of axons in the striae terminalis, the dorsal
fornix, and the fimbriae hippocampi frontal to the lesion.
These axons normally innervate the amygdala and the
hippocampus, which were found to contain rather high
levels of NA and 5-HT (Table) or between 5 and 15%, of
the total content of these amines in the entire brain. In
those cases where the gyrus cinguli remained intact, an
increased number of NA nerve terminals with an in-
creased intensity were observed in this area. Retrograde
cell body changes with inter alia a swollen appearance
and a marked increased fluorescence intensity occurred
in CA nerve cells in the ventro-lateral part of the reticular
formation of the medulla oblongata (group A1l according
to DAHLsTROM and Fuxk 1964) (Figure 2). However, only
part of the cell group (about 209%,) was affected. Certain
increases in fluorescence intensity were also observed in
a small number of CA cell bodies of the pons whereas no
certain increases could be seen in the mesencephalic CA

1 N.-E. ANDEN, A. DanLsTtrRoM, K. Fuxg, K. LAarsson, L. OLsonN
and U. UNGERSTEDT, Acta physiol. scand. 67, 313 (1966).

2 A. DanistroM and K. Fuxg, Acta physiol. scand. 64, Suppl. 247,
5 (1965).

3 N.-E. ANDEN, A. DanrstroM, K. Fuxe and K. LArssoN, Am. J.
Anat. 776, 329 (1965).

4 N.-A. HiLare, K. Fuxe and A. DAHLSTROM, in Mechanisms of
Release of Biogenic Amines (Eds. U. S. v. EULER, S. RoseLL and
B. Uvnas; Pergamon Press 1966), p. 31.

5 H. Corropt and G. Jonsson, J. Histochem. Cytochem. 75, 65
(1967).

¢ A. DanLsTrROM and K. Fuxg, Acta physiol. scand. 62, Suppl. 232
(1964).

7 B. HAMBERGER, T. MALmMrors and Cu. Sacus, J. Histochem.
Cytochem. 73, 147 (1965).

8 A. BERTLER, A. CArRLssoN and E. ROSENGREN, Acta physiol.
scand. 44, 273 (1958).

9 A. BERTLER, Acta physiol. scand. 57, 75 (1961).

10 N.-E. AnxpEN and T. MaGNussoNn, Acta physiol. scand. 69, 87
(1967).
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cell groups. The number of cells with increased fluorescence
intensity were highest after bilateral removal. After uni-
lateral removal cells with increased fluorescence intensity
were observed in group Al mainly on the operated side
but also on the unoperated side, indicating a certain
degree of crossing. The 5-HT cell bodies and the NA and
5-HT nerve terminals of the lower brain stem all appeared
unaffected.

Biochemically the cerebral cortex was found to contain
rather high levels of NA and 5-HT (Table). Both the NA
and 5-HT in the cortex were found to amount to about
25-309%, of the total content of the amines in the entire
brain.

Removal of the cerebellum. The cerebellum was usually
completely removed with the exception of the lateral
parts. The medulla oblongata and pons were usually not
damaged. There was a marked increase in intensity in
some of the CA cell bodies which appeared swollen and
had a displaced nucleus. The changes were mainly limited
to group Al on both sides. The number of cells with
retrograde changes was distinctly less than after removal
of the cerebral cortex. A small number of CA cell bodies
of the pons (mainly in the locus coeruleus area) showed
similar changes. Otherwise no certain changes were ob-
served in the fluorescence microscopical picture.

Biochemically, the normal rat cerebellum was found to
contain a rather high concentration of NA but only a low
one of 5-HT. This NA and 5-HT represented approxi-
mately 6-10 and 2-39,, respectively, of the total amount
in the brain (Table).

The fact that there appear NA cell bodies with retro-
grade changes mainly in the medulla oblongata but also
in the pons after removal of large parts of the cortex
cerebri or the cerebellum indicate that most, if not all, of
the NA nerve terminals in the cerebral cortex and in the
cerebellum arise from axons which originate from NA
cell bodies situated probably mainly in the reticular
formation of the medulla oblongata (group A1) but also
in the pons. In view of the present findings it may even
be that the same NA neuron may innervate both the
cerebral cortex and cerebellum, since the affected cell
bodies lie in the same CA cell-group. A previous study !
on the effect of large diencephalic-mesencephalic lesions
on the monoamine neurons also support such a view, since
increases in number and intensity of the NA nerve
terminals were observed e.g. in the cerebellum and the
medulla oblongata after such lesions. This is probably
due to the fact that the amine storage granules which
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are produced in the cell bodies and transported down to
the terminals via the axons!®13 after such lesions are
directed into the collaterals since the axons to the cerebral
cortex and other forebrain structures had been damaged.
The present findings of increases in the intensity and
number of NA nerve terminals in the gyrus cinguli after
removal of large parts of the cortex cerebri can be ex-
plained in the same way.

The present results also show that the NA and 5-HT
axons innervating the cortex cerebri in all probability
run in the cingulum, since a large number of non-
terminal axons with high amounts of NA and 5-HT were
found here after removal of parts of the cortex cerebri.
Furthermore, after treatment with nialamide 5-HT axons
ascending in the medial forebrain bundle have been seen
to by-pass the septal area to enter the cingulum?4,
Studies on the uptake of CA and 5-HT after intra-
ventricular injections have also revealed the presence of
fibres able to accumulate NA and 5-HT in this area15:16,
All these data taken together strongly support the present
results. Fibre degeneration has also been observed with
the method of Nauta and Gygax in the cingulum after
lateral hypothalamic lesions7:18,

Concentrations (ug/g; mean + s.e.m.) of noradrenaline and 5-

hydroxytryptamine in the cerebellum, the cerebral cortex, the

amygdala and the hippocampus of normal rats. Number of determi-
nations is indicated in parentheses.

Noradrenaline 5-Hydroxy-

tryptamine
Cerebellum 0.18 4 0.010 (10) 0.07 + 0.013 (4)
Cerebral cortex 0.25 + 0.009 (8) 0.32 4+ 0.020 (8)
Amygdala 0.37 4 0.037 (6) 0.49 + 0.068 (6)
Hippocampus 0.43 + 0.041 (6) 0.32 + 0.032 (6)
Zusammenfassung. In kombinierter histochemischer

und biochemischer Untersuchung werden Dopamin-, Nor-
adrenalin- und 5-Hydroxytryptamin-Neurone nach Ent-
fernung von Cortex cerebri und Cerebellum studiert. Es
ergibt sich, dass die Noradrenalin-Nerventerminale,
welche Cortex cerebri und Cerebellum innervieren, ver-
mutlich von feinen Axonen her stammen, deren Zell-
korper mindestens zum Teil in der Formatio reticularis
der Medulla oblongata gelegen sind. Die Noradrenalin-
und 5-Hydroxytryptamin-Axone, die nach dem Cortex
cerebri ziehen, passieren vermutlich zur Hauptsache das
Cingulum.
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