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Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. 
Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these move-
ment disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalo-
gram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is 
uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar 
physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current 
understanding of cerebellar physiology using these techniques to study movement disorders.
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Introduction

Located in the posterior fossa, the cerebellum, also known 
as the “little brain,” is a brain structure important for con-
trolling the precision of movements. The cerebellum has 
functional connectivity with other parts of the brain and is 
highly integrated into the network with the cerebral cortex, 
brainstem, and spinal cord. However, how the cerebellum 
modulates voluntary movements and how the dysfunctional 

cerebellum causes movement disorders remain important 
research topics and have implications in developing neuro-
modulatory strategies. Along these lines, cerebellar physi-
ological recordings in healthy individuals and/or in patients 
with a variety of movement disorders have recently gained 
interest in neuroscience research.

The cerebellum has unique anatomical and physiological 
attributes. The cerebellum contains 10 different lobules and 
can be further divided into vermis, paravermis, and hemi-
spheres. The cerebellum is also a highly folded structure 
with many folias, and the surface of the cerebellum is esti-
mated to be 80% of the surface area of the cerebrum [1]. 
The principal neurons of the cerebellum are Purkinje cells, 
which have firing frequencies of 50–140 Hz. Purkinje cell 
activity is tightly controlled by the two excitatory synap-
tic inputs: climbing fibers from the inferior olivary neurons 
and parallel fibers from the granule cells [2]. In addition, 
inhibitory inputs from the interneurons and also the intrinsic 
pace-making activity of Purkinje cells modulate Purkinje 
cell firing patterns.

Cerebellar physiological signals were originally 
described by direct and invasive intracranial electrodes. 
There were four studies published, in which three were 
in Russian and one was in French [3–6]. These studies 
describe cerebellar recordings with oscillatory activity of 
high frequencies, in the range of 220–250 Hz. These inva-
sive investigations have given important insights into cer-
ebellar physiology and function.
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While intracranial cerebellar recordings are important 
techniques, such precision is not yet possible to be widely 
adopted to study cerebellar physiology in patients. Instead, 
electroencephalogram (EEG) or magnetoencephalogram 
(MEG) that presumably detect synaptic activity integration 
are often used to study cerebellar physiology in humans. 
There are various studies that have used the application of 
EEG and MEG, in the domains of motor, auditory, visual, 
and cognition in the cerebral cortex in association with the 
cerebellum. These studies mostly involve healthy subjects 
and patients with epilepsy and have recently been reviewed 
[7]. We will instead focus on the cerebellar physiological 
features in movement disorders.

Cerebellar dysfunction has been implicated in three main 
categories of movement disorder phenomenology: ataxia, 
dystonia, and tremor. What is the cerebellar physiology 
in these diseased states and what are the technologies and 
analyzing methods used to study cerebellar physiology in 
diseases? We aim to address these questions in this review. 
We will first review the clinical characteristics of each move-
ment disorders phenomenology and the evidence of cere-
bellar involvement, including animal studies. We will then 
review physiological studies of the cerebellum in patients 
with these movement disorders to provide a context of the 
current state of the field and also future research directions.

Cerebellar Involvement in Ataxia, Tremor, 
and Dystonia

Three types of movement disorders phenomenology are 
related to cerebellar dysfunction: ataxia, tremor, and dys-
tonia. The key clinical feature of ataxia is incoordination, 
imbalance, and irregular movements. On the other hand, 
tremor is characterized by rhythmic and oscillatory move-
ments. Dystonia is involuntary, sustained muscle contrac-
tions, leading to abnormal repetitive movements and pos-
tures. These three types of abnormal movements can be 
highly disabling to patients and therapeutic options are 
rather limited. Therefore, understanding how the dysfunc-
tion of the cerebellum can cause these unique movements 
will help to develop targeted treatments for patients suffering 
from ataxia, tremor, and dystonia. As ataxia, tremor, and 
dystonia are movement disorders symptoms, we will next 
introduce the prototypical neurological disorders associated 
with ataxia, tremor, or dystonia because these disorders are 
often the subject for studying the cerebellar physiological 
correlates with each movement disorders phenomenology.

Ataxia is classically associated with cerebellar degenera-
tion. The prototypical diseases of ataxia are spinocerebellar 
ataxia (SCA), which are caused by genetic mutations. Other 
ataxic disorders include multiple system atrophy cerebellar 
type (MSA-C) and idiopathic late onset cerebellar ataxia 
(ILOCA), which are late onset, degenerative causes [8]. 

Friedreich’s ataxia (FRDA) is the most common childhood 
onset ataxic disorder. While FRDA is traditionally thought to 
be related to sensory neuronopathy, cerebellar involvement, 
specifically the dentate nucleus degeneration is evident in 
FRDA [9]. In the pathological examination of post-mortem 
cerebellum in patients with ataxia such as SCA and MSA-
C, loss of Purkinje cells and other associated degenerative 
changes are common [10]. In neuroimaging findings, cere-
bellar atrophy is the hallmark feature of ataxic disorders [8].

Tremor is another hyperkinetic movement found to be 
associated with cerebellar dysfunction. The prototypical dis-
ease for tremor is essential tremor (ET), which is the most 
common movement disorder [11]. The second most common 
tremor disorder is parkinsonian tremor (i.e., tremor in Par-
kinson’s disease (PD)). ET is characterized by action tremor 
whereas parkinsonian tremor is rest tremor. Both types of 
tremor can be effectively suppressed by deep brain stimula-
tions to the thalamus that received cerebellar outflows [12], 
providing convincing evidence of cerebellar involvement 
in these tremor disorders. Other tremor disorders include 
orthostatic tremor, which manifests as leg tremor during 
standing, and tremor associated with degenerative causes 
such as Wilson’s disease. Multiple lines of neuroimaging 
studies have also demonstrated that the cerebellum is a criti-
cal brain region in ET and parkinsonian tremor [13–17]. In 
the post-mortem pathological examination, ET brains have 
some cerebellar degenerative changes, including modest 
Purkinje cell loss [18, 19]. In addition, abnormal synaptic 
connections of climbing fibers and Purkinje cells have been 
identified in the ET cerebellum [20, 21], indicating cerebel-
lar dysfunction. How does the dysfunctional cerebellum 
create tremor? In the harmaline-induced tremor models, 
Purkinje cells are driven by synchronized olivary neuronal 
inputs to have synchronous and rhythmic activity, suggesting 
that synchronized and rhythmic neuronal activity in the cer-
ebellum could be the physiological underpinning of tremor 
[22]. In PD patients, alpha synuclein associated pathologi-
cal changes have been linked to tremor symptoms [23–25]. 
Alpha synuclein formed Lewy bodies have been found in 
the Bergmann glia and Purkinje cell axons in the cerebel-
lum. Also, in PD patients, there is a presence of increased 
climbing fiber-Purkinje cell synapses as well as the presence 
of torpedoes in Purkinje cell axons demonstrating cerebellar 
involvement in PD [26, 27].

Dystonia is the third hyperkinetic movement related to 
the cerebellum. Different from ataxia and tremor, both the 
basal ganglia and the cerebellum play roles in dystonia. 
Emerging evidence demonstrates that the cerebellum may 
be a predominant player in certain forms of dystonia [28, 
29]. The prototypical disorders of cerebellar-linked dystonia 
are genetic forms, including DYT1, DYT11, and DYT12 
dystonia [30–32], which may present as focal, segmental, or 
generalized dystonia. Writer’s cramp is a common form of 
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idiopathic, focal dystonia, which involves involuntary mus-
cle contractions causing difficulty in writing. Neuroimag-
ing studies in dystonia have shown evidence of cerebellar 
involvement [33].

Encephalographic Techniques for Recording

As mentioned above, invasive cerebellar recordings in 
humans are exceptionally rare and have not been widely 
implemented in studying human movement disorders. On 
the other hand, emerging evidence demonstrated that net-
work analysis using EEG and MEG in humans can detect the 
synchronization of the cerebellar activity, either by itself or 
with the cerebral cortex. These techniques allow us to probe 
the role of the cerebellum in movement disorders.

EEG is a technique by which the electrical activity of 
the human brain can be measured from the scalp non-
invasively. Based on the study focus, the number of EEG 
channels and locations may differ in order to record cor-
tical or cerebellar activity. Figure 1 provides a schematic 
diagram of EEG, with different channel montages covering 
the cerebellar area. EEG signals can be further processed 
by dividing the signals into different frequency bands and 
the underlying neural correlates can be associated with cer-
tain behavioral and cognitive processes [34, 35], and in our 
case, with specific movement disorders symptoms. EEG is 
also often used in the analyses of event related potentials, 
which is extensively used in studying PD [36, 37]. EEG 
is a powerful tool to study physiological connectivity, by 
investigating the association of signals recorded from dif-
ferent brain regions and the disruption of such connectivity 
in diseased states [38, 39]. Different from EEG, MEG is a 
technique that records brain activity based on the magnetic 
fields generated by electrical currents in the brain. EEG 
and MEG can detect signals from the surface of the brain, 
such as the cerebral and cerebellar cortex, as well as further 
probe deeper brain structures, such as the basal ganglia and 
thalamus [40–43].

While EEG and MEG have an excellent temporal reso-
lution of brain activity, the major limitation of such tech-
niques is low spatial resolution, posing a challenge to pre-
cisely identify the sub-domain of a given brain structure; for 
example, the specific lobule of the cerebellum. Nevertheless, 
over the past few years, an increasing number of studies have 
demonstrated that detecting cerebellar signals using EEG 
and MEG is indeed possible [7, 44]. EEG has an excellent 
temporal resolution, which can complement the limitation of 
functional neuroimaging studies. We will review cerebellar 
recording in each of the movement disorders phenomenol-
ogy in detail.

Methods for Literature Search

We performed a PubMed search using the key words, cer-
ebellum, EEG, MEG, tremor, ET, PD, ataxia, and dystonia. 
Additionally, filters for human research and the English lan-
guage were applied. Articles were included in the review if 
the study methods were EEG or MEG techniques, and the 
results include cerebellum associated findings for ataxia, 
tremor, or dystonia. The search generated 226 articles. We 
excluded 156 articles because either these studies did not use 
EEG or MEG, or did not study ataxia, tremor, or dystonia. 
Furthermore, we excluded 32 review articles. Based on the 
title and the abstract, 38 articles were selected. Sixteen of 
these articles were further excluded, as these articles did 
not have any cerebellum associated findings. The remaining 
22 articles were selected for this review since these studies 
fulfilled the inclusion criteria (Fig. 2). Among the 22 studies, 
6 studies are on EEG studies of the functional brain network 
in patients with cerebellar ataxia without direct cerebellar 
physiology measurement, which help us to understand the 
brain activity in responses to cerebellar degeneration. Given 
the paucity of cerebellar physiological studies for ataxia 
patients (n = 2), we thus included these additional 6 studies.

Fig. 1  Schematic representation 
of EEG channel placement. Cer-
ebellar coverage based on the 
different EEG channel layouts. 
(A) Cerebellar EEG layout. (B) 
64-channel EEG layout. (C) 
128-channel EEG layout. (D) 
256-channel EEG layout
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Cerebellar Physiology in Ataxia

In ataxic disorders, cerebellar physiology recording by EEG 
or MEG is often done in the context of whole brain record-
ing, and the data is analyzed using source localization and 
functional connectivity analysis (summarized in Table 1). 
In a MEG-based resting state functional connectivity study, 
Naeije et al. investigated determinants of FRDA associated 
changes in intrinsic functional brain network in 18 FRDA 
patients. The resting state functional connectivity was esti-
mated, using 37 nodes or points of interest from the cer-
ebellum and 6 major resting state networks: default mode, 
sensory motor, language, visual, ventral, and dorsal attention 
networks. In addition, they found that the cerebellar network 
is one of the major networks to be associated with the age 
of onset in FRDA, demonstrating that cerebellar physiology 
could be a predictor of disease course. Another finding in 
the study is that a higher resting state functional connectivity 
was linked to later onset of symptoms, supporting that this 
technique may be used to study the compensatory mecha-
nism [45]. Song et al. investigated cerebello-frontal con-
nectivity dynamics in patients with MSA-C, to test the target 
engagement of 10-day, intermittent theta burst stimulations 

by repetitive transcranial magnetic stimulation (rTMS) to 
the cerebellum. Twenty-five patients with MSA-C received 
rTMS stimulations whereas another twenty-five patients 
with MSA-C received sham stimulations in this randomized, 
double-blinded clinical trial. In the rTMS group, not only 
did these stimulations improve ataxia symptoms, as meas-
ured by the scale of ataxia rating and assessment (SARA), 
there was significantly increased cerebello-frontal connec-
tivity, measured by time-varying EEG network patterns. On 
the other hand, the sham stimulated group did not have any 
significant clinical improvement or cerebello-frontal connec-
tivity changes [46]. These studies provide the rationale that 
network analysis using EEG recording over the cerebellar 
region could be useful in predicting the disease onset and/
or serve as a biomarker for ataxic clinical trials.

As the brain function as a network, investigators also 
studied EEG signals in the cerebral cortex in ataxic patients 
to understand the network changes in response to cerebellar 
degeneration. While these studies do not directly measure 
cerebellar physiology, they provide a broader understand-
ing of brain network changes in ataxic patients; therefore, 
we also included these studies in Table 1. Peterburs et al. 
investigated the role of the cerebellum in saccadic perfor-
mance monitoring which measures simultaneous monitor-
ing and evaluation of actions, using EEG in ataxia patients 
of various diagnoses. An antisaccadic task was performed 
during EEG recording, and ataxia patients were found to 
have increased error rates alongside reduced error-related 
negativity (ERN). There was also a reduction in the event 
related potential correlated with error processing and per-
formance monitoring. However, error positivity was seen 
to be preserved in patients. This study demonstrated that 
patients with cerebellar ataxia have task-specific EEG sig-
nal alterations [47].Another approach to better understand-
ing physiological aspects of ataxia is to assess motor tasks 
using event related potentials or event related synchroniza-
tion (ERS)/event related desynchronization (ERD) analysis. 
Li et al. studied event related potentials in 12 SCA patients 
and 12 healthy controls with EEG. They investigated the 
role of the cerebellum in feedback control since the cerebel-
lum plays an important part in the feed forward control of 
speech production. Behavior analysis revealed that patients 
with SCA have a significant increase in vocal compensations 
for pitch perturbations, which corresponds to a reduction 
of cortical activity in temporal-parietal regions, localized 
by source analysis. These results suggested that cerebellar 
degeneration affects the feedback control of speech produc-
tion through the temporal-parietal regions. The cerebellum is 
critical for feed-forward control and feedback-based control 
for speech production [48]. Verleger et al. observed event-
related potentials using EEG in 12 patients with cerebellar 
ataxia. Motor tasks such as coordination and control tasks 
were performed. Ataxic patients had impaired motor task 

Fig. 2  Schematic representation of article selection. Selection crite-
rion for articles in the present review, consisting of studies using EEG 
or MEG as techniques and having findings linked to cerebellar physi-
ology in ataxia, tremor, and dystonia
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performance and reductions in cerebral cortical EEG poten-
tials during preparation and execution of movements when 
compared to controls. However, controls and ataxic patients 
had a similarly increased cortical EEG potential activity, 
when performing movements requiring higher level coordi-
nation. The results of this study depict that the cerebellum 
is mostly involved in the preparatory and executive activity, 
while for fine coordination, the motor cortex plays an active 
role [49]. Additionally, in a study by Yamaguchi et al., the 
event-related evoked potentials and reaction times in ataxic 
patients with cerebellar degeneration were investigated to 
understand the role of cerebellum in visuospatial attention 
shift. In ataxic patients as compared to controls, the effect 
of cerebellar degeneration was observed on event related 
evoked potentials by a reduced late negative deflection. This 
reflects that neural activities in correlation to preparation 
and selection for response are reduced. The study shows 
that the lateral cerebellum has a reduced involvement in 
the mechanism of visuospatial attention shift. However, the 
essential role of the lateral cerebellum is observed in distrib-
uted motor control systems [50].

As for studies involving ERD/ERS analysis, Visani et al. 
assessed patients with SCA based on EEG rhythms during 
a Go/No-go motor task. They found that SCA patients had 
a defective ERD lateralization in the cortical EEG record-
ing. These defects in alpha and beta ERD/ERS analysis sug-
gested impaired cerebellar modulation of the motor cortex 
[51]. In another ERD/ERS analysis on SCA3 patients using 
EEG and EMG, Aoh et al. observed decreases in ERS for 
frequencies 20–30 Hz, and further focused on the important 
role of the cerebellum in motor termination [52]. Collec-
tively, these studies provide evidence of cerebellar modula-
tion of cortical excitability.

Cerebellar Physiology in Tremor

Various studies are using the approach of source localization 
and coherence analysis based on physiological data obtained 
using EEG and MEG to understand the underlying neuronal 
networks in tremor (summarized in Table 2). Muthuraman 
et al. conducted a study in 2015, on early onset ET and 
aging-related tremor patients using whole brain EEG, which 
also covers the cerebellar area. Simple motor tasks involv-
ing pinch grip task, holding task, and slow hand movements 
were conducted during which the pooled coherence spectra 
were estimated. Moreover, this study also used dynamic 
imaging of coherent sources (DICS) and renormalized par-
tial directed coherence (RPDC) for source analysis and net-
work analysis. They found that early onset ET patients have 
strong cerebellar involvement whereas age-related tremor 
patients do not, supporting that these analytical methods of 
EEG can be used to study cerebellar physiology of tremor 

[53]. In another MEG study of ET using DICS, Schnitzler 
et al. found that the brain network for tremor involves the 
primary motor cortex, premotor cortex, thalamus, cerebel-
lum, and brainstem [54]. This study provides an important 
understanding that the interactions of these brain areas, 
including the cerebellum, can be critical for tremor genera-
tion in ET. Timmerman et al. studied the oscillatory brain 
network in parkinsonian rest tremor. Using DICS, this MEG 
study describes the cerebro-muscular, cerebro-cerebral, 
and partial coherence within cerebral areas and muscles. 
Notable findings in this study are the impaired coupling in a 
cerebello-diencephalic-cortical network, implying abnormal 
interactions of the cerebellum and other brain regions are 
the contributing factors to parkinsonian tremor [55]. Pol-
lock et al. described the effects of levodopa on the oscil-
latory networks associated with parkinsonian rest tremor. 
Ten PD patients and 11 healthy controls were studied using 
MEG and EMG techniques. PD patients had an overnight 
withdrawal of levodopa and after oral intake of fast-acting 
levodopa to study the brain signals in the off and on periods. 
The oscillatory network of tremor at 8–10 Hz, as revealed by 
DICS, consisted of these brain regions: contralateral primary 
sensorimotor cortex, supplementary motor area, contralat-
eral premotor cortex, thalamus, secondary somatosensory 
cortex, posterior parietal cortex, and ipsilateral cerebel-
lum. Further, decreases in the coupling between thalamus 
and motor cortical areas were observed following levodopa 
intake [56].

In a study done in 2012, Muthuraman et al. described 
the differences associated with oscillatory network dynam-
ics in parkinsonian tremor, ET, and voluntary movements. 
The study used DICS and EEG-EMG based coherence, in 
10 PD patients and 10 ET patients. The network associated 
with basic tremor frequency consisted of the primary sen-
sory motor cortex, prefrontal/premotor cortex, and anterior 
diencephalon (thalamus). The study further revealed for the 
selective time interval with high coherence, the source in the 
cerebellum was identified for all ET, PD, and healthy sub-
jects, while ET patients had an additional brainstem source. 
These sources in the study were observed only during phases 
of high signal to noise ratio, due to limited electrodes in the 
posterior region. For voluntary tremor, a unidirectional flow 
of information was seen from the diencephalon to the cortex. 
On the other hand, PD and ET patients had bidirectional 
subcortico-cortical flow. The findings of this study help us 
to understand that both pathological tremor and voluntary 
mimicked tremor have similar brain network, demonstrat-
ing that both voluntary and pathological tremors involve 
the cerebellum, but the additional brain regions involved 
and the hierarchical order of the brain network may differ 
[57]. Additionally, in 2018, Muthuraman et al. used high-
density 256 channel EEG coupled with EMG to study the 
cerebello-thalamo-cortical network in patients with PD, 
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ET, and healthy controls (mimicked tremor). The coher-
ence maps were constructed, and effective connectivity was 
established based on the partial directed coherence. They 
found that parkinsonian tremor and ET have the functional 
connection between the sensorimotor cortex and the cer-
ebellum, while mimicked tremor in healthy subjects has the 
functional connection between premotor cortex and the cer-
ebellum. Moreover, the oscillations flow from EMG to the 
cerebellum in mimicked tremor, while the oscillations flow 
from the cerebellum to EMG in parkinsonian tremor and ET. 
The results suggest altered cerebellar mechanisms involved 
in these three types of tremor, and the cerebello-cortical loop 
is important for parkinsonian tremor and ET [58]. Pedrosa 
et al. investigated the network difference associated with ET 
and voluntary tremor, in relation to alcohol intake, using 
high-density EEG and subject specific structural MRI in 20 
ET patients and 20 age-matched controls. Cortical tremor 
coherence was observed distinctly in sensorimotor cortices 
for control subjects; however, for ET patients, the involve-
ment of supplementary motor area was more prominent. The 
intake of alcohol was associated with reduced tremor ampli-
tude and further linked with changes in cerebellar activity 
[59].

In a 2013-based source and coherence study, Muthuraman 
et al. investigated the central oscillatory network associated 
with orthostatic tremor. The corticomuscular coherence was 
analyzed using EEG and EMG recordings from 15 patients. 
The standing tremor network comprises of unilateral activa-
tions in primary motor leg area, supplementary motor area, 
primary sensory cortex, prefrontal/premotor area, thalamus, 
and cerebellum. On analysis of tremor network over time, 
the sources in the primary leg area and the thalamus with 
the tibialis anterior muscle were highly coherent for 30 s 
contralaterally, followed by decreases ipsilaterally after 
15 s. The corticomuscular coherence pattern in orthostatic 
tremor is initially bilateral followed by a segregated unilat-
eral pattern [60]. Finally, Südmeyer et al. investigated the 
underlying brain networks in association with the primary 
sensorimotor cortex in 5 Wilson’s disease patients with pos-
tural tremor, using MEG and EMG recordings with DICS. 
The oscillatory network is comprised of significantly coher-
ent cortical and subcortical brain regions: primary sensori-
motor cortex, premotor cortex, supplementary motor area, 
posterior parietal cortex, contralateral thalamus, and ipsi-
lateral cerebellum. The findings of this study demonstrate 
the involvement of a cerebello-thalamo-cortical network in 
postural tremor in Wilson’s disease [61].

The above studies use the network and coherent analysis 
to study the interaction of the cerebellum and other parts 
of the brain in tremor. The next question is whether abnor-
mal physiological signals can be directly recorded from 
the cerebellar region using EEG, without coherence analy-
sis with other brain areas? As one of the latest techniques, 

our group, Pan et al. used EEG over the cerebellar region 
(cerebellar EEG) as a means to investigate and validate 
the contributing factors for tremor pathophysiology based 
on the identification of the synaptic pruning deficits of 
cerebellar climbing fibers in the postmortem ET brain. 
Consistently, we found that ET patients have ~ 10 Hz oscil-
latory activity in the cerebellum region, which was not 
seen in age-matched healthy controls. Interestingly, the 
strength of such cerebellar oscillatory activity correlates 
with tremor severity [62], as the first cerebellar physiologi-
cal study in tremor with clinical-physiological correlates 
of disease severity. As a follow-up study, our group, Wong 
et al., also used cerebellar EEG to investigate cerebellar 
physiology in familial and sporadic ET patients, since 
about 43–63% of ET patients reported a family history 
of tremor [63–65]. Familial ET and sporadic ET may be 
considered as different ET subtypes and thus may have 
different underlying cerebellar physiology [66]. Interest-
ingly, we found that both familial and sporadic ET patients 
have excessive cerebellar oscillatory activity, indicating 
that this abnormal EEG signal from the cerebellum is con-
served in a heterogeneous ET population. Furthermore, 
it was observed that cerebellar oscillation in familial ET 
correlated with tremor severity, but this was not observed 
in sporadic ET [67].

Additionally, cerebellar physiology has also been 
explored in PD, outside of tremor, and we describe 
them here to provide additional context. Bosch et  al. 
investigated the resting state cerebellar oscillations in 
75 PD and 39 healthy controls, using cerebellar EEG. 
Their study describes finding increased theta frequency 
band (4–7 Hz) activity in cerebellar electrodes for PD 
patients as compared to controls. The findings of this 
study demonstrate that the abnormal theta band cerebel-
lar oscillations from the cerebellum may play a role in the 
pathophysiology of PD [68]. Furthermore, Bosch et al. 
investigated cortical and cerebellar oscillatory responses 
using EEG in 10 PD patients with postural instability, 11 
without postural instability, and 15 controls. Low theta 
band activity was observed in the mid-frontal and mid-
cerebellar regions for PD patients with postural instabil-
ity as compared to PD patients without postural insta-
bility, and controls. [69]. In another study, Bosch et al. 
investigated cerebellar EEG during cognitive and motor 
tasks. For this study, 79 PD patients and 37 controls were 
recruited, and cognition was evaluated during an interval 
timing task, while motor activity was evaluated using a 
lower limb pedaling task. Connectivity analysis between 
the mid-frontal and mid-cerebellar regions depicted dif-
ferences in theta band during the motor task but not the 
cognitive task. As compared to controls, PD patients dem-
onstrated altered cerebellar oscillations in the cognitive 
and motor tasks [70].
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Cerebellar Physiology in Dystonia

Several studies have described the neurophysiological aspects 
of dystonia, involving the cerebellum, based on non-invasive 
techniques (summarized in Table 3). Neumann et al. studied 
the interactions between the cerebellum, cerebral cortex, and 
the basal ganglia in patients with idiopathic dystonia. They 
used the technique of MEG recordings to investigate the cer-
ebellum and the cerebral cortex with simultaneous, invasive 
local field potential recordings from the human pallidum by 
implanted deep brain stimulation electrodes. They found three 
brain networks associated with dystonia: (1) theta band coher-
ence (4–8 Hz) from a pallido-temporal source, (2) alpha band 
coherence (7–13 Hz) from a pallido-cerebellar source, and (3) 
beta band coherence (13–30 Hz) from a cortico-pallidal source 
associated with sensorimotor areas. The directional coupling 
with the pallidal local field potentials was mainly in the theta and 
alpha band and for the MEG cortical source mainly beta band 
was observed. The pallido-cerebellar coupling was seen to be 
inversely correlated with dystonia severity. Based on the pallido-
cerebellar connectivity findings, the involvement of the cere-
bellum in dystonia is evident [71]. In another coherence based 
study, Butz et al. used MEG and DICS analysis to investigate 
oscillatory coupling in patients with writer’s cramp, a form of 
focal dystonia. Six brain areas including ipsilateral cerebellum, 
contralateral thalamus, contralateral premotor and posterior pari-
etal cortex, and contralateral and ipsilateral sensorimotor cortex 
were found to be involved when coherence was established dur-
ing writing. In control subjects, the ipsilateral cerebellum and 
the contralateral posterior parietal cortex are primarily involved 
in writing, whereas in patients with writer’s cramp, sensorimotor 
cortices appeared to be additionally recruited. Thus, the abnor-
mal interactions between the cerebellum and different parts of 
the cerebral cortex may associate with the pathophysiology of 
focal task related dystonia [72]. Furthermore, the importance of 
the cerebellum in dystonia was highlighted in a case study by 
Mahajan et al. In a 53-year-old patient with cervical dystonia, 
MEG recordings were performed before and after botulinum 
toxin injection and a sensory trick (yawning). Performing the 
sensory trick was associated with reduced beta frequencies and 
increased gamma frequencies in the parietal cortex. After botu-
linum injection, higher coherence activity was observed in the 
left temporal, parietal regions, and right and left regions of the 
cerebellum [73], indicating that the cerebellum may be involved 
in the improvement of dystonia in these maneuvers.

Discussion

The overlapping natures of cerebellar dysfunction can be 
distinctly observed in the above described disorders of 
ataxia, tremor, and dystonia. Understanding cerebellar 
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physiology is a step forward in better understanding the 
pathophysiology and mechanisms of movement disorders, 
and targeted neuromodulation in the cerebellum can thus 
be possible. This review focuses on studies that have used 
encephalographic techniques such as EEG and MEG in 
movement disorders with an emphasis on the cerebellum.

While human physiological studies do not have the same 
level of resolution as animal studies, animal models of ataxia, 
tremor, and dystonia provide other means to understand the 
role of the cerebellum in these movement disorders. To 
study ataxic disorders, animal models carrying various SCA 
genetic mutations have been created, which recapitulate key 
behavioral and pathological features of SCA patients [74–78]. 
In these animal models, abnormal Purkinje cell firing pat-
terns have been identified, before eventual Purkinje cell loss. 
Specifically, slowed Purkinje cell firing activity, as well as 
irregular Purkinje cell firing, has been found to be the key 
physiological attributes for ataxia [79–81]. In studying par-
kinsonism, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) model used for electrophysiological recordings, 
helps mimic PD symptoms, which can further be used to 
assess oscillatory activity [82]. In addition, a mouse model 
with ET-like climbing fiber-Purkinje cell synaptic connec-
tions also developed synchronized and oscillatory cerebellar 
activity and action tremor [21], further supporting the role 
of oscillatory cerebellar activity in tremor, which has been 
observed in ET patients [62].

For dystonia, cerebellum-specific knockdown of DYT1, 
DYT11, and DYT12 in mice create burst firing frequency 
of Purkinje cells, which correlate with dystonic features in 
these animals [31, 83, 84]. Therefore, high frequency, burst 
firing patterns could be the cerebellar physiological under-
pinning for dystonia. Studies such as these are contributing 
factors in the advancement of cerebellar physiology.

Our review is centered on the cerebellar physiology in 
movement disorders. The studies outlined in this review 
help to advance the understanding of the physiological 
aspects of the cerebellum in movement disorders. These 
non-invasive techniques potentially can be implemented 
in clinical practice to evaluate ataxia, tremor, and dys-
tonia. Even though EEG and MEG have limited spatial 
resolution, the high temporal resolution allows for these 
measures to evaluate physiological changes in real time. 
These studies demonstrate that recording of the oscilla-
tory activity from the cerebellum is indeed possible and 
should be further applied to study a plethora of neuro-
logical disorders in the future. Note that there are studies 
using EEG and MEG to investigate physiological features, 
dynamics, and networks in brain regions, outside of the 
cerebellum in these movement disorders. We also identi-
fied these studies that have used common measures such 
as source localization, connectivity, and coherence in 
ataxia [85–91], tremor [92–129], and dystonia [130–152] 

to study brain physiology but these studies do not include 
the cerebellum; thus, they are not reviewed in detail here. 
The applications of EEG and MEG based source analysis 
and connectivity analysis have a wide range of utility. Not 
only can EEG and MEG be used to study movement dis-
orders, but many studies have also utilized these tools to 
probe cognition. Therefore, these tools can also be used 
to study the non-motor symptoms of movement disorders 
in the future. Furthermore, EEG and MEG can be used to 
extract features in the spectral domain, which may serve 
as a biomarker to monitor therapeutic responses for ataxia, 
tremor, and dystonia. Additionally, degenerative ataxias, 
such as SCA, are progressive disorders, whether physi-
ological recordings can be utilized as biomarkers to track 
disease progression deserve further investigation as part 
of the natural history study.

The studies included in this review with a focus on cerebel-
lar physiology, mostly consist of network studies. Methods 
such as spectral analysis, source localization, and coherence 
analysis of the signals have been used in these studies. For 
ataxia, the cerebellar network and its connection with the 
frontal network appear to be important [45, 46]. The network 
studies for ET have shown the involvement of the cortico-
brainstem-cerebello-thalamo-cortical loop playing a major 
role in tremor generation [53, 54]. Parkinsonian tremor has 
an involvement of the cerebello-diencephalic-cortical network 
[55, 58]. Finally, the cortico-pallidal connectivity linked with 
dystonic symptoms demonstrates the involvement of cer-
ebellum [71], and furthermore, impaired cerebello-cortical 
networks have been observed in focal task related dystonia 
[72]. These network studies help us to understand the interac-
tions between different brain regions in movement disorders. 
Manipulations of disease-related brain networks hold promise 
in therapeutic development in these disabling diseases. Also, 
EEG-based recordings consisting of evoked potentials (i.e., 
event related potentials) have been investigated in a handful 
of studies [47–50], which can potentially be developed into a 
physiological biomarker in the future. In addition, these stud-
ies demonstrate the possibility of using non-invasive tech-
niques in exploring and advancing cerebellar physiology.

Additionally, EEG and MEG techniques have a potential 
application as a tool to guide neuromodulation in cerebellar 
disorders. Non-invasive neurostimulation techniques, such 
as transcranial direct current stimulation (tDCS) and TMS, 
have been used for cerebellar stimulation in movement dis-
orders [153]. However, the effects of the stimulations are 
largely dependent on the neurological assessment, without 
a clear understanding of the underlying physiological attrib-
utes. Therefore, EEG and MEG can potentially record neural 
responses in the cerebellum in responses to neuromodulation 
[154, 155]. Therefore, studying cerebellar physiology using 
these techniques can advance the therapeutic development 
of neuromodulation for movement disorders.
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Based on the studies described here, it is becoming 
clear that EEG and MEG are useful to investigate cerebel-
lar physiology linked to ataxia, ET, parkinsonian tremor, 
and dystonia. In particular, EEG is easy to implement in 
clinical practice. These non-invasive physiological record-
ings further contribute to insights on cerebellar function 
and dysfunction, paving the way for better therapeutics for 
movement disorders. This review demonstrates that there are 
only few studies till now that focus on electrophysiological 
techniques to study the cerebellum in humans in the context 
of movement disorders; nonetheless, this unexplored area of 
neuroscience presents an exciting opportunity for research 
and therapeutic development.
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