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Abstract
Differentiating multiple system atrophy (MSA) from related neurodegenerative movement disorders (NMD) is challenging. 
MRI is widely available and automated decision-tree analysis is simple, transparent, and resistant to overfitting. Using a 
retrospective cohort of heterogeneous clinical MRIs broadly sourced from a tertiary hospital system, we aimed to develop 
readily translatable and fully automated volumetric diagnostic decision-trees to facilitate early and accurate differential 
diagnosis of NMDs. 3DT1 MRI from 171 NMD patients (72 MSA, 49 PSP, 50 PD) and 171 matched healthy subjects were 
automatically segmented using Freesurfer6.0 with brainstem module. Decision trees employing substructure volumes and 
a novel volumetric pons-to-midbrain ratio (3D-PMR) were produced and tenfold cross-validation performed. The optimal 
tree separating NMD from healthy subjects selected cerebellar white matter, thalamus, putamen, striatum, and midbrain 
volumes as nodes. Its sensitivity was 84%, specificity 94%, accuracy 84%, and kappa 0.69 in cross-validation. The optimal 
tree restricted to NMD patients selected 3D-PMR, thalamus, superior cerebellar peduncle (SCP), midbrain, pons, and puta-
men as nodes. It yielded sensitivities/specificities of 94/84% for MSA, 72/96% for PSP, and 73/92% PD, with 79% accuracy 
and 0.62 kappa. There was correct classification of 16/17 MSA, 5/8 PSP, 6/8 PD autopsy-confirmed patients, and 6/8 MRIs 
that preceded motor symptom onset. Fully automated decision trees utilizing volumetric MRI data distinguished NMD 
patients from healthy subjects and MSA from other NMDs with promising accuracy, including autopsy-confirmed and pre-
symptomatic subsets. Our open-source methodology is well-suited for widespread clinical translation. Assessment in even 
more heterogeneous retrospective and prospective cohorts is indicated.
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Early and precise diagnosis of neurodegenerative diseases 
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underway. Multiple system atrophy (MSA) — a neuro-
degenerative movement disorder (NMD) presenting with 
predominantly cerebellar (MSAc) or parkinsonian (MSAp) 
features — is an attractive target for therapeutics because 
of its relatively rapid course, orphan status, and biological 
connection to Parkinson’s disease (PD). Accurate differential 
diagnosis of MSA, particularly in its early stage, from other 
parkinsonian and ataxic NMDs is likely to be important for 
successful clinical trials. This differential dignosis, however, 
remains a challenge for subspecialist and generalist neurolo-
gists alike. In many cases, years of suffering, uncertainty, 
health care cost, and lost research opportunities accrue 
between initial presentation and diagnosis by a movement 
disorder subspecialist [1].

To increase rates of accurate early diagnosis and sub-
specialty referral, new diagnostic tools translatable to wide-
spread community use are needed [2]. Mimics of MSA 
among so-called sporadic disorders (without known genetic 
cause) include Parkinson’s disease (PD) that mimics MSAp. 
Progressive supranuclear palsy (PSP) can also present with 
parkinsonism or ataxia-predominant (PSPc) symptomatol-
ogy and can thus mimic MSAp or MSAc, respectively [3, 4].

Brain MRI with 3D T1-weighted images (3DT1) is now 
widely available, relatively inexpensive, and commonly 
used in initial community-based workup of neurological 
and psychiatric conditions. Successful widespread commu-
nity translation of 3DT1 volumetrics could facilitate early 
identification and subspecialty referral of MSA patients and 
improve reproducibility of early diagnosis. But equally, this 
methodology could assist movement disorder sub-specialists 
seeking objective data for differential diagnosis of early-
stage patients and their triage into appropriate clinical trials.

Extensive previous work has established a number of 1D 
and 2D measurements as potentially useful for the diagnosis 
of PSP and MSA [5–10]. However, 1D and 2D measure-
ments are significantly affected by differences in acquisi-
tion (including slice thickness, slice registration, and slice 
angulation), as well as operator-dependent differences in 
measurement technique. Thus, successful use of these meas-
ures requires meticulous MRI acquisition and measurement, 
including standardized protocols and expert operators. These 
conditions are hard to meet outside leading research centers.

Important recent work has demonstrated the potential 
of atlas-based automated segmentation of 3DT1 data to 
improve reproducibility. In particular, Messina et al. [11] 
used automatic volumetric segmentation of cerebellum, 
thalamus, putamen, pallidum, hippocampus, and brainstem 
to demonstrate different patterns of brain atrophy in MSAp, 
PSP, and PD. Krismer et al. [12] demonstrated differences 
between putamen and cerebellum volumes in MSA and PD. 
Barbagallo et al. [13] analyzed multiple MRI parameters 
including volumetric measurements of the nigro-striatal 
pathway.

Two important studies that deserve special mention pro-
vided early proof-of-principle support for use of automated 
volumetric analysis in differential diagnosis of MSA from 
other NMDs [14, 15]. Scherfler et al. [14] reported an algo-
rithm differentiating carefully characterized MSA, PSP, 
and PD patients. Their approach utilized open-source Free-
surfer MRI atlas software and was based on semi-automated 
processing of volumes of midbrain, putamen, and cerebel-
lar gray matter with manual segmentation of brainstem 
structures. In that study, there was meticulous curation of 
early-stage patients of defined ages and disease durations. 
Presynaptic nigrostriatal dopaminergic dysfunction was con-
firmed by dopamine transporter SPECT and 18F-dopa PET. 
Moreover, the “decision tree” analysis method used in that 
study was appealing because it is resistant to data overfitting 
and is easily followed, entailing a straightforward step-by-
step decision-making process that involves binary questions 
related to specific brain volumes [16]. Nevertheless, the 
partial automation of the approach in conjunction with the 
rigorous workup of patients in this study leaves unanswered 
the question of how broadly applicable the methodology is 
to community settings. In these settings, patient populations 
are more loosely curated and fully automated algorithms are 
required.

In a contemporaneous study, Huppertz et al. [15] applied 
fully automated volumetric MRI analysis to a large cohort 
of MSAc, MSAp, PSP, and PD patients. They employed a 
different atlas-based software and support vector machine 
(SVM) analysis. SVM is an early high-dimensional multi-
variate supervised machine-learning approach. The approach 
utilizes one or more high-dimensional decision “hyper-
planes” to classify individuals within a multi-variate dataset. 
SVM and newer deep learning approaches that are replac-
ing it offer greater discriminatory power than decision trees 
or multivariate logistic regressions, but are less intuitive to 
understand and interpret. They are also prone to overfitting 
in small dataset. They have thus proved difficult to general-
ize. For this reason, in the current study, we opted for the 
simpler decision tree approach as it offers greater potential 
for successful widespread clinical translation in the com-
munity but, like the Huppertz study, we opted for a fully 
automated approach [15].

We employed a two-step approach toward broader transla-
tion by producing 2 complementary decision trees — first a 
decision tree to guide differentiation of NMD patients from 
healthy subjects, and second a separate decision tree to assist 
differentiation among NMDs. We included brainstem sub-
segmentation [17] using freely available open-source volu-
metric software and recursive partitioning with decision tree 
analysis [18]. We used a more recent software version than 
the Scherfler study and careful input-volume selections to 
address known sources of segmentation error [19–21]. We 
also introduced a novel parameter, the pons-to-midbrain 
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volume ratio (3D-PMR). Notably, we applied and internally 
validated this approach in a retrospective cohort comprising 
all ascertainable MSAp and MSAc patients in our hospital 
network who had undergone 3DT1 MRI at any timepoint in 
their disease course, an approximately matched number of 
PD and PSP patients from the same network, and a healthy 
subject dataset matched for age and legal-sex. The techni-
cally and clinically heterogeneous retrospective dataset 
drawn from our large tertiary hospital system was selected 
to test for wider translatability of our approach. Moreover, 
we tested decision-tree performance in a small but important 
group of patients with autopsy-confirmed diagnoses and in 
patients with MRI before motor symptom onset, two subsets 
of patients not evaluated in prior studies.

We have found that our approach does in fact distinguish 
NMD patients from healthy subjects and also sub-classifies 
NMDs with promising sensitivity and specificity, includ-
ing autopsy-confirmed and pre-symptomatic subsets. These 
data suggest that our open-source methodology may be 
well-suited for widespread clinical translation and warrants 
testing in larger, prospective cohorts in different clinical set-
tings. We hope the current study provides an important step 
in clinical translation of volumetric MRI for the differential 
diagnosis of MSA and related disorders.

Methods

Our institutional review board approved this retrospective 
medical records study with a waiver of informed consent.

Cohorts

We identified all subjects with MSA and approximately 
matched number of subjects with other NMD within our 
hospital network, using both a research tool embedded in 
the hospital electronic medical record system and an auto-
mated research query tool developed at our institution. The 
search terms used were “Parkinson Disease,” “Multiple Sys-
tem Atrophy,” “Progressive Supranuclear Palsy,” and “Par-
kinsonian.” Patients were included who (1) met “probable” 

or “pathologically-confirmed” consensus criteria for MSA 
[22], PSP [23], or PD [24], and (2) had spoiled gradient 
echo 3DT1 brain MRI data of acceptable quality (Fig. 1). 
MRIs performed for unrelated reasons prior to any symptom 
onset related to NMD were excluded. If multiple MRIs were 
performed for a single patient, the earliest MRI was chosen 
among those that were performed after initial presenting 
symptom onset. In most cases, the initial NMD present-
ing symptom was a motor symptom, but in an informative 
minority of patients was non-motor, offering an opportu-
nity for us to analyze the effectiveness of our method before 
motor symptom onset (which would be ideal for early diag-
nosis). If motor symptom was present at the time of MRI, 
predominant symptom was recorded as ataxia, parkinson-
ism, or both. Medical records of the included patients were 
assembled by clinical research coordinators (AW, MM) and 
reviewed by neurologists GC (clinical movement disorders 
subspecialist with 8 + years of training) and VK (faculty 
movement disorders subspecialist with 12 + years of expe-
rience). Demographic data collected include birth date, legal 
sex, year of motor symptom onset, age at MRI, predominant 
motor symptom at the time of MRI if motor symptom was 
present, and duration of clinical follow-up following motor 
symptom onset (Table 1).

We adopted multiple measures to improve upon the 
robustness of key prior studies (Table 2 [14, 15]). Nota-
ble strengths of our study are a relatively heterogeneous 
patient cohort that more closely mimics the community 
setting, one-on-one matching of healthy subjects, inclu-
sion of autopsy-confirmed patients, full automation with a 
more recent version of open-source software that exhibits 
reduced segmentation error, use of an unbiased and inter-
pretable statistical model, and subset-analysis of MRIs 
preceding motor symptom onset. In addition, we used a 
larger set of healthy subjects: we selected a total of 171 
healthy subjects with MRI matching our disease cohorts 
one-on-one by age and legal sex. These were obtained 
from OASIS-3 (Open Access Series of Imaging Studies), 
a clinical and imaging database of 1098 participants, rang-
ing from 42 to 95 years and including 605 cognitively 
normal adults and 493 patients with cognitive decline [25]. 

Fig. 1   Flow chart of inclusion 
criteria of our patient cohort
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Using the database’s clinical records, we excluded those 
with neurodegenerative disease or a movement disorder 
based on one or multiple records of Alzheimer’s Disease 
Research Center clinical data, Unified Parkinson’s Disease 
Rating Scale (UPDRS) Part 2 scorings, physical neuro-
logical examination findings, and medical/health histo-
ries. For the healthy subjects we selected, we also noted 
whether the participant had a history of alcohol substance 
use disorder, mood disorders, cerebrovascular disease, 

B12 deficiency, thyroid disease, and among other potential 
confounding factors.

Autopsy‑Confirmation

Results of postmortem examinations performed at our insti-
tution according to standard Alzheimer Disease Research 
Center protocols were retrieved from the medical record. 
Briefly, brain samples were bisected longitudinally. One 

Table 1   Patient demographics of our patient cohort and legal sex, age-matched healthy subject cohort. For 6 patients, MRI date preceded motor 
symptom onset (1 MSAc, 1 MSAp, 4 PSP)

Cohort Diagnosis (prob-
able/autopsy 
confirmed)

Legal sex (F/M) Age at MRI 
(yrs)

Age at motor 
symptom onset 
(yrs)

Disease duration 
to MRI (yrs)

Motor symptom 
at MRI (ataxia/
parkinsonism/
both)

Clinical follow-
up since motor 
symptom onset 
(yrs)

MSA 54/18 31/41 62.8 ± 8.0 59.6 ± 7.8 3.2 ± 2.5 
(− 0.4–11.7)

37/14/19 7.2 ± 3.2

MSAc 36/14 21/29 62.5 ± 8.1 58.9 ± 8.3 3.3 ± 2.4 
(0–11.7)

37/0/12 7.5 ± 3.3

MSAp 18/4 10/12 64.3 ± 7.9 60.3 ± 7.3 2.7 ± 2.6 
(− 0.4–10.0)

0/14/7 5.9 ± 2.6

PD 41/8 16/33 67.2 ± 9.2 60.9 ± 10.4 6.7 ± 4.6 
(0–15.8)

0/47/0 12.3 ± 5.6

PSP 42/8 27/23 70.6 ± 7.7 67.72 ± 8.0 2.9 ± 3.0 
(− 1.4–15.9)

4/40/2 6.3 ± 2.7

Total 137/34 74/97 66.3 ± 8.9 61.95 ± 8.5 4.1 ± 3.7 
(− 4.1–15.9)

41/101/21 8.3 ± 4.6

Healthy subject N/A 74/97 66.8 ± 8.9 N/A N/A N/A N/A

Table 2   Comparison with key prior studies in the field [14, 15]

Present study Scherfler et al. (2016) Huppertz et al. (2016)

Training cohort size 72 MSA (50 MSAc, 22 MSAp), 49 
PD, 50 PSP

26 MSA, 20 PSP, 26 PD 81 MSA (21 MSAc, 
60 MSAp), 106 PSP, 
204 PD

Testing cohort size Same as training set 14 MSA, 10 PSP, 14 PD Same as training set
Disease duration at time of MRI 

(years)
Mean 2.7–6.7 / SD 2.4–4.6 (− 4.1–

15.9)
Mean 2.5–3.3 / SD 1.2–2.2 (all < 6) Mean 3.2–6.5 / SD 

0.2–0.5 (0.3–23.4)
Age at MRI (years) 47–92 50–75 35–88
Supportive testing - dopamine SPECT or [18F]-dopa PET -
Healthy subjects used? Yes; age, legal sex matched (n = 171) Yes; age matched (n = 41) Yes (n = 73)
Pathologically confirmed cases? Yes; MSA (14 MSAc, 4 MSAp), 8 

PSP, 8 PD
No No

Fully automated? Yes Semi-automated (automated brain and 
whole brainstem, manual brainstem 
sub-segmentation)

Yes

3D MRI processing software (release 
date)

Freesurfer v6.0 (2017) Freesurfer v5.1 (2011) Matlab SPM12 (2014)

Model Decision tree Decision Tree Support vector machine
Model generation software Rpart v4.1–15 (R v3.6.1) C4.5 (WEKA 3.6) LIBSVM v3.20
Validation tenfold 10-repeat cross validation 33–35% hold-out validation tenfold cross validation
Exploration with MRIs preceding 

motor symptom onset
Yes No No



1102	 The Cerebellum (2023) 22:1098–1108

1 3

half was coronally sectioned and rapidly frozen, and the 
other half was fixed in 10% (vol/vol) neutral buffered for-
malin and then sectioned. Histological evaluation of mul-
tiple brain regions included staining with LFB, H&E, and 
immunohistochemical analysis for α-synuclein, β-amyloid, 
and phosphorylated tau. Histopathologic diagnosis was con-
firmed according to standard criteria [26–28]. A clinical 
MSA diagnosis (whether MSAp or MSAc) was confirmed 
neuropathologically if defined consensus criteria were met 
[29], including the presence of alpha-synuclein-rich glial 
cytoplasmic inclusions.

Volumetric Image Analysis

Fully automated volumetric analysis was performed running 
on a high-performance research computing cluster, using 
Freesurfer v6.0 which is documented and freely available 
for download online (http://​surfer.​nmr.​mgh.​harva​rd.​edu/) 
[30]. The Freesurfer Brainstem Substructures module was 
applied to automate the segmentation of the pons, midbrain, 
medulla, and SCP [17]. Each segmented MRI was exam-
ined for accuracy by a neuroradiologist (JK) and selected 
images were reviewed by a senior neuroradiologist (GY) 
on Freeview, a tool developed by Freesurfer developers to 
visualize Freesurfer output (Fig. 2).

Statistical Analysis

A biostatistician (CB) guided and reviewed all statistical 
analysis. We used a Classification and Regression Tree 
(CART) algorithm using rpart v4.1–15 in R (v3.6.1) which 
performs unbiased recursive partitioning, yielding auto-
mated decision trees. Decision trees offer superior inter-
pretability and clinical translatability [18] as exemplified 

through prior literature (Table 2). Ratio of pons-to-mid-
brain volume (3D-PMR) and volumes of midbrain, pons, 
SCP, caudate, putamen, striatum, thalamus, pallidum, 
cerebellar white matter, hippocampus, amygdala, lateral 
ventricles, third ventricle, fourth ventricle, and choroid 
plexus were used as input variables. All of these struc-
tures were used since a combination of these variables 
may provide better prediction and accuracy, as reported 
with previous MRI biomarkers such as the Magnetic Reso-
nance Parkinsonism Index and its 2.0 counterpart [7, 8]. 
3D-PMR drew inspiration from the midbrain-to-pons area 
ratio [6, 10]. In prior literature, the ratio of midbrain area 
to pons area has been shown to distinguish PSP from PD, 
MSA, and healthy subjects. We hypothesized that a fully 
automated volumetric counterpart of this ratio would be 
a robust measure to distinguish NMDs. Striatum volume 
was derived by adding the volumes of caudate, putamen, 
and nucleus accumbens. Cerebellar gray matter, cerebral 
cortex, cerebral white matter, and corpus callosum were 
excluded because the segmentations were deemed incon-
sistent and/or inaccurate based on prior literature and 
expert review of our data [21]. Other Freesurfer outputs 
including the optic chiasm and white matter hyperintensi-
ties were excluded because, based on prior literature, they 
were deemed unlikely to be closely associated with the 
pathophysiology of the relevant NMD and thus more likely 
to contribute to spurious correlation within the model (i.e., 
overfitting) than correct discrimination of the NMD. The 
first decision tree was made to differentiate healthy sub-
jects from diseased, and a second to differentiate among 
NMDs. Our models were validated by tenfold, 10-repeat 
cross-validation with the caret package in R. Finally, we 
also explored one of the most vexing aspects of the differ-
ential diagnosis with our approach, namely the differential 
diagnosis of only those who presented with parkinsonism.

Fig. 2   Example of fully automated segmentation of the brain and 
brainstem produced by Freesurfer 6.0 and its brainstem module. Key 
structures are labeled as following from left to right; WM, cerebral 
white matter; C, caudate; L, lateral ventricle; Cc, cerebral cortex; T, 

thalamus; Gp, glospus pallidus; P, putamen; M, midbrain; A, amyg-
dala; H, hippocampus; Po, pons; Cb-wm, cerebellar white matter; 
Me, medulla; Cb-c, cerebellar cortex

http://surfer.nmr.mgh.harvard.edu/
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Results

In our cohort, disease groups had no statistically signifi-
cant differences in distribution of legal sex (chi-square test) 
or age at motor symptom onset (Mann–Whitney test). The 
MSA group had a lower age at the time of their MRI and 
the PD group had a longer time between motor symptom 
onset and MRI. Review of documented presenting motor 
symptoms revealed that at the time of initial MRI, 12/50 
(24%) MSAc, 7/22 (32%) MSAp, and 2/50 (4%) PSP 
patients exhibited both ataxia and parkinsonism, and 4/50 
(8%) PSP patients had predominantly ataxia (Table 1). For 
6 patients, MRI date preceded motor symptom onset but 
were performed after initial presenting symptoms related to 
NMD such as orthostasis, psychomotor slowing, flat affect, 
memory changes, and falls (1 MSAc, 1 MSAp, 4 PSP). For 2 
patients, additional MRIs prior to symptoms related to NMD 
were available (2 PD). These were performed for transient 
aphasia and seizure of unknown etiology for one patient and 
vision changes for another patient which were eventually 
thought to be due to glaucoma.

The most high-level decision-tree created was a screening 
tree to differentiate healthy subjects from NMD patients. 
Through automated, unbiased optimization for the highest 

accuracy, this algorithm selected cerebellar white matter as 
its first node with a value smaller than 22,000 mm3 being 
classified as diseased (Fig. 3). Then, it selected thalamus, 
putamen, striatum, and midbrain volumes as nodes (Fig. 3). 
The resulting optimal decision-tree demonstrated sensitivity 
of 83.6%, specificity of 93.6%, and positive predictive value 
of 92.9% for the diseased group with 84.4% accuracy and 
0.69 kappa from cross-validation. This tree correctly clas-
sified 17/18 MSA, 7/8 PD, and 5/8 PSP autopsy-confirmed 
patients as diseased (85.3% accuracy). All autopsy results 
confirmed the clinical diagnosis prior to death except for 
1 PD and 2 PSP patients whose clinical diagnoses were 
unclear. In these cases, we adopted the diagnoses revealed 
from autopsy. Of the patients who had MRIs before their 
motor symptom onset, 1/1 MSAc, 1/1 MSAp, 2/2 PD, and 
3/4 PSP patients were correctly classified as diseased, yield-
ing 87.5% accuracy.

Next, a comprehensive tree was created to subclassify 
patients within the NMD group. This algorithm selected 
our novel biomarker, 3D-PMR, as its first node with a 
value smaller than or equal to 2.3 being classified as MSA 
(Fig. 4). This biomarker alone differentiated MSA from 
other diseases. The algorithm then selected thalamus, mid-
brain, again 3D-PMR, and SCP as its nodes (Fig. 4). This 

Fig. 3   Screening decision tree — healthy vs NMD. (3D-PMR, pons-to-midbrain volume ratio; MSAc/p, multiple system atrophy-cerebellar/Par-
kinsonian subtypes; PD, Parkinson disease; PSP, progressive supranuclear palsy)
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yielded sensitivity and specificity of 94.4 and 83.8% for 
MSA, 73.4 and 91.8% for PD, and 72.0 and 95.9% for PSP.

We attempted a variant of this tree to further sub-divide 
patients with MSA into cerebellar and parkinsonian sub-
types, although we were under-powered to do so with 
the paucity of MSA patients. This analysis (lower left of 
Fig. 4) demonstrated sensitivity and specificity of 94.0 
and 90.9% for MSAc, 63.6 and 91.9% for MSAp. Cross-
validation revealed 78.5% accuracy and 0.62 kappa.

In subset analyses, our NMD decision tree correctly 
classified 17/18 MSA, 6/8 PD, and 5/8 PSP autopsy-con-
firmed patients constituting 82.4% accuracy. Of the 18 
autopsy-confirmed MSA patients, 14/14 MSAc and 3/4 
MSAp patients were correctly classified, with one MSAp 
patient mis-classified as MSAc. In a second subset analy-
sis, of MRIs obtained before motor symptom onset, 1/1 
MSAc, 1/1 MSAp, 2/2 PD, and 3/4 PSP patients were cor-
rectly classified, yielding 87.5% accuracy. One PSP patient 
was misclassified as PD.

For differentiating NMDs in patients with parkinsonism 
at the time of MRI with or without ataxia, decision tree 
algorithm selected SCP, 3D-PMR, pons, and 3rd and 4th 
ventricles, resulting in sensitivity and specificity ranging 
67–89% and 79–99%, respectively, for MSAc, MSAp, PD, 
and PSP (Supplementary Fig. 1).

Discussion

One of the major objectives of the current study was to 
develop an accessible approach to the differential diag-
nosis of MSA from other clinically related NMD diagno-
ses. We envision that our approach might be adapted to 
a community setting where 3D MRI is readily available. 
To facilitate this adaptation, we focused on a fully auto-
mated approach that employed open-source software and 
a statistical method that is unbiased, intuitive, and widely 
translatable (i.e., decision tree). Moreover, we purposely 
included patients from across a large tertiary level hospital 
center to create a more clinically heterogeneous cohort 
that had been subjected to a range of MRI scanners and 
methodologies. We reasoned such a cohort would better 
mimic a community-based population.

The post-hoc analysis of presenting symptom at the 
time of initial MRI revealed mixed or atypical present-
ing symptoms in 24% MSAc, 32% MSAp, and 12% PSP 
patients (Table 1). Taken together with the 4% of the 
cohort with non-motor symptoms only at time of initial 
MRI, these findings illustrate that early in the course of 
NMD, differentiation on clinical grounds can be quite dif-
ficult, underscoring the importance of creating objective 

Fig. 4   Comprehensive differential diagnosis tree — MSA vs MSAc 
vs MSAp vs PD vs PSP. (3D-PMR, pons-to-midbrain volume ratio; 
SCP, superior cerebellar peduncle; MSAc/p, multiple system atrophy-

cerebellar/Parkinsonian subtypes; PD, Parkinson disease; PSP, pro-
gressive supranuclear palsy)
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methods to assist early differential diagnosis of NMD 
patients that are independent of clinical differentiation 
between ataxic and parkinsonian presentation.

For differentiating NMD, a novel measure, the 3D-PMR, 
proved valuable. Drawing inspiration from the 2D literature 
in which midbrain and pons areas on mid-sagittal plane were 
utilized on their own, as a ratio, or as part of a formula, we 
developed this measure as a ratio of pons to midbrain vol-
umes [5–10]. Interestingly, 3D-PMR was not only the key 
upstream node for distinguishing MSA from other NMDs 
likely related to pontine atrophy in MSA but also useful in 
distinguishing PSP and PD, likely due to midbrain atrophy 
observed in PSP (Fig. 4). MSA patients who did not meet 
the criteria of low 3D-PMR were correctly classified further 
downstream in the decision tree by excluding thalamic atro-
phy and with suggestion of midbrain atrophy, which corre-
lates with findings from prior literature of midbrain atrophy 
in MSAp [31]. Overall, the presence of 3D-PMR at multiple 
points of the tree suggests that it can be served as a gradient 
biomarker for differentiating multiple NMDs, rather than a 
binary decision maker.

Notably, our two decision-tree approaches (Figs. 3 and 4, 
respectively) were intended for two distinct purposes. Our 
initial approach — to distinguish our NMD from healthy 
subjects (Fig. 3) — was designed to simulate the type of 
initial filter one might employ among community clinicians 
and imagers to identify NMD patients among the wide vari-
ety of patients with various pathologic and functional disor-
ders potentially mimicking NMDs such as essential tremor, 
Wernicke’s syndrome, communicating hydrocephalus, and 
spinal disorders among others. The screening decision-tree 
produced a high sensitivity/specificity of 84/94% and cross-
validated accuracy of 84.4% in our relatively technically 
heterogeneous cohort. This supports the hypothesis that 
our approach may be able to help community physicians 
facing cohorts of patients with movement issues of various 
etiologies to identify NMD patients for specialist referral. 
The tree may be useful even before motor symptom onset 
as it showed an even higher accuracy of 88% for predict-
ing the presence of a NMD in patients with MRI before 
motor symptom onset. Both of these results will need to be 
validated on a larger and even more heterogeneous cohorts 
incorporating patients with various movement-related 
impairments unrelated to NMDs.

This screening tree (Fig. 3) identified lower volumes — 
likely from atrophy — of the cerebellar white matter, stria-
tum, putamen, and midbrain in NMD patients compared to 
healthy subjects. For thalamus, however, large volume sug-
gested NMD, which may be due to thalamic enlargement 
observed in PD [32]. The consistency of these results with 
previous literature and with the generally accepted neuro-
pathology and pathophysiology of NMDs is very encour-
aging for clinical translation because it suggests that the 

correlations embedded in this decision-tree method are bio-
logically relevant and thus potentially generalizable.

The second decision tree (Fig. 4) was designed to assist 
neurology specialists and movement disorder sub-specialists 
in differentiating among the various NMDs, once patients 
with unrelated movement issues have been excluded. This 
tree provided more granular understanding of the specific 
volumetric differences that had emerged in our first decision 
tree: the small pons volumes were driven by pontine atrophy 
in MSAc and small striatum volumes by putaminal atro-
phy in MSAp. Thalamic atrophy suggested PSP and distin-
guished from PD as well as MSA, a finding, as noted above, 
that is consistent with previously reported enlarged thalami 
in PD in addition to previously reported thalamic atrophy 
in PSP [32, 33]. SCP atrophy suggested PSP as observed in 
prior literature [34, 35].

The second tree (Fig. 4) demonstrated specificity of 
83.8–95.9% and sensitivity of 72.0–94.4% for pairwise com-
parison of MSA vs PD vs PSP. Further branching of this 
tree designed to differentiate MSA into MSAp and MSAc 
was also attempted, which differentiated MSAp with high 
specificity (91.9%) but a low sensitivity of 63.6%. We pre-
sume this less effective performance resulted from our much 
smaller sample size for MSAp patients. Additionally, over-
lapping phenotypes between MSAp and MSAc as well as 
MSAp and PD patients likely contribute to the lower sensi-
tivity of MSAp group, which again emphasize the difficutly 
in differential diagnosis [35, 36]. Consistent with this pos-
sibility, 5 of the 8 incorrectly classified MSAp patients were 
classified as MSAc and 3 as PD in the second decision tree 
(Fig. 4). Furthermore, for our autopsy-proven MSAp cases, 
1/4 was incorrectly classified by the decision tree as MSAc. 
The high performance in patients with autopsy-confirmed 
diagnoses (82%) and MRIs before motor symptom onset 
(88%) is notable. While the numbers are small, this result 
suggests that our approach may prove robust in identifica-
tion of patients with NMDs, particularly MSA, early in the 
disease course. This would be highly desirable, not only 
to decrease patient suffering and healthcare costs but also 
to triage patients for therapeutic trials at the early stages 
where disease-modifying interventions are most likely to 
work. This will by synergistic with the efforts for early and 
accurate diagnosis, for example through CSF analysis for 
α-synucleinopathies or skin biopsy for PD (also see accom-
panying submission, Ndayisaba, Pitaro, Willett et al. The 
Cerebellum, this issue) [37, 38].

Finally, our supplementary decision tree (Supplementary 
Fig. 1) generated with data from a sub-group of patients 
who had parkinsonism resulted in SCP as its first node with 
atrophy suggesting MSA, PD, or PSP. Without SCP atro-
phy, a larger 4th ventricular size, which is an indirect meas-
ure of cerebellar atrophy, suggested MSAp rather than PD. 
Smaller 3D-PMR suggested MSA, among which pontine 
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atrophy pointed towards MSAc. Larger 3D-PMR, along with 
larger 3rd ventricular size, which is an indirect measure of 
thalamic atrophy, suggested PSP. Although underpowered, 
this tree demonstrated relatively high specificity (79–99%) 
which suggests that with additional data, this approach can 
assist with differentiation of those presenting with parkin-
sonism, which is among the most challenging for differential 
diagnosis in NMDs.

Although our sample size is relatively small, especially 
in the MSAp cohort, this is still one of the largest compre-
hensive cohorts yet published, consistent with the rarity of 
atypical parkinsonism-ataxia spectrum disorders (Table 2). 
Future studies with still larger cohorts and multi-center 
cohorts are needed. Heterogeneity of the disease cohort, 
such as the older age of the PSP and PD groups, is a poten-
tial source of bias, although the inclusion of age and sex-
matched healthy subjects should somewhat mitigate against 
this. Among the sources of this heterogeneity, the older age 
of the PSP and PD groups likely reflects later average symp-
tom onset in these diseases compared to MSA. This may 
have degraded the performance of our classifiers. However, 
because this age distribution should more closely simulate 
a real community-clinic populations, the strong overall per-
formance of our decision trees suggests that our method will 
continue to perform well in prospective community appli-
cation. The longer interval from symptom onset to MRI in 
the PD group is another limitation that may mirror future 
clinical use because of the slower progression of symptoms 
in PD. Interestingly, the two PD patients with earlier MRIs 
available preformed before any symptom onset were cor-
rectly classified as PD, supporting the notion than the clas-
sifier may perform better in the critical early detection task. 
Prior to prospective clinical use, studies with longitudinal 
analysis of patients with MRIs at multiple time points will 
be needed to understand the effect of symptom duration on 
MRI volumetric diagnosis of NMDs [17]. Variability in 
the timing of MRI in relation to symptom onset is another 
limitation, inherent to a retrospective study. While this likely 
decreases the overall measured sensitivity and specificity of 
the decision trees, it reflects the variability in practice pat-
terns among providers ordering MRIs. As such, the reports’ 
sensitivities and specificities are likely to approximate those 
that will be encountered in clinical use of the trees.

As noted, we included only 3D-PMR and volumes of 
midbrain, pons, SCP, caudate, putamen, striatum, thalamus, 
pallidum, cerebellar white matter, hippocampus, amygdala, 
lateral ventricles, third ventricle, fourth ventricle, and cho-
roid plexus in the input set when performing the decision 
tree analysis. This excluded a number of other structures 
that are known not to be involved in the NMD of interest, 
or for which low segmentation reliability is either known 
from prior literature or was identified in our study. In par-
ticular, we excluded cerebellar gray matter, cerebral cortex 

and white matter, and corpus callosum volumes which might 
otherwise have been of interest, because of known limita-
tions of Freesurfer v6.0 accuracy for cerebellar gray matter 
and inaccurate segmentation of the supratentorial volumes 
in a number of patients on visual review. We also eliminated 
nucleus accumbens, a relevant structure of interest, as an 
independent volume, merging it with putamen and caudate 
in our striatum volume, because the accumbens boundaries 
cannot be discerned readily with T1-weighted imaging. 
Notably, we used a more advanced version of Freesurfer, 
v6.0 (Table 2), which was a major upgrade from the previous 
v5.3 with improvements in registration, segmentation, and 
classification. In particular, this version has improved puta-
men segmentation and automatic brainstem sub-segmenta-
tion module [17, 20, 39]. For these reasons, the resulting 
classifier may prove to be more generalizable than earlier 
approaches.

Our study illustrates the major advantage of decision-
tree: it is a more interpretable and transparent statistical 
method compared to more complex SVM and deep learn-
ing approaches that can appear as a “black box” to the 
broader clinical community. The ability to understand the 
basis for individual patient classifications is one of the main 
advantages of this approach. Put another way, it is a simple, 
interpretable, and transparent statistical analysis and mod-
eling technique. Such methods reduce the likelihood of data 
overfitting, classifier performance drift, and performance 
degradation in application to external datasets while at the 
same time engender physician acceptance and trust in the 
method. Bayes’ theorem dictates that the positive predictive 
value of any test depends heavily on the pre-test prevalence 
of disease in the test population [40]. Therefore, accuracy 
of any classifier is expected to decrease when it is applied to 
less carefully selected populations, and careful stepwise vali-
dation in progressively more heterogeneous populations is 
required to translate diagnostic methods developed in care-
fully characterized patient cohorts to broader use. Validation 
across multiple independent datasets is warranted for this 
technology to become widely accepted.

Conclusion

We have demonstrated that fully automated diagnostic deci-
sion-trees can perform well in differentiating NMDs from 
healthy subjects and in the differential diagnosis of MSA 
from other NMD. We applied the methodology in techni-
cally heterogeneous clinical 3DT1 brain MRI data on a rela-
tively loosely selected retrospective patient cohort. Valida-
tion, albeit with limited numbers, in pre-symptomatic and 
autopsy-proven cases was promising. Our findings justify 
additional work toward widespread community translation 
aiming to assist in earlier, more accurate detection of NMD 
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patients so as to allow earlier appropriate referral to subspe-
cialty movement disorder centers, reduce patient suffering 
and medical costs, and facilitate the early triage of patients 
to therapeutic intervention trials. The dataset curated from 
our large tertiary healthcare system with an age and legal 
sex-matched healthy subject cohort will be valuable for 
future collaborative efforts, as the international MSA com-
munity builds the clinically heterogeneous admixed cohorts 
that are needed for external validation and eventual trans-
lation to diverse community settings. In the subspecialty 
setting, such volumetric approaches may prove synergistic 
with functional data from diffusion-weighted imaging, dif-
fusion tensor imaging, or other advanced MRI approaches 
that are being applied to the differential diagnosis of MSA 
and related disorders.
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