Skip to main content
Log in

Microstructural Differences of the Cerebellum-Thalamus-Basal Ganglia-Limbic Cortex in Patients with Somatic Symptom Disorders: a Diffusion Kurtosis Imaging Study

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Washington (DC): American Psychiatric Association; 2013.

  2. Henningsen P. Management of somatic symptom disorder. Dialogues Clin Neurosci. 2018;20:23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boeckle M, Schrimpf M, Liegl G, Pieh C. Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies. Neuroimage Clin. 2016;11:606–13. https://doi.org/10.1016/j.nicl.2016.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hakala M, Karlsson H, Kurki T, Aalto S, Koponen S, Vahlberg T, Niemi PM. Volumes of the caudate nuclei in women with somatization disorder and healthy women. Psychiatry Res. 2004;131:71–8. https://doi.org/10.1016/j.pscychresns.2004.03.001.

    Article  PubMed  Google Scholar 

  5. Begue I, Adams C, Stone J, Perez DL. Structural alterations in functional neurological disorder and related conditions: a software and hardware problem? Neuroimage Clin. 2019;22:101798. https://doi.org/10.1016/j.nicl.2019.101798.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delvecchio G, Rossetti MG, Caletti E, Arighi A, Galimberti D, Basilico P, Mercurio M, Paoli R, Cinnante C, Triulzi F, Altamura AC, Scarpini E, Brambilla P. The neuroanatomy of somatoform disorders: a magnetic resonance imaging study. Psychosomatics. 2019;60:278–88. https://doi.org/10.1016/j.psym.2018.07.005.

    Article  PubMed  Google Scholar 

  7. Liang HB, Dong L, Cui Y, Wu J, Tang W, Du X, Liu JR. Significant structural alterations and functional connectivity alterations of cerebellar gray matter in patients with somatic symptom disorder. Front Neurosci. 2022;16:816435. https://doi.org/10.3389/fnins.2022.816435.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park HY, Jang YE, Sunwoo L, Yoon IY, Park B. A longitudinal study on attenuated structural covariance in patients with somatic symptom disorder. Front Psychiatry. 2022;13:817527. https://doi.org/10.3389/fpsyt.2022.817527.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Su Q, Liu F, Zhang Z, Li R, Zhu F, Wu R, Zhao J, Guo W. Regional white matter volume abnormalities in first-episode somatization disorder. Int J Psychophysiol. 2018;133:12–6. https://doi.org/10.1016/j.ijpsycho.2018.09.003.

    Article  PubMed  Google Scholar 

  10. Diez I, Williams B, Kubicki MR, Makris N, Perez DL. Reduced limbic microstructural integrity in functional neurological disorder. Psychol Med. 2021;51:485–93. https://doi.org/10.1017/S0033291719003386.

    Article  PubMed  Google Scholar 

  11. Sone D, Sato N, Ota M, Kimura Y, Matsuda H. Widely impaired white matter integrity and altered structural brain networks in psychogenic non-epileptic seizures. Neuropsychiatr Dis Treat. 2019;15:3549–55. https://doi.org/10.2147/NDT.S235159.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee S, Allendorfer JB, Gaston TE, Griffis JC, Hernando KA, Knowlton RC, Szaflarski JP, Ver Hoef LW. White matter diffusion abnormalities in patients with psychogenic non-epileptic seizures. Brain Res. 2015;1620:169–76. https://doi.org/10.1016/j.brainres.2015.04.050.

    Article  CAS  PubMed  Google Scholar 

  13. Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Marien P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16:552–76. https://doi.org/10.1007/s12311-016-0815-8.

    Article  CAS  PubMed  Google Scholar 

  14. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66. https://doi.org/10.3389/fpubh.2015.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol. 2019;54:100774. https://doi.org/10.1016/j.yfrne.2019.100774.

    Article  CAS  PubMed  Google Scholar 

  16. Pierce JE, Peron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci. 2020;15:599–613. https://doi.org/10.1093/scan/nsaa076.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–50. https://doi.org/10.1038/s41583-018-0002-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107:8452–6. https://doi.org/10.1073/pnas.1000496107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3. https://doi.org/10.1038/nn1544.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23:698–710. https://doi.org/10.1002/nbm.1518.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan Y, Zhang H, Wang X, Qin J, Wang L, Yang G, Yan H. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas. Clin Radiol. 2019;74:314–20. https://doi.org/10.1016/j.crad.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  22. Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol. 2018;9:92. https://doi.org/10.3389/fneur.2018.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432–40. https://doi.org/10.1002/mrm.20508.

    Article  PubMed  Google Scholar 

  24. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97. https://doi.org/10.1016/j.neuroimage.2014.01.060.

    Article  PubMed  Google Scholar 

  25. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061.

    Article  PubMed  Google Scholar 

  26. Rossetti MG, Delvecchio G, Calati R, Perlini C, Bellani M, Brambilla P. Structural neuroimaging of somatoform disorders: a systematic review. Neurosci Biobehav Rev. 2021;122:66–78. https://doi.org/10.1016/j.neubiorev.2020.12.017.

    Article  PubMed  Google Scholar 

  27. Bonnefil V, Dietz K, Amatruda M, Wentling M, Aubry AV, Dupree JL, Temple G, Park HJ, Burghardt NS, Casaccia P and Liu J. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. Elife. 2019; 8:e40855. https://doi.org/10.7554/eLife.40855.

  28. Bai Y, Lin Y, Tian J, Shi D, Cheng J, Haacke EM, Hong X, Ma B, Zhou J, Wang M. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology. 2016;278:496–504. https://doi.org/10.1148/radiol.2015142173.

    Article  PubMed  Google Scholar 

  29. Delgado y Palacios R, Verhoye M, Henningsen K, Wiborg O, Van der Linden A. Diffusion kurtosis imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and amygdala after chronic mild stress. PLoS One. 2014;9:e95077. https://doi.org/10.1371/journal.pone.0095077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espiridion ED, Kerbel SA. A systematic literature review of the association between somatic symptom disorder and antisocial personality disorder. Cureus. 2020;12:e9318. https://doi.org/10.7759/cureus.9318.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shi J, Yang S, Wang J, Huang S, Yao Y, Zhang S, Zhu W, Shao J. Detecting normal pediatric brain development with diffusional kurtosis imaging. Eur J Radiol. 2019;120:108690. https://doi.org/10.1016/j.ejrad.2019.108690.

    Article  PubMed  Google Scholar 

  32. Johnson FK, Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: new insights and future challenges. Brain Behav Immun. 2018;69:18–27. https://doi.org/10.1016/j.bbi.2017.06.008.

    Article  PubMed  Google Scholar 

  33. Jia X, Gao Z, Hu H. Microglia in depression: current perspectives. Sci China Life Sci. 2021;64:911–25. https://doi.org/10.1007/s11427-020-1815-6.

    Article  CAS  PubMed  Google Scholar 

  34. Hughes AN, Appel B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci. 2020;23:1055–66. https://doi.org/10.1038/s41593-020-0654-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennis M, Van Rooij SJ, Tromp do PM, Fox AS, Rademaker AR, Kahn RS, Kalin NH, Geuze E. Treatment outcome-related white matter differences in veterans with posttraumatic stress disorder. Neuropsychopharmacol. 2015;40:2434–42. https://doi.org/10.1038/npp.2015.94.

    Article  CAS  Google Scholar 

  36. McCunn P, Richardson JD, Jetly R, Dunkley B. Diffusion tensor imaging reveals white matter differences in military personnel exposed to trauma with and without post-traumatic stress disorder. Psychiatry Res. 2021;298:113797. https://doi.org/10.1016/j.psychres.2021.113797.

    Article  PubMed  Google Scholar 

  37. Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol. 2018;14:129–40. https://doi.org/10.3988/jcn.2018.14.2.129.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Geeraert BL, Lebel RM, Lebel C. A multiparametric analysis of white matter maturation during late childhood and adolescence. Hum Brain Mapp. 2019;40:4345–56. https://doi.org/10.1002/hbm.24706.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2010;46:845–57. https://doi.org/10.1016/j.cortex.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  40. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moreno-Rius J. The cerebellum in fear and anxiety-related disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:23–32. https://doi.org/10.1016/j.pnpbp.2018.04.002.

    Article  PubMed  Google Scholar 

  42. Strata P. The emotional cerebellum. Cerebellum. 2015;14:570–7. https://doi.org/10.1007/s12311-015-0649-9.

    Article  PubMed  Google Scholar 

  43. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637–50. https://doi.org/10.1007/s00213-016-4218-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Greck M, Scheidt L, Bolter AF, Frommer J, Ulrich C, Stockum E, Enzi B, Tempelmann C, Hoffmann T, Han S, Northoff G. Altered brain activity during emotional empathy in somatoform disorder. Hum Brain Mapp. 2012;33:2666–85. https://doi.org/10.1002/hbm.21392.

    Article  PubMed  Google Scholar 

  45. Liang H, Dong L, Cui Y, Wu J, Tang W, Du X, Liu J. Significant structural alterations and functional connectivity alterations of cerebellar gray matter in patients with somatic symptom disorder. Front Neurosci. 2022;16:816435. https://doi.org/10.3389/fnins.2022.816435.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Torrico TJ and Munakomi S. Neuroanatomy, Thalamus. Treasure Island (FL): StatPearls; 2022.

  47. Hanggi J, Bellwald D, Brugger P. Shape alterations of basal ganglia and thalamus in xenomelia. Neuroimage Clin. 2016;11:760–9. https://doi.org/10.1016/j.nicl.2016.05.015.

    Article  PubMed  PubMed Central  Google Scholar 

  48. He M, Shen Z, Ping L, Zhou C, Cheng Y, Xu X. Age-related heterogeneity revealed by disruption of white matter structural networks in patients with first-episode untreated major depressive disorder: WM Network In OA-MDD. J Affect Disord. 2022;303:286–96. https://doi.org/10.1016/j.jad.2022.02.036.

    Article  PubMed  Google Scholar 

  49. Perez DL, Barsky AJ, Vago DR, Baslet G, Silbersweig DA. A neural circuit framework for somatosensory amplification in somatoform disorders. J Neuropsychiatry Clin Neurosci. 2015;27:e40-50. https://doi.org/10.1176/appi.neuropsych.13070170.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 81571658 to X. X. Du and grant No. 81271302 to J.R. Liu), a research project of the Shanghai University of Sport (Grant No. 2022XJ002 to X. X. Du), the Shanghai Municipal Science and Technology Commission (Innovation Research Project, No. 14JC1404300 to J.R. Liu), Shanghai Hospital Development Center (Prevention and Control of Chronic Diseases Project, No. SHDC12015310 to J.R. Liu), SHSMU-ION Research Center for Brain Disorders (project No. 2015NKX006 to J.R. Liu), Shanghai Municipal Education Commission (Gaofeng Clinical Medicine Grant Support, project No. 20161422 to J. R. Liu), Shanghai Jiao Tong University School of Medicine (Clinical Research Project, No. DLY201614 to J.R. Liu), and Shanghai Municipal Science and Technology Commission (Biomedicine Key Program, No. 16411953100 to J.R. Liu). The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ren Liu or Xiaoxia Du.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Liang, HB., Du, J. et al. Microstructural Differences of the Cerebellum-Thalamus-Basal Ganglia-Limbic Cortex in Patients with Somatic Symptom Disorders: a Diffusion Kurtosis Imaging Study. Cerebellum 22, 840–851 (2023). https://doi.org/10.1007/s12311-022-01461-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01461-w

Keywords

Navigation