
Vol.:(0123456789)1 3

The Cerebellum (2024) 23:13–21 
https://doi.org/10.1007/s12311-022-01417-0

ORIGINAL ARTICLE

Disease Mechanisms of Multiple System Atrophy: What a Parallel 
Between the Form of Pasta and the Alpha‑Synuclein Assemblies 
Involved in MSA and PD Tells Us

Ronald Melki1

Accepted: 18 May 2022 / Published online: 3 June 2022 
© The Author(s) 2022

Abstract
Intracellular deposits rich in aggregated alpha-synuclein that appear within the central nervous system are intimately associ-
ated to Parkinson’s disease and multiple system atrophy. While it is understandable that the aggregation of proteins, which 
share no primary structure identity, such as alpha-synuclein and tau protein, leads to different diseases, that of a given pro-
tein yielding distinct pathologies is counterintuitive. This short review relates molecular and mechanistic processes to the 
observed pathological diversity associated to alpha-synuclein aggregation.
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Introduction

The aggregation of the proteins Tau, A-beta, alpha-synu-
clein, PrP, Huntingtin, and serpins, into assemblies of fibril-
lar nature is intimately associated to tauopathies, such as 
Alzheimer’s disease; synucleinopathies, such as Parkinson’s 
disease; spongiform encephalopathies, such as Creutzfeldt-
Jacob disease; Huntington’s disease; and different forms 
of dementias. These proteins share no primary structure 
identity, and this may account for the different diseases they 
cause or are associated to given that it is widely accepted that 
unrelated protein aggregates compromise cellular proteosta-
sis and integrity in different manners [1]. Alpha-synuclein 
aggregation is involved in Parkinson’s disease, Lewy body 
dementia, and the two forms of multiple system atrophy. 
Alpha-synuclein is not the only protein to bear this property, 
Tau protein aggregation is involved in Alzheimer’s disease 
but also Pick’s disease, progressive supranuclear palsy, glob-
ular glial tauopathy, aging-related tau astrogliopathy, chronic 
traumatic encephalopathy, argyrophilic grain disease, and 

primary age-related tauopathy. How the aggregation of one 
given protein leads to different diseases is a priori puzzling. 
There must be explanations for this fact. It could be that 
alpha-synuclein aggregation occurs only in a set of neuronal 
cell populations that are permissive to aggregation, which 
suffer and degenerate afterward leading to specific pheno-
types. It could also be that the aggregates alpha-synuclein 
forms in all neuronal cells or in different cell populations are 
different, thus causing different diseases. It could further be 
that alpha-synuclein aggregates forming in defined neuronal 
cells target and affect specific neuronal cell populations via 
their prion-like properties. It is worth keeping in mind that 
none of these possibilities are exclusive. This short review 
provides plausible molecular and mechanistic events that 
may account for the observed pathological diversity.

Structural diversity of alpha‑synuclein 
amyloids

Alpha-synuclein is a relatively small “natively unfolded” 
protein. The term natively unfolded reflects alpha-synuclein 
molecule intrinsic dynamics. Indeed, this protein in total or 
part adopts multiple conformation, not necessarily extended, 
which does not allow determining an average conformation 
unless upon binding a ligand [2–13]. The ensemble of ter-
tiary structures or conformational states alpha-synuclein 
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populates is immense. Indeed, if we assume that each amino 
acid residue within alpha-synuclein can adopt a limited num-
ber of conformations, for example 3 (1 trans and 2 gauche) 
around the 139 peptide bonds within the protein, with only 
2 torsions each, the number of possible conformations that 
alpha-synuclein could adopt would surpass  3278  (3139×2) con-
formations. The different conformations within the ensem-
ble of tertiary structures are in equilibrium, meaning that 
each conformation is populated for a given time [14]. If each 
conformation is populated for a very small fraction of a sec-
ond, e.g.  10−12 s, it would take a single molecule over the 
age of the universe to populate this limited set of possible 
conformations. The concentration and lifespan of each con-
formation are specific to the tertiary conformation and are 
defined by intramolecular interactions between amino acid 
residues stabilized by hydrogen bonds and electrostatic and 
hydrophobic interactions. The latter depend on the amino 
acid composition of the protein, the distribution of the amino 
acid residues within the protein primary structure, and the 
chemical and physical conditions surrounding the protein. 
This is why the ensemble of conformations alpha-synuclein 
can explore is several orders of magnitude smaller than the 
number indicated above. It is worth adding that mutations 
within alpha-synuclein, such as the ones reported in familial 
early onset parkinsonism, affect the intramolecular interac-
tions between amino acid residues within alpha-synuclein 
and because of that the ensemble of conformations mutant 
alpha-synuclein molecules explore.

Because of its dynamics, the probability for wild type 
or mutant alpha-synuclein to populate conformers expos-
ing amino acid stretches that allow them to establish well-
defined inter-molecular interactions with molecules that are 
in a compatible conformation is far from negligible at any 
time. This allows the monomeric protein to form oligomeric 
species. As upon the crystallization of a protein, the nature 
of the interactions allowing the formation of quaternary 
structures such as dimers, trimers, and higher molecular 
weight oligomeric species between molecules defines the 
stability of the assemblies this protein forms [15]. When 
a molecule adopts conformations incapable of establishing 
stable and highly complementary interaction with the oli-
gomer elongating tips, it cannot add on and be subsequently 
incorporated within the seed. However, a given protein in 
different conformations can establish different complemen-
tary interactions with molecules in compatible conforma-
tion. Thus, assemblies, including crystals, made of the same 
protein in different conformations can form. What is true for 
a generic protein applies to alpha-synuclein.

Similar to most of the proteins whose aggregation is asso-
ciated to neurodegenerative diseases, alpha-synuclein adopts 
beta-strand secondary structure–rich conformations. While 
the distribution of these beta strands is highly dependent 
on wild-type or mutant alpha-synuclein primary structure, 

they form transiently because of the protein dynamics. The 
establishment of numerous hydrogen bonds between alpha-
synuclein molecules allows their highly ordered stacking 
into assemblies of fibrillar shapes named amyloids. The 
term amyloid signifies starch like. This term was used in 
the nineteenth century to refer to deposits within the brain 
that stain pale blue with iodine and violet upon treatment 
with sulfuric acid as do starch deposits in plants. Amyloid 
fibrils are defined as fibrillar polypeptide aggregates with 
cross-beta conformation, a structure where the hydrogen 
bonds between two consecutive sheets are oriented parallel 
to the main fibril axis while the constituting beta-strands 
are oriented transversely to the main fibril axis [16, 17]. 
This type of structure gives rise to a characteristic pattern 
of reflections in X-ray diffraction experiments consisting 
of a conserved 4.6–4.8 Angström meridional spacing and 
an equatorial spacing of about 10 Angström. The 4.6–4.8 
Angström reflection comes from the distance between two 
hydrogen bonded strands and is invariant as it depends on 
the geometry of the polypeptide backbone. It is referred to as 
the “main chain spacing.” The equatorial reflection at about 
10 Angström comes from the packing distance between two 
juxtaposed beta-sheets [18, 19]. This distance can vary with 
the polypeptide amino acid composition as it depends on the 
orthogonal protrusion of the amino acid side chains from 
the plane of the sheet. It is worth noting that this reflection 
is not observed when the inter-sheet spacing is not regular.

As the organization of polypeptide stretches into beta 
strands within wild-type and mutant alpha-synuclein mol-
ecules is transient because of the protein dynamics, different 
beta-strand–rich conformations form and disappear. Among 
these, different conformers are compatible with the forma-
tion of structurally distinct amyloid fibrils. All resulting 
fibrils have the characteristic 4.6–4.8 and ~ 10 Angström 
reflections. The fibrils may also exhibit additional reflec-
tions originating from highly ordered domains stacks, when 
they exist.

As indicated above, the tertiary structures wild-type 
or mutant alpha-synuclein adopts are the consequences 
of intramolecular interactions between amino acid resi-
dues stabilized by hydrogen bonds and electrostatic and 
hydrophobic interactions. Those intramolecular interac-
tions are highly dependent on the chemical and physical 
conditions surrounding the protein (pH, viscosity, ionic 
strength, nature of ions etc.…). Changing the conditions 
under which alpha-synuclein forms amyloid fibrils allows 
populating different alpha-synuclein tertiary structures or 
fold ensembles. The different tertiary structures or folds 
any given amyloid forming protein can adopt define the 
way the molecules stack into fibrils, the intermolecular 
interfaces between any two consecutive protein molecules 
and the number of intermolecular H-bonds within these 
interfaces. This affects mostly fibril growth through the 



15The Cerebellum (2024) 23:13–21 

1 3

incorporation of molecules in compatible conformations. 
Different folds for a given protein define the surfaces of the 
stacks they form. The latter allow or not defined interac-
tions between different stacks of the protein in the same or 
different conformations yielding fibrils made of multiple 
protofilaments. This further governs fibril growth rates, 
nanomechanical properties, processing, and degradation 
by the cellular machinery in charge of their clearance. 
Thus, the intrinsic architectures of fibrils made from one 
given protein, e.g., alpha-synuclein (Fig. 1), are defined 
by the amyloid forming folds its constituting protein popu-
lates [20], [21–28]. The involvement of different amino 
acid stretches in the amyloid core of alpha-synuclein fibrils 
exhibiting distinct intrinsic architectures implies they pos-
sess unlike surfaces. Indeed, the amyloid fold and scaffold 
define the amino acid stretches composing the solvent-
exposed polypeptide chains and their distribution in space 
at the external surfaces of the fibrils, the surfaces through 
which they interact with ligands ranging from small mol-
ecules to cell components [29]. When schematized, these 
surfaces resemble molecular bar codes (Fig. 2).

Alpha‑synuclein Amyloid Structural 
Diversity and Differential Tropism 
and Seeding

The amino acid residues and peptide chains that are exposed 
at the growing tips of the fibrils define the rate at which they 
elongate by incorporation of monomeric alpha-synuclein 
molecules in compatible conformation(s). Those exposed 
to the solvent on the sides of alpha-synuclein fibrils and 
their spatial distribution determine what membranous com-
ponents, in particular at the plasma membrane, they can 
interact with. The presence, identity, and density of those 
receptors at the surface of neuronal cells define whether 
one amyloid fibrillar form of alpha-synuclein can bind to a 
given cell and the tropism of the fibrils toward those cells. 
These receptors are the extracellular matrix, phospholip-
ids, and membrane proteins. The amino acid residues and 
peptide chains that are exposed on the sides of structurally 
distinct fibrils also define whether alpha-synuclein may be 
post-translationally modified and, as a consequence, their 
interactomes that depend on post-translational modifica-
tions. Finally, the amino acid residues and peptide chains 
that are exposed on the sides of alpha-synuclein amyloids 

Fig. 1  Structure of the amyloid core of the different fibrillar poly-
morphs alpha-synuclein forms under different experimental condi-
tions and post-translational modifications. The structure of fibrillar 
alpha-synuclein obtained by solid-state NMR (pdb ID# 2n0a [30] 
is represented on the top. The structures of full-length or truncated 
wild type or mutant alpha-synuclein derived from cryo-electron 

microscopy are represented on the two bottom lines (PDB id# 6cu7 
[24, 25], 6h6b [22], 6flt [22], 6a6b [24, 25], 6cu8 [24, 25], 6sst, 6ssx 
[23], 6l1t [31]. The respective pdb identities are given. The identity 
of the amino acid residues located at the N- and C-terminal sides of 
alpha-synuclein molecule within the resolved fibrillar structures are 
indicated
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determine with what efficiency they are degraded by the 
cellular clearance machinery and/or extracellular proteases 
while those exposed at their growing ends define the rate at 
which incorporated alpha-synuclein molecule is lost from 
their tips.

Alpha-synuclein fibrils binding to the cell membrane have 
been shown to affect membrane fluidity and geometry/curva-
ture [32]. The lateral diffusion of alpha-synuclein fibrils in 
the plane of the plasma membrane together or independently 
of membranous components such as receptors, channels, and 
adhesion molecules, contributes to the build-up of large 
fibrillar clusters and the redistribution and/or coalescence 
of protein partners at the surface of the cell [30–32, 35]. The 
plasma membrane interactome of a single fibrillar alpha-
synuclein polymorph has been extensively assessed allowing 
the identification of receptors at neuronal cells surfaces such 
as α3 subunit of neuronal sodium/potassium pump, agrin, 
apolipoprotein E, catenin delta-2, glypicans, liprin, neurexin 
subunits, Na33–36+/  K+-transporting ATPase, amyloid β 
precursor-like protein 1, voltage-dependent anion-selective 
channel protein, and the glucose related protein of 78 kDa 
[34, 37–39]. Assessment of the interaction of structurally 
distinct alpha-synuclein fibrillar polymorphs with neuron 
membranes revealed differential binding and redistribution 
of the synaptic α3 subunit of neuronal sodium/potassium 
pump, NMDA, and AMPA receptors, thus demonstrating the 
importance of amino acid residues and peptide chains consti-
tuting structurally distinct alpha-synuclein fibril sides [35].

Structurally distinct alpha-synuclein fibril differential 
binding to neurons appears related to differential seeding. 
The fibrillar polymorph that bound best seeded to the high-
est extent [35]. Seeding of endogenous alpha-synuclein is 
dependent on (1) fibril intrinsic seeding propensity; (2) fibril 
binding to the plasma membrane; (3) uptake of the fibrils, 
mostly by endocytosis; and (4) fibril escape from the endo-
lysosomal compartment and/or resistance to degradation. 

The distinct fibrillar alpha-synuclein strains were frag-
mented to an average length of 40–50 nm (compatible with 
endocytosis) in Shrivastava et al. [35] so that differential 
uptake does not account for the different seeding propensi-
ties. Thus, differential seeding reflects either differential (1) 
binding that has been demonstrated as indicated above, (2) 
resistance to the cellular clearance machinery and/or escape 
from the endo-lysosomal compartment, or (3) growth rates 
of structurally distinct alpha-synuclein fibrils via recruitment 
of endogenous monomeric alpha-synuclein at rates highly 
dependent on the abundance of the conformation that can 
establish highly complementary interactions with their ends 
within neurons. All of the processes listed above depend 
on the structure and surfaces of distinct alpha-synuclein 
amyloids.

Besides the increased seeding reported in neurons overex-
pressing alpha-synuclein after SNCA gene duplication/tripli-
cation or mutations in SNCA, differential seeding appears to 
depend on SNCA gene expression level in neuronal cell pop-
ulations. Hippocampal and dopaminergic neurons express 
for instance alpha-synuclein to the highest extent while the 
expression levels are low in striatal neurons and oligoden-
drocytes [40–42].

Alpha‑Synuclein Amyloid Structural 
Diversity at the Synapses and Within 
Neuronal Cell Cytosol

Synapses are dynamic structures that constantly remodel in 
an activity and signaling manner [43]. An alpha-synuclein 
fibrillar amyloid-dependent redistribution of synaptic mem-
brane proteins was reported [35] suggesting differential sign-
aling between neurons and neuronal network dysfunction 
[44].

Fig. 2  The surfaces of different fibrillar polymorphs that result from 
the highly ordered pile up of alpha-synuclein molecules within fibril-
lar assemblies define a molecular bar code. The structures used to 
illustrate the different surfaces are 6sst, 6ssx [23] viewed from top 

(left) and side (middle left). Basic residues are in blue, acidic residues 
in red, and uncharged residues in green. In the bar codes, basic and 
acidic residue piles are represented by thick and thin lines, respec-
tively (two panels on the right)
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After take up by neuronal cells, structurally distinct 
alpha-synuclein amyloids interact with cytosolic compo-
nents ranging from organelles to proteins whose nature, as 
for membranous proteins, is dictated by fibril surfaces. Thus, 
different alpha-synuclein fibrillar polymorphs redistribute 
and or trap into a non-functional state different partner pro-
teins. They also compromise to different extents the integrity 
of intracellular membranous compartments [44–49]. In addi-
tion, alpha-synuclein amyloid structure and the probability 
with which the tertiary structures compatible with fibril ends 
are populated define the rate at which functional monomeric 
alpha-synuclein is exhausted in neurons upon elongation and 
multiplication of the fibrils and contribute to the speed at 
which pathology progresses with time.

Relationship Between Alpha‑Synuclein 
Amyloid Fibril Diversity and the Nature 
of Pathology

Intracerebral or systemic injections of structurally distinct 
alpha-synuclein amyloids into experimental animals gave 
rise to different neuropathology with features that resem-
ble Parkinson’s disease (PD) and multiple system atrophy 
(MSA) [50]. Structurally distinct alpha-synuclein fibrils 
seeded the aggregation of their counterparts to different 
extents and spread differentially within the central nervous 
system yielding distinct propagation patterns [51]. Addi-
tional evidences supporting a relationship between alpha-
synuclein amyloid fibril diversity and the nature of pathology 
come from methods where pathogenic alpha-synuclein-rich 
aggregates from the central or peripheral nervous system 
of patients suffering from different synucleinopathies were 
used to seed the aggregation of monomeric alpha-synuclein 
in test tubes. No seeding was observed under this experi-
mental setup when tissue homogenates from control patients 
were used. Seeded aggregation occurred when equivalent 
tissues from PD, MSA, and DLB patients were used. The 
resulting, templated, alpha-synuclein fibrils exhibited dis-
tinct disease-specific structural features [52–55]. Thus, as 
described in this short review, the structures alpha-synuclein 
molecules adopt within the amyloid fibrils this protein form 
dictate the scaffold, e.g., the shape of the fibrils as well as 
the amino acid stretches exposed on their surfaces. The latter 
define their interactomes. The full interactomes of structur-
ally distinct alpha-synuclein pathogenic amyloids whether 
in the cytoplasm or at the plasma membrane are far from 
being known. A number of extracellularly exposed mem-
branous components have been identified. The presence 
and abundance of these proteins on the surface of neuronal 
cells define the tropism of distinct alpha-synuclein amyloids, 
propagating in a prion-like manner, for different neuronal 
cell populations within the central nervous system. In other 

words, their target cell populations. Further identification of 
the plasma membrane interactomes of fibrillar alpha-synu-
clein polymorphs will bring additional insights into their 
tropism for different neuronal cell populations.

Alpha‑Synuclein‑Rich Inclusions 
in Oligodendrocytes in MSA

Alpha-synuclein-rich deposits in oligodendrocytes are 
observed in the brain of patients suffering from MSA besides 
the pathological inclusions within neurons that character-
ize all synucleinopathies. The origin of these oligodendro-
glial inclusions (GCIs) is as yet unknown. They have been 
hypothesized to result from the uptake of aggregated alpha-
synuclein, released from neurons, by oligodendrocytes, or 
by overexpression of SNCA mRNA in pathological condition 
specific to MSA [56, 57]. For long, mature oligodendrocytes 
have been considered to lack alpha-synuclein [58–60]. Solid 
evidence for the presence of SNCA mRNA in oligodendro-
cytes has been brought suggesting that alpha-synuclein may 
be expressed in these cells [40]. It is nonetheless unclear 
whether alpha-synuclein expression level within oligo-
dendrocytes exceeds the critical concentration for de novo 
aggregation of the protein. The exogenous origin of GCI is 
thus to be considered. Oligodendrocytes have been shown to 
bind and take up exogenous fibrils [44, 61]. Different neu-
ronal cells have been shown to process exogenous fibrils to 
different extents [62], and different strains have been shown 
to bind neuronal cells and seed endogenous alpha-synuclein 
to different levels. Thus, oligodendrocytes may take up and 
accumulate aggregated alpha-synuclein because of their 
inability to degrade the aggregates. As indicated above, this 
is expected to have deleterious consequences for oligoden-
drocytes because of the redistribution of plasma membrane 
proteins at the surface of those cells and the sequestering of 
oligodendroglial cytosolic proteins. This is not the only plau-
sible scenario. Indeed, endogenous alpha-synuclein seeding 
has been correlated to upregulation of SNCA expression in 
neurons [63]. This is where the discovery of SNCA mRNA 
in oligodendrocytes and the finding that alpha-synuclein is 
able to form different strains become crucial. Indeed, it is not 
unreasonable to envisage differential processing of distinct 
alpha-synuclein strains in oligodendrocytes. It is further 
reasonable to conceive exogenous strain-mediated seeding 
of endogenous oligodendroglial alpha-synuclein despite the 
low levels of the proteins within those cells. Such a scenario 
would lead to the persistence and/or growth of GCIs. Alter-
natively, as the intracellular conditions within oligodendro-
cytes are different from those in other neuronal cells, take up 
of pathogenic alpha-synuclein aggregates by oligodendro-
cytes and the yet to be demonstrated upregulation of SNCA 
expression within these cells may yield novel strains [64].
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Conclusion

The robustness of the evidences for the existence of alpha-
synuclein aggregates with distinct structures and/or char-
acteristics in different synucleinopathies is increasing [26, 
52–55, 63, 65, 66]. Direct or indirect interactors of aggre-
gated alpha-synuclein within those pathogenic deposits 
are also being identified [63, 67–76]. These studies and 
the very complex results they yield are crucial for under-
standing the onset and differential progression of distinct 
synucleinopathies.

For simplicity, this review was focused on findings 
supporting the structure-pathology relationship that was 
derived from experiments performed mostly in vitro with 
pure structurally distinct alpha-synuclein fibrillar assem-
blies. The artificial approaches this short review focused 
on show that the mechanism of alpha-synuclein aggrega-
tion into distinct fibrillar assemblies and the molecular 
processes driven by the differential interactions of the 
resulting fibrils are at the origin of a sequential delete-
rious scenario. Indeed, it has been established that the 
binding of structurally distinct alpha-synuclein amyloids 
to neuronal cells plasma leads to differential redistribution 
of essential membrane proteins, synaptic remodeling, and 
impaired neuronal activity. Structurally different alpha-
synuclein fibrils further trigger noxious changes with the 
differential seeded aggregation of endogenous alpha-synu-
clein that leads to differential loss of function of cytosolic 
proteins after their trapping within the pathogenic aggre-
gates. The latter also compromises mitochondrial function 
[44, 77–79].

Pastas illustrate in realistic manner the molecular pro-
cesses described in this review (Fig. 3). Pastas are made of 
the same component, most often cereals and predominantly 
durum wheat. The pasta named spaghetti differs in shape 
from linguine, vermicelli, fusilli, penne, rigatoni, macheroni, 
etc.… The different shapes of pastas define how they interact 
with the environment they face, e.g., the sauce they are into. 
Some interact very efficiently with the sauce with high bind-
ing, others much less efficiently. The properties of different 
sauces also play a critical role in their differential interaction 
with pastas exhibiting different shapes.
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