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Abstract
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently 
associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member 
of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant 
in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics 
and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to 
impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. 
In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malfor-
mations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein 
expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to 
cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed 
developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of 
the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, 
and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results 
unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the 
NAV2 gene in brain and cerebellar development across species.

Keywords NAV2 · Cerebellar hypoplasia · Cerebellar cortical dysplasia · Neuron migration · Axon elongation, Brain 
malformation

Introduction

In humans, development of the cerebellum begins around the 
ninth week of gestation and continues postnatally following 
highly orchestrated processes that involve a series of com-
plex morphogenic events [1]. These events are tightly regu-
lated by intra- and extra-cellular molecular pathways, which 

promote and regulate neuronal proliferation, differentiation, 
and migration, resulting in the formation of a foliated and 
lobulated structure that plays a key role in motor and cogni-
tive functions [2]. Acquired or genetic disruptions that impair 
the complex regulatory machinery of cerebellar development 
may result in a broad array of diverse congenital anomalies fre-
quently associated with neurodevelopmental disorders (NDDs) 
[3]. Among these, cerebellar vermis hypoplasia is the most 
common, often representing a non-specific finding in a large 
proportion of individuals affected with intellectual disability 
[4]. In contrast, cerebellar dysplasia is very rare and is often 
part of a more complex brain malformation [5]. Despite the 
significant advances in our understanding of the molecular 
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basis of cerebellar malformations, roughly half of individuals 
with cerebellar hypoplasia remain genetically undiagnosed [6].

The NAV2 gene (MIM: 607,026) encodes the Neuron 
Navigator 2 protein, a member of the Neuron Navigator 
protein family that is abundantly expressed in the develop-
ing central nervous system (CNS) [7, 8] and known to affect 
cytoskeletal dynamics [9]. NAV2 was first identified as an 
all-trans retinoic acid responsive gene in human neuroblas-
toma SH-SY5Y cell line [10, 11], having pivotal functions 
in neurite outgrowth and axon elongation [9]. Homologs to 
NAV2 are present in animal models such as Drosophila (sick) 
and Caenorhabditis elegans (unc-53) and are well known to 
regulate cell migration, neurite outgrowth, and axon elonga-
tion [12, 13]. Notably, transgene expression of the human 
full-length NAV2 was able to rescue the mechanosensory 
neuron axon elongation defects in the unc-53 mutant [9]. 
The critical role of NAV2 in neuronal migration and axon 
elongation has also been observed in the hypomorphic Nav2 
mutant mice that display ataxia due to defects in the develop-
ment of cerebellar vermis, characterized by reduced cerebel-
lar granule cell migration and impaired axonal outgrowth 
[14]. Despite robust evidence underscoring the importance 
of NAV2 in CNS development and function in both ver-
tebrate and invertebrate models, no patients have been 
reported with mutations in NAV2. To explore whether Neu-
ron Navigator 2 affects human brain and cerebellum devel-
opment and other phenotypes, we screened (whole or clini-
cal) exome sequencing (ES) data from individuals affected 
with (sporadic) molecularly undetermined cerebellar dys-
plasia for de novo or biallelic variants in the NAV2 gene. 
This led to the identification of compound heterozygous 
truncating variants in NAV2 in a female individual affected 
with developmental delay and a complex brain malforma-
tion including vermian hypoplasia and cerebellar cortical 
dysplasia. Cellular studies in this patient fibroblasts showed 
decreased and aberrant NAV2 transcripts and proteins. Cell 
migration assays on patient cells link NAV2 deficiency to 
perturbed migration processes. The comparison of Nav2 
hypomorphic mouse histopathology and patient neuroim-
aging features revealed strikingly overlapping brain and cer-
ebellar findings in humans and mice. Moreover, the NAV2 
ortholog in flies, sick, is required for proper mushroom body 
development as well as proper motor and neurobehavioral 
functions, thus unveiling a critical role of NAV2 for brain 
development across different species.

Materials and Methods

Discovery Cohort

We screened for biallelic and/or de novo variants in NAV2 
genomic datasets part of the GIGA (Gaslini IIT Genomic 

Alliance) and the SYNaPS study group consortia (which 
are involved in the genetic investigation of rare undiag-
nosed pediatric neurodevelopmental disorders) that include 
ES data of about 30,000 families; furthermore, we interro-
gated publicly available databases, including DECIPHER 
(https:// www. decip herge nomics. org/), LOVD (https:// www. 
lovd. nl/), and the Matchmaker Exchange platform Gen-
eMatcher[15]. Written informed consent for patients who 
underwent ES was obtained under protocols approved by 
local institutional review boards. We only included cases 
with detailed clinical phenotyping and available brain imag-
ing. We also excluded cases with a prior genetic diagnosis or 
an established candidate disease-causing variant. No de novo 
variants were identified in NAV2 and a fully segregating 
biallelic variant was found in a patient that was genetically 
investigated at Baylor Genetics Laboratories and previously 
submitted to GeneMatcher. In this patient, no pathogenic or 
candidate variants in any of the known disease genes were 
found, and clinical trio ES led to the identification of com-
pound heterozygous variants that should cause early trun-
cations in the NAV2 transcripts/proteins that were initially 
classified of uncertain significance. Since this gene was not 
associated with human disease, the family was subsequently 
enrolled in the Undiagnosed Diseases Network (UDN) to 
further explore the molecular etiology of her symptoms.

Exome Sequencing and Variant Analysis

Clinical ES was performed on DNA isolated from periph-
eral blood of affected patients and their parents when avail-
able, as previously described [16, 17]. Sequencing data were 
processed using commercial tools for the execution of the 
GATK Best Practices pipeline for ES variant analysis. Exon-
level read counts, removal of duplicate reads, mean coverage 
of coding sequence regions, alignment, and variant annota-
tion were performed using analytical pipelines that include 
publicly available tools and custom scripts. We looked at 
non synonymous-exonic and splicing variants with a minor 
allele frequency ≤ 0.001 in gnomAD database. Validation, 
parental origin of the resulting variants, and family segrega-
tion studies were performed by Sanger sequencing. Variants 
were interpreted according to the ACMG criteria.

Histopathological Analysis of Mutant Nav2 Mice

To assess the role of NAV2 in both brain and cerebellar 
development, we conducted a detailed re-evaluation of the 
histopathological features of the Nav2 hypomorphic mutant 
mice that were previously published [14]. For this purpose, 
we analyzed cerebellum as well as all other brain regions 
in Nissl-stained Sects.  (30 μm) from two litter matched 
pairs of wild-type and hypomorphic Nav2 mice at 8 weeks 
of age that had been backcrossed 20 times into a C57BL/6 
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background. All animal studies were performed under an 
approved IACUC animal protocol according to institutional 
guidelines at the University of Wisconsin-Madison.

Western Blot Analysis

The fibroblast cell lysates were prepared using lysis buffer 
(50 mM Tris–Cl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% 
Triton X-100, and 5% β-mercaptoethanol) supplemented 
with a protease inhibitor cocktail (Roche). Protein concen-
tration of each sample was determined using the Bradford 
method (Bio-Rad). In total, 40 µg of total protein was dena-
tured at 95 °C and separated on 4–15% Mini-PROTEAN 
gel (Bio-Rad). The gel was transferred on to a nitrocellu-
lose membrane using Trans-Blot Turbo Transfer System and 
Trans-Blot Turbo Mini 0.2 µm Nitrocellulose Transfer Pack 
(Bio-Rad). NAV2 protein was detected using NAV2 Poly-
clonal Antibody (1:1000, PA5103968—ThermoFisher Sci-
entific) and rabbit secondary antibody (1:10,000, Millipore). 
Clarity™ Western ECL Substrate (Bio-Rad) was used for 
the detection of the signals. Image was acquired by Uvitec 
Mini HD9 (Uvitec).

RT‑PCR

Total RNA was extracted from fibroblast cells by using 
miRNeasy Mini Kit (QIAGEN) according to the manufac-
turer’s protocol. About 250 ng of total RNA was used to syn-
thetize the first-strand cDNA using iScript cDNA Synthesis 
Kit (Bio-Rad). The gene expression levels were detected by 
using EvaGreen qPCR Mastermix (Bio-Rad) and perform-
ing real-time PCR on the CFX96 C1000 Touch Real-time 
PCR system (Bio-Rad) with the following PCR conditions: 
98 °C for 30 s, followed by 39 cycles of 98 °C for 2 s and 
60 °C for 5 s, and then heating from 70 to 95 °C with either 
0.5 °C increments, 5 s/step. Primers for Nav2 (PrimerBank 
ID 350276221c1 forward: 5'-ACT GGG CCA ATC ATT ACC 
TAGC-3', reverse: 5'-CGC CAT CTG TCA CAT CTT GCT-3' 
and PrimerBank ID 350276221c3 forward: 5'-GGT CCT 
ACC GCG AGG GTA T-3', reverse: 5'-TGG CTG CGT CGG 
TTG TTA G-3') were obtained from the public database Prim-
erBank (https:// pga. mgh. harva rd. edu/ prime rbank/). Differ-
ential expression was determined by the  2−DDCT method 
using GAPDH and ATP5F1 as the internal control.

For flies, RT-PCR was performed as previously described 
[18] with the following changes. All-In-One 5X RT Master-
Mix (abm #G592), iTaq Universal SYBR Green Master Mix 
(BioRad #1,725,120), and a BioRad C1000 Touch Cycler 
were used. Primers for sick: forward: 5'- CAC AAT TTC CGA 
TGG GTG CTC-3', reverse: 5'- CCT CGG CCC AAT GGT TAC 
AT-3'; for rp49 a housekeeping gene: forward: 5'-TGT CCT 
TCC AGC TTC AAG ATG ACC ATC-3', reverse: 5'-CTT GGG 
CTT GCG CAT TTG TG-3'.

Wound Healing Assay

Fibroblasts were seeded in a culture-insert (ibidi culture-
insert 2 well, IBIDI) at a density of 2 ×  104 cells per well. 
After allowing the cells to attach and reach confluence, the 
culture-insert was removed and provided with fresh medium. 
Migration was documented by taking sequential digital pho-
tographs of the gap using an automated microscope (Nikon 
TiE). Wound area closure was then quantified with ImageJ 
software, by applying fine edges and sharpen processing 
tools and analyze particles tool.

Cell Morphology Analysis

To assess the morphology of cells, fibroblasts were 
fixed by adding 200 μl of 10% neutral buffered formalin 
(05‐01005Q, Bio‐Optica) for 5 min at room temperature. 
After three washings in phosphate‐buffered saline (PBS), 
cells were permeabilized with Triton X‐100 0.3% in PBS 
for 5 min, blocked with 1% BSA in PBS for 2 h and then 
incubated with 0.17 µM Alexa Fluor® 555 Phalloidin (Ther-
moFisher Scientific) in PBS + 1% BSA for 30 min. Cells 
were rinsed 3 × with PBS and mounted with Fluoroshield 
with 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) 
to stain cell nuclei before imaging. Image acquisition was 
performed using a laser scanning confocal microscope Leica 
SP8 (Leica Microsystems). Image analysis was performed 
using Leica and ImageJ software to detect and count cells 
with filopodia-like cell protrusions. In total, 200–250 cells 
of the donor and controls were analyzed. Data from control 
cells were pooled together for statistical analysis.

Drosophila Immunostaining

Immunostaining of fly larval and adult brains was conducted 
as described [19]. In short, the dissected samples were fixed 
in 4% paraformaldehyde (PFA) followed by blocking in 
0.2% PBST with 5% normal goat serum. Primary antibodies 
used: Mouse anti-Repo (DSHB: 8D12) 1:50, Rat anti-Elav 
(DSHB: 7E8A10) 1:500, Secondary antibodies used: Anti-
Rat-647 (Jackson ImmunoResearch, 112–605-003) 1:1000, 
Anti-Mouse-488 (Jackson ImmunoResearch, 115–545-062) 
1:1000. Samples were thoroughly washed with 0.2% PBST 
and mounted on a glass slide using Fluoromount-G (South-
ernbiotech, 0100–20). The samples were scanned using a 
laser confocal microscope (Zeiss LSM 880), and images 
were processed using ImageJ.

Drosophila Behavioral Assessment

Twelve-day-old flies were used for behavioral assessment. 
Climbing (negative geotaxis) assays were performed essen-
tially as previously described [20]. Flies were transferred to 
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a clean, empty vial and given 5–15 min to habituate before 
being tapped to the bottom of the vial and assessed for a 
negative geotaxis response. Climbing distances were meas-
ured at 15 cm in a given time (20 s as maximum). All flies 
were reared at 25 °C. Flies were transferred into a fresh vial 
every 3 days.

Heat-induced seizure assays were performed as previ-
ously described [21]. Flies were transferred to a clean vial 
and allowed to habituate for 5–15 min before the vial was 
immersed in a 42 °C water bath for 30 s. Seizures were 
defined as failure to maintain an upright posture combined 
with wing fluttering, leg twitching, and sometimes abdomi-
nal curling. The percentage of seizing flies at 30 s was cal-
culated. After immersion for 30 s, the vial was taken out of 
the water to allow recovery. The recovery time of individual 
flies to an upright posture was measured.

Drosophila stocks

The following stocks were used in this study:

Fly line Genotype Source

sickT2A−GAL4 y1 w*; Mi{Trojan-GAL4.0}
sickMI08398-TG4.0/SM6a

BDSC #76,195

sick-Df w[1118]; Df(2L)ED1303, 
P{w[+ mW.Scer\FRT.
hs3] = 3'.RS5 + 3.3'}ED1303/
SM6a

BDSC #8679

UAS-mCherry.NLS w[*];; P{w[+ mC] = UAS-
mCherry.NLS}3

BDSC #38,424

UAS-mCD8-RFP w[*]; P{y[+ t7.7] 
w[+ mC] = 10XUAS-IVS-
mCD8::RFP}attP40;

BDSC #32,219

Canton S Wild type Bellen Lab

Data Presentation and Analysis

Statistical analysis was performed using GraphPad software 
(GraphPad Prism v9.0; GraphPad Software, USA). Data 
were presented as representative images or as mean ± SEM. 
A statistical analysis of data was performed with Student’s 
t-test and/or ANOVA.

Results

Identification of NAV2 Variants and Bioinformatic 
Analyses

Stepwise filtering of ES analysis retained two compound 
heterozygous variants in NAV2 (NM_001244963.2): 
c.5179_5180delAG, p.(Leu1728Trpfs*2) and c.6757delA,p.
(Ile2253*) in a female with developmental delay and a 

diagnosis of cerebellar hypoplasia and dysplasia. Sanger 
sequencing confirmed co-segregation of the variants with 
the disease within the family. The unaffected parents and a 
healthy sibling all carry one of the two variants (Fig. 1A). 
Both variants were absent from the gnomAD database 
(https:// gnomad. broad insti tute. org) and classified as of 
unknown significance according to the ACMG criteria. 
Remarkably, NAV2 is a loss-of-function intolerant gene 
(pLI = 1) as no homozygous loss-of-function variants are 
reported in the gnomAD database (last accessed 05 May 
2021; Supplemental Table 1) [22]. Furthermore, NAV2 is 
predicted to be potentially associated with a recessive con-
dition according to a linear discriminant analysis (LDA) 
score of − 0.003 (< 0.5 corresponds to a “likely recessive” 
class) by the DOMINO algorithm [23]. Moreover, NAV2 is 
abundantly expressed in the human CNS, especially in the 
cerebellum (Fig. 1D), and it is conserved across different 
species (Fig. 1F), suggesting that loss-of-function in humans 
may have detrimental effects similar to the Drosophila, Cae-
norhabditis elegans, and mouse.

Interrogation of GeneMatcher and additional Matchmaker 
platforms for NAV2 failed to identify additional cases with 
biallelic loss-of-function variants and/or similar phenotypes. 
Finally, no biallelic loss-of-function variants in this gene 
were found in the genomic datasets of the 100 K Genome 
Project.

ES from the affected individual did not reveal patho-
genic or likely pathogenic variants in any known disease 
gene or other gene. The biallelic loss-of-function variants 
in NAV2 therefore emerged as the most likely cause for 
the disease, given the severity of the biallelic variants 
(predicted to undergo nonsense mediated decay), and 
the known role of Neuron Navigator 2 across different 
species.

Clinical and Neuroradiological Features Associated 
with Biallelic NAV2 Variants

The affected individual was the second child to healthy 
and nonconsanguineous parents of Caucasian ancestry 
(Fig. 1A, II.2). Family history was unremarkable. Mother’s 
pregnancy was complicated by oligohydramnios and ges-
tational diabetes treated with diet. Antenatal history was 
remarkable for frequent atrial ectopy, polyvalvular heart 
disease with atrioventricular valve regurgitation, and peri-
cardial effusion in the fetus. She was treated with digoxin 
for suspected supraventricular tachycardia. She was born 
by cesarean section at 38 weeks gestation. Growth param-
eters at birth indicated weight 2915 g (− 0.96SDs), length 
47.6  cm (− 1.21SDs), and occipital frontal circumfer-
ence (OFC) 33 cm (− 1.19SDs). Postnatal echocardio-
gram showed a common atrium, an unicommisural aortic 
valve with mild stenosis, bicuspid pulmonary valve with 
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mild stenosis, and mildly thickened tricuspid and mitral 
valves without stenosis. Head ultrasound showed thin 
corpus callosum with suspected vermian dysplasia. Brain 
MRI at birth showed marked hypoplasia of the corpus 
callosum with small cerebellar vermis and dysmorphic 
appearance of the pons. Renal ultrasound and EEG were 
unremarkable.

At 4 weeks of life, she presented with cardiogenic 
shock requiring cardioversion and intubation. She had 
severe global ventricular dysfunction and atrial flutter. 
At 5 weeks of age, she underwent mitral and tricuspid 
valve repair, open aortic valvotomy, and pericardial 
patch closure of secundum atrial septal defect. Her ini-
tial ophthalmological evaluation indicated possible motor 
apraxia and mild optic atrophy. Brain MRI repeated at 
3 and 6 years of age revealed marked cerebellar vermis 
hypoplasia, bilateral cerebellar foliation defects, pontine 

hypo-dysplasia, splayed thin superior cerebellar pedun-
cles with a molar tooth-like configuration, corpus cal-
losum hypodysgenesis, absent anterior commissure, 
diffuse dysgyria, agenesis of the olfactory bulbs, mild 
optic nerve hypoplasia, and enlarged dysmorphic lateral 
ventricles (Fig. 2). Cerebellar morphometry data of the 
patient were compared with normal values derived from 
an in-house database of controls [24]. The transverse cer-
ebellar diameter (89 mm), the cranio-caudal diameter of 
the vermis (27.5 mm), and the antero-posterior diameter 
of the vermis (20 mm) were below 2SD compared with 
age-matched controls. The results of volumetric compari-
son of the cerebellum of the patient with an age-matched 
healthy subject performed with the SUIT toolbox of SPM 
12 [25] are displayed in Fig. 3. She had significant motor 
delays; however, her cognitive functioning was assessed 
to be normal when assessed using Wechsler Preschool and 

Fig. 1  Clinical and genetic findings of the NAV2-related neurode-
velopmental disorder in the family of the proband. (A) Pedigree of 
the family showing the affected individual (shaded). + represents the 
reference allele. (B) Craniofacial dysmorphism of the affected sub-
ject (at the age of 3 years left panel and 7 years right panel) includ-
ing deep set eyes, upslanting palpebral fissures, bulbous nasal tip, 
thin upper lip, and dimple and broad chin. (C) Retinal fundus pho-
tograph of the right and left eyes illustrating aberrant retinal vascula-
ture with a subclinical retinal detachment in the right eye and retinal 
neovascularization left eye. Ultra-widefield fluorescein angiography 
of the right and left eyes demonstrating retinal ischemia and retinal 
neovascularization (inset). (D) RNA-seq tissue data generated by the 
Genotype-Tissue Expression (GTEx) project and reported as mean 
pTPM (protein coding transcripts per million), corresponding to the 

values of the different individual samples for respective subregion. 
Cerebellum has the highest expression (pTPM 20.4). (E) Depictions 
of the pathogenic variants p.(L1728Wfs*2) and p.(Ile2253*) and pro-
tein domains (CH, calponin homology domain; cytoskeletal interact-
ing domain or CSID; CC, coiled coil domain; AAA, AAA-ATPase 
domain; purple indicates poly-Proline, Serine, and Lysine regions). 
(F) NAV2 protein sequences of different species based on the con-
straint-based alignment tool COBALT. The red colour indicates 
highly conserved protein regions among species and blue indicates 
less conserved ones. Percent of identity (indicating the percentage of 
the orthologous sequence matching the Human sequence according to 
the Ensembl database) and the percent of similarlity have been calcu-
lated using the EMBOSS Needle tool
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Primary Scale of Intelligence (WPPSI-IV) at 3 years of 
age. She struggled with motor delays and, despite some 
improvements with physiotherapy and occupational ther-
apy, continued to need assistance with most activities of 
daily living. Her formal developmental assessment at 
the age of 6 years and 8 months revealed gross and fine 
motor delay and both receptive and expressive language 
impairment. She subsequently developed decreased vision 
in both eyes and was found to have mild optic atrophy, 
atypical chorioretinal scarring, retinal ischemia, retinal 
neovascularization, and retinal detachment (Fig. 1C). 
She subsequently had panretinal photocoagulation laser 
of both eyes. Her physical examination at 7 years of age 
showed microcephaly with OFC of 48 cm (− 2.8 SDs) 
with normal weight and height. Mild dysmorphic features 
were seen including deep-set eyes, upslanting palpebral 
fissures, bulbous nasal tip, thin upper lip vermilion, and 
dimpled and broad chin (Fig. 1B). She also had hypotonia 
and impairment of voluntary, saccadic eye movements 
(Supplemental material Videos 1, 2).

Histopathological Features of Nav2 Mutant Mice 
and Comparison with Human Phenotype

Analysis of the mouse model confirmed an overall reduction 
in cerebellar size, abnormal foliation in the I-V region along 
with impaired development of VIa and VIb/VII lobes (Fig. 4, 
lower panels, Supplemental Fig. 1D). Previously unreported 
abnormalities in other brain regions included thinning of the 

corpus callosum and a reduction in the size of the thalamus 
and hypothalamus. There were no major abnormalities of 
the cerebral cortex, brainstem, anterior commissure, and 
olfactory bulbs (Fig. 3). A detailed comparison between the 
human and mouse phenotype is summarized in Table 1 and 
depicted in Supplemental Fig. 1.

NAV2 Deficiency Perturbs Cell Migration 
and Cytoskeleton Organization

We first assessed the expression of the mutant NAV2 by 
western blot analysis on patient and control fibroblasts. 
As expected, we found an intense band corresponding to 
a molecular weight of ~ 283 kDa in total lysates from four 
different control fibroblasts that was almost totally absent in 
lysates from patient fibroblasts (Fig. 5A, B). Some faint and 
one intense bands of lower molecular weights (< 55 kDa) 
appeared in patient lysates, most likely representing pro-
tein fragments resulting from degradation of the truncated 
NAV2 protein (Fig. 5A). This finding was consistent with 
the mRNA quantification by real-time RT-PCR that showed 
a significant reduction compared to controls, indicating that 
mutant NAV2 mRNA undergoes nonsense-mediated decay 
(Fig. 5C).

We next sought to assess the effect of this severe NAV2 
deficiency on cell migration. In the wound healing assay, 
patient fibroblasts showed perturbed migration compared 
to controls, as demonstrated by the increased quantification 
of the wound area closure at different time points (Fig. 5D, 

Table 1  Phenotypic comparison 
between human and mouse 
phenotype due to NAV2 
deficiency

* Findings from McNeill et al. (2011) in the Nav2 (unc-53H2) hypomorphic mutant mouse
** Findings from Peeters et al. (2004) in the Nav2 (unc-53H2) hypomorphic mutant mouse
ND, not determined

Trait Human Mouse

Age at onset Congenital Congenital
Clinical findings Broad based gait Ataxic gait*

Developmental delay ND
Oculomotor apraxia ND
Craniofacial dysmorphism ND

Brain findings
Cerebellum Vermis hypoplasia, cerebellar 

cortical dysplasia
Hypoplasia, vermal foliation defects*

Corpus callosum Hypodysgenesis Hypodysgenesis
Anterior commissure Agenesis Normal
Pons Hypoplasia Normal
Medulla Normal Normal
Thalamus/Hypothalamus Normal Hypoplasia
Olfactory system Olfactory bulb agenesis Impaired olfactory acuity**
Eye anomalies Optic nerve hypoplasia Optic nerve hypoplasia**
Congenital heart defects Dysplastic aortic, pulmonary, 

mitral, and tricuspid valves
ND
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E). In addition, we noticed that patient-derived fibroblasts 
also displayed a peculiar morphology compared to controls, 
characterized by the presence of several cell protrusions. 
Indeed, phalloidin staining and confocal microscopy imag-
ing and analysis revealed an increased proportion of lateral 
filopodia-rich cells (Fig. 5F), a phenotype likely caused 
by abnormal cytoskeleton dynamics due to NAV2 genetic 
deficiency.

The Drosophila NAV2 ortholog, sick, is enriched 
in the developing and adult CNS and mutants are 
semi‑lethal

To determine the role of NAV in development and neuronal 
function, we explored the phenotypes associated with loss 
of the NAV orthologue in flies. The fruit fly has a single 
Neuron Navigator gene called sick, orthologous to all three 

Fig. 2  Neuroimaging features of the NAV2-related neurodevelop-
mental disorder in the proband. Brain MRI of the patient performed 
at 6 years of age (A–D) and of an age-matched control subject (E–F). 
A) Axial reformatted 3D T1-weighted images reveal abnormal cer-
ebellar foliation fissuration, more pronounced at the level of the infe-
rior cerebellar hemispheres (empty arrows). The pons is flattened and 
slightly asymmetric (dotted arrows). The superior cerebellar pedun-
cles are thinned and splayed (arrows) with associated narrowing of 
the isthmic region (arrowhead) leading to a molar tooth-like appear-
ance of the midbrain. Note the diffuse cortical dysgyria, with preva-
lent insular involvement (thick arrows), and the asymmetric enlarge-
ment of the lateral ventricles (asterisks). (B) Sagittal reformatted 3D 
T1-weighted image shows the hypoplasia and dysplasia with mild 
upward rotation of the cerebellar vermis, and prevalent involvement 
of the anterior and superior posterior lobes (empty arrows). There are 
also corpus callosum hypodysgenesis (arrow), agenesis of the anterior 
commissure (dotted arrow), narrow isthmus (arrowhead), and small 

pons (thick arrow). Note the small optic nerve chiasm. (C) Coronal 
T2-weighted image demonstrates the agenesis of the olfactory bulbs 
(arrows) and mild hypoplasia of the optic nerves (arrowheads). (D) 
Diffusion tensor imaging, axial color-coded fractional anisotropy 
(FA) maps reveal small asymmetric corticospinal tracts at the level of 
the pons (dotted arrows) and horizontal course of the superior cere-
bellar peduncles (arrows) with preservation of their decussation at the 
midbrain level (arrowhead). (E) Axial reformatted 3D T1-weighted 
images show the normal size and morphology of the cerebellar hemi-
spheres. The cerebellar folia run parallel to the calvarium (onion-like 
configuration; thick arrows). (F) Axial color-coded FA maps, magni-
fied view at 2 brainstem levels (middle pons and middle midbrain). 
Conventional color scheme: blue (inferior-superior), green (anter-
oposterior), and red (left–right). CST, corticospinal tract; MCP, mid-
dle cerebellar peduncles; SCP, superior cerebellar peduncles; SCPD, 
superior cerebellar peduncles’ decussation; SAF, somatosensory 
ascending fibers; TPF, transverse pontocerebellar fibers
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Fig. 3  Comparison of the cerebellar volumes of the patient with an 
age-matched healthy subject. (A–C) Segmentation of the cerebellar 
volumes of the patient (green maps) and of an aged-matched control 
subject (red maps) overlayed on sagittal (A), coronal (B), and axial-
reformatted (C) 3DT1-weighted images. (D–F) Volumetric recon-

structions of cerebellar segmentations of the patient (green cerebel-
lum, D), of the control subject (red cerebellum, E), and of the fusion 
of both cerebellar volumes (F) overlayed on 3D T1-weighted images. 
Note that the volume of both the cerebellar hemispheres and vermis 
of the patient is smaller compared to the age-matched control

Fig. 4  Brain and cerebellar abnormalities in the Nav2 hypomorphic 
mutant mice. Medial sagittal sections (panels a and b; panel b clos-
est to midline) from a wild-type (WT) and homozygous hypomorph 
(HOM) show an overall reduction in cerebellar size, and a reduction 
in overall development of VIa,VIb/VII with absence of the intercrural 
fissue (arrowhead) in the HOM. In other brain regions, abnormali-
ties noted in the HOM include thinning of the corpus callosum and 

a reduction in the size of the regions encompassing the thalamus/
hypothalamus (Th/Hyp). The pons and medulla appear normal in size 
in both genotypes, with the pontine nucleus (PN) and inferior olive 
(IO) shown for reference. The cortex and tectum, anterior commis-
sure (AC), and olfactory bulb showed no obvious dysmorphogenesis. 
Scale bar: 1 mm
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NAV(1/2/3) family members in humans. Based on multiple 
orthology  prediction26, sick is most orthologous to NAV2 
(DIOPT score is 9/16, Supplemental Fig. 2A). Moreover, 
both the CH and AAA domains are highly conserved in both 
Sick and NAV2 (Supplemental Fig. 2B). We previously gen-
erated sick mutants as part of the Gene Disruption  Project27. 
This allele, sickT2A−GAL4, was generated by introduction of 
an artificial exon containing a splice acceptor-T2A-GAL4-
polyA cassette between exons 10 and 11 and is predicted to 
act as strong loss-of-function mutation because of the pres-
ence of a poly-A tail (Fig. 6A, Supplemental Fig. 2C). The 
sickT2A−GAL4 allele also produces a GAL4 in the same spatial 

and temporal pattern as the sick gene reflecting the endog-
enous expression. The sickT2A−GAL4 mutants are homozygous 
lethal and but are semi-lethal (only 19.2% of flies eclose) 
when in trans to deficiency, Df(2L)ED1303 (Fig. 6B), sug-
gesting that the sickT2A−GAL4 chromosome may carry a modi-
fier. In the sickT2A−GAL4/ Df flies, the transcript levels are 
decreased to 15.2% of wild-type controls (Canton S) (Sup-
plemental Fig. 2 D).

In order to determine the expression pattern of sick, 
we generated sickT2A−GAL4; UAS-mCherry.NLS flies. The 
GAL4 drives the expression of nuclear mCherry. Third 
instar larvae exhibit robust expression of the reporter in 

Fig. 5  Cellular phenotype associated with the genetic loss of Neuron 
Navigator 2 in the NAV2 compound mutant patient. (A–C) Analysis 
of NAV2 protein and mRNA expression in fibroblasts obtained from 
4 healthy individuals and the “NAV2 patient.” (A) Representative 
Western blot experiment showing immunodetection of NAV2 (top) 
and GAPDH (bottom) in the indicated fibroblasts lysates. (B) Bar 
graph showing the densitometric analysis of the upper band, corre-
sponding to the full-length protein (2830 KDa); data are normalized 
for GAPDH expression. N = 3, *** p < 0.001 (ANOVA with Tukey’s 
post hoc test). (C) Bar graph showing NAV2 mRNA quantification 

by real time PCR. N = 3, ** p < 0.01 (ANOVA with Tukey’s post hoc 
test). (D and E) Analysis of cell migration by wound healing assay. 
Representative images (D) and analysis (E) of wounded areas of con-
fluent fibroblasts at different time points. Wound edges, detected by 
image segmentation analysis, are outlined in green. N = 3; * p < 0.05, 
** p < 0.01. (F) Representative image and summary graph showing 
results from cell morphology analysis. Fibroblasts were fixed, stained 
with phalloidin (red) and Hoechst 33,342 (blue) and analyzed by con-
focal microscopy. Scale bar = 10 µm. 200–250 cells/donor were ana-
lyzed. * p < 0.05
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the CNS with sparse expression in the trachea (Fig. 6C). 
To reveal the projections of the neurons that express 
sick, we crossed the sickT2A−GAL4 mutants to a membrane 
bound reporter (UAS-mCD8::RFP). In the third instar 
larvae, sick is enriched in motor neurons of the ven-
tral nerve cord as well as the mushroom body neurons 
(Fig. 6D). In the adult brain, sick is widely expressed, but 
it shows notable enrichment in the optic lobes, mushroom 
body, and antennal mechanosensory and motor center of 
the fly brain (Fig. 6E). To determine if sick is restricted 
to neurons or is also present in the glia, we crossed 
the sickT2A−GAL4 mutants to UAS-mCherry.NLS and 

examined third instar larva brain and adult brains that 
are co-stained with nuclear markers for neurons (Elav) 
and glia (Repo). As shown in Supplemental Fig. 3, sick 
is expressed in both neurons and glia in the developing 
CNS (Supplemental Fig. 3A) and adult brain (Supple-
mental Fig.3 B).

Surviving Sick Mutants Show Climbing 
and Heat‑Induced Seizures

A previous study documented that sick mutants exhibit 
axonal growth defects during development [13], but nothing 

Fig. 6  The NAV2 ortholog in 
Drosophila, sick, is expressed 
in brain and mutants are semi-
lethal with motor defects and 
heat-sensitive seizure-like 
behavior. (A) Schematics of 
sickT2A−GAL4 acting as a gene 
trap: the insertion of SA-T2A-
GAL4-polyA cassette leads to 
generation of truncated Sick 
and expression of GAL4 under 
the control of the regulatory 
sequences of the sick. (B) 
Complementation tests of 
sickT2A−GAL4 with a correspond-
ing deficiency (Df(2L)ED1303). 
(C–E) Gene expression of sick 
based on sickT2A−GAL4; UAS-
mCD8::RFP flies. Whole third 
instar larva (C), third instar 
larval brain (D), and adult brain 
(E) are shown. Note expression 
in the mushroom bodies (upper 
panel, dashed lines), olfactory 
glomeruli (upper panel, dashed 
ellipse), and antennal mecha-
nosensory and motor center 
(upper panel, dashed ellipse). 
Scale bars = 100 µm. (F) Climb-
ing assessment of sickT2A−GAL4/
Df flies in a negative geotaxis 
assay reveals motor deficits in 
sick mutants that are 12 days 
old. N are shown within the 
bars. Unpaired t tests, **** 
p < 0.0001. (G) sick mutants 
display heat-induced seizures in 
a 42 °C water bath (30 s). (H) 
Time to recover. N are shown 
within the bars. Unpaired t tests, 
*** p < 0.001, **** p < 0.0001
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was reported in adult flies. To determine the functional con-
sequences of loss of sick in adult flies, we conducted neu-
robehavioral assessments. We found that the climbing abil-
ity of 12-day-old sickT2A−GAL4/Df flies is severely impaired 
compared to control flies (Fig. 6F). These data indicate that 
the motor function of sick mutant flies is impaired.

Hyperthermia increases the intrinsic excitability of both 
excitatory and inhibitory neurons, and the dysregulated syn-
aptic activity can induce febrile seizures [21, 26, 27]. To 
assess if loss of sick also leads to altered synaptic activity, 
we performed heat induced seizures by subjecting flies to 
42 °C for 30 s [21]. We observed that sickT2A−GAL4/Df flies 
exhibit a rapid onset of seizure like behavior (Supplemen-
tal material Videos 3, 4). Over 75% of sickT2A−GAL4/Df flies 
exhibit heat induced seizures and they require about 15 s 
to recover once returned to room temperature (Fig. 6G, H). 
Hence, the data indicate dysregulated synaptic activity in 
sick mutants.

Discussion

In this study, we report biallelic truncating variants in 
NAV2 associated with a novel human neurodevelopmental 
phenotype characterized by vermis hypoplasia and cer-
ebellar cortical dysplasia as well as other brain malfor-
mation. The NAV2 gene encodes multiple transcripts and 
proteins based on alternate promoter usage and splicing. 
The NAV2 transcript variant 5 encodes the largest isoform 
of 2488 amino acids. Full-length NAV2 proteins contain 
several putative functional domains, including a calponin-
homology (CH) domain at the N-terminus, several coiled-
coil regions, a cytoskeletal interacting domain (or CSID), 
and an ATP/GTP nucleotide-binding site (AAA-domain) 
at the C-terminus (Fig. 1E). We functionally investigated 
the impact of compound heterozygous variants identified 
in this study [NM_001244963.2: p.(L1728Wfs*2) and 
p.(Ile2253*)] on a cellular level, and showed that the vari-
ants cause an almost total absence of mRNA production 
and protein expression in patient-derived fibroblasts, sug-
gesting that they cause a severe loss of function.

The brain and cerebellar phenotype reported in this 
study is partially overlapping to the one observed in the 
Nav2 mouse model. Indeed, hypomorphic mutant mice 
lacking the full-length Nav2 transcript exhibit ataxia with 
reduced volume and abnormal foliation of the vermis 
mostly affecting folia VI-VII [14]. Nav2 hypomorphic 
mutants show the same cerebellar malformations after 
20 backcrosses as described previously by McNeill et al. 
(2011). In both the earlier and present study, hypoplasia of 
folia VI-VII and loss of the intercrural fissure were found 
in all Nav2 mutants and none of the wild-type controls 
(Fig. 3, Supplementary Fig. 1 and McNeill et al., 2011). In 

the earlier study, an effect on anterior folia was observed 
in 67% of Nav2 mutants but was not observed in wild-
type mice. The malformations seen in the Nav2 mutant are 
distinct from spontaneous malformations in the cerebellar 
vermis of wild-type C57BL/6 mice which largely affect 
folia VIII-IX [28, 29]. Similar to the Nav2 mutant mouse, 
our patient displays hypoplasia and dysplasia of the vermis 
with prevalent involvement of the anterior and superior 
posterior lobes. In Nav2 mutant mice, there is a delay in 
the disappearance of the external germinal layer resulting 
from impaired granule cell migration toward the interior 
of the cerebellum during development. The inability of 
granule cells to extend neurites/parallel axon fibers and 
migrate properly was observed in cultured explants and 
dissociated granule cell cultures from mutants [14]. This 
finding could explain the abnormal foliation observed in 
the patient, suggesting that abnormal granule cell migra-
tion and axonal outgrowth defects lead to cerebellar corti-
cal dysplasia.

Overall, the cerebellar features due to NAV2 genetic 
deficiency are further corroborated by our comparison 
between the histopathological analysis of the mutant mice 
and the neuroimaging features of our patient, underscor-
ing an impairment of cerebellar development predomi-
nantly affecting the vermis and the correct folia orienta-
tion. Moreover, the presence of oculomotor apraxia in the 
patient suggests disruption of cerebro-cerebellar circuits 
that are crucial for the control of voluntary eye movements. 
This is not surprising given the broad expression of NAV2 
across the entire CNS [8] and its role in the development 
of other brain structures such as cranial nerves [30]. A 
novel finding emerged from the re-evaluation of the mouse 
brain histopathological features including corpus callosum 
hypodysgenesis similar to the patient; this suggests migra-
tion and axon elongation defects of midline neuronal cir-
cuits/networks that are affected by NAV2. Interestingly, 
the patient also displayed mild optic nerve hypoplasia and 
agenesis of the olfactory bulbs and both optic nerve hypo-
plasia and impaired integrity of olfactory sensory systems 
have also been observed in the hypomorphic Nav2 mutant 
mouse [31]. Moreover, it is known that retinal ganglion 
cell axons guide the formation of an astrocytic network 
that in turn dictate the pattern of developing retinal vascu-
lature [32, 33]. Therefore, the aberrant retinal vasculature 
found in the patient may also be related to inappropriate 
ganglion cell migration during retinal development leading 
to subsequent retinal neovascularization and detachment 
later in life.

The wound healing assay in patient fibroblast cultures 
revealed a cellular migration defect. This is consistent with 
the increased staining of filopodia observed with confocal 
microscopy suggesting an alteration of cytoskeletal archi-
tecture that affects migration process. Filopodia are thin 
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membrane protrusions that sense the extracellular environ-
ment at their tips using cell surface receptors and promote 
retrograde flow of actin upon binding with external targets, 
eventually leading to different cell migration processes 
such as wound healing and neurite outgrowth [34]. How-
ever, substantial differences in terms of migration dynam-
ics and regulatory networks occur between fibroblasts and 
cerebellar granule cells [35].

It is worth mentioning that impaired proliferation may 
account for wound healing defect [36]. Since we did not spe-
cifically look at proliferation in our wound healing assay, we 
cannot rule out a possible contribution of abnormal prolif-
eration for the reduced size of the cerebellum as previously 
suggested [14].

NAV2 may act by facilitating interactions between micro-
tubules and other proteins such as neurofilaments that are 
key players in the formation and stability of growing neur-
ites, and the aberrant cytoskeleton architecture derived from 
the loss of NAV2 might lead to secondary microtubule dys-
function [9]. This hypothesis is supported by several imag-
ing features observed in the context of NAV2 deficiency 
that can be also found in individuals affected with rare 
tubulinopathies, such as cerebellar dysplasia with foliation 
defects, brainstem abnormalities, diffuse cortical dysgyria, 
olfactory bulb agenesis, and asymmetric lateral ventricles 
[37]. Importantly, only the absence of the characteristic basal 
ganglia anomalies differentiates these two conditions. This 
feature might be explained by the different expression profile 
of the NAV2 in the CNS. Indeed, brain regions with the most 
abundant expression included the developing cortex, hip-
pocampus, thalamus, olfactory bulb, and granule cells of the 
cerebellum. In contrast, expression of NAV2 in basal ganglia 
and white matter expression was largely undetectable [8]. 
Noteworthy, cerebellar cortical dysplasia is also found in 
a few other NDDs that are frequently autosomal recessive, 
such as Joubert syndrome and related disorders (JSRDs), 
Poretti–Boltshauser syndrome, muscular dystrophy (dystro-
glycanopathies), and Chudley-McCullough syndrome [4, 5]. 
In these conditions, the association with other medical issues 
and additional brainstem and/or cerebral imaging features 
may help the differential diagnosis, as presence of hearing 
loss, callosal agenesis, fronto-mesial polymicrogyria, and 
intracranial cysts in Chudley–McCullough syndrome or the 
molar tooth sign and progressive retinal, kidney, and liver 
disease in JSRDs.

Studies of the NAV2 ortholog, sick, in Drosophila show 
that it is present in both the mushroom body and the anten-
nal lobes as well as some other neurons. The mushroom 
body is widely known as the learning and memory center 
of the flies[38], whereas the antennal lobes integrate olfac-
tory information [39]. A previous study showed that Sick is 
required for axonal growth of mushroom body neurons and 
that its loss caused defective mushroom body and ellipsoid 

bodies [13]. It is worth noticing that the core architecture 
of mushroom body circuit is strikingly similar to that of the 
vertebrate cerebellum [40, 41]. Moreover, the sick mutants 
display motor deficits indicating Sick function is important 
for proper motor output in flies. Taken together, these find-
ings further underscore the conserved function of NAV2/Sick 
in brain and cerebellar development throughout several 
species.

While the affected subject did not display seizure, the 
sick mutant developed heat-induced seizure. Since the 
homeostatic plasticity of the brain requires proper wiring 
of circuits containing excitatory and inhibitory neurons, 
dysregulated synaptic activity can cause susceptibility to 
febrile seizures [21, 26, 27]. Specifically in the sick mutant 
flies, the inhibitory GABAergic neurons in the mushroom 
body may not reach their target neurons to inhibit their 
excitabilities properly [13, 42]. This may be one of the 
reasons why they are vulnerable to heat-induced seizures. 
Further reports of affected subjects will elucidate whether 
epilepsy may be part of the NAV2-related phenotypic 
spectrum.

Interestingly, the finding of congenital heart defects in 
the affected individual reported in this study may indicate 
a potential role of NAV2 also in the cytoskeleton dynam-
ics of cardiac myocytes. This may be consistent with the 
observation of wide migration defects in the Caenorhab-
ditis elegans unc-53 mutant, with abnormal developing 
myoblasts and excretory cells in addition to cells from 
the ventral nerve  cord45. Notably, congenital anomalies 
beyond the CNS have not been assessed before in the 
hypomorphic Nav2 mouse model. However, additional 
(unidentified) genetic causes underlying the congenital 
heart defects in our patient cannot be excluded, as clinical 
ES would not cover intronic variants or complex genomic 
rearrangement.

Conclusion

In conclusion, we report a novel neurodevelopmental dis-
order characterized by severe impairment of brain and 
cerebellar development and found its association with 
biallelic loss-of-function variants in NAV2. The neu-
roradiological phenotype of the affected individual is 
characterized by a complex brain malformation with a 
peculiar combination of cerebellar and brainstem malfor-
mations including vermian hypoplasia, extensive foliation 
defects, pontine hypo-dysplasia, and splayed thin supe-
rior cerebellar peduncles with a molar tooth-like con-
figuration. Through functional analyses in human cells, 
the Nav2 hypomorphic mouse, and the NAV2 ortholog in 
flies (sick), our study highlights a potentially conserved 
role of NAV2 in regulating neuronal migration and CNS 
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development across different species. The identification 
of other affected individuals carrying biallelic variants in 
NAV2 will be fundamental to confirm the implication of 
this gene in the phenotype we observed and to characterize 
the clinical spectrum of the disease.
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