Skip to main content

Advertisement

Log in

Cerebellar Microstructural Abnormalities in Parkinson’s Disease: a Systematic Review of Diffusion Tensor Imaging Studies

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Correction to this article was published on 07 April 2022

This article has been updated

Abstract

Diffusion tensor imaging (DTI) is now having a strong momentum in research to evaluate the neural fibers of the CNS. This technique can study white matter (WM) microstructure in neurodegenerative disorders, including Parkinson’s disease (PD). Previous neuroimaging studies have suggested cerebellar involvement in the pathogenesis of PD, and these cerebellum alterations can correlate with PD symptoms and stages. Using the PRISMA 2020 framework, PubMed and EMBASE were searched to retrieve relevant articles. Our search revealed 472 articles. After screening titles and abstracts, and full-text review, and implementing the inclusion criteria, 68 papers were selected for synthesis. Reviewing the selected studies revealed that the patterns of reduction in cerebellum WM integrity, assessed by fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity measures can differ symptoms and stages of PD. Cerebellar diffusion tensor imaging (DTI) changes in PD patients with “postural instability and gait difficulty” are significantly different from “tremor dominant” PD patients. Freezing of the gate is strongly related to cerebellar involvement depicted by DTI. The “reduced cognition,” “visual disturbances,” “sleep disorders,” “depression,” and “olfactory dysfunction” are not related to cerebellum microstructural changes on DTI, while “impulsive-compulsive behavior” can be linked to cerebellar WM alteration. Finally, higher PD stages and longer disease duration are associated with cerebellum white matter alteration depicted by DTI. Depiction of cerebellar white matter involvement in PD is feasible by DTI. There is an association with disease duration and severity and several clinical presentations with DTI findings. This clinical-imaging association may eventually improve disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Kalia LV, Lang AE. Parkinson's disease. Lancet (London, England). 2015;386(9996):896–912.

    Article  CAS  Google Scholar 

  2. Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson's disease. Rev Neurol. 2016;172(1):14–26.

    Article  CAS  PubMed  Google Scholar 

  3. Lefaivre SC, Brown MJN, Almeida QJ. Cerebellar involvement in Parkinson’s disease resting tremor. Cereb Ataxias. 2016;3(1):13.

    Article  Google Scholar 

  4. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284–303.

    Article  CAS  PubMed  Google Scholar 

  5. Bares M, Apps R, Kikinis Z, Timmann D, Oz G, Ashe JJ, et al. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder held in Brno, Czech Republic, October 17th, 2013. Cerebellum (London, England). 2015;14(2):142–50.

    Article  Google Scholar 

  6. Haghshomar M, Dolatshahi M, Ghazi Sherbaf F, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Disruption of inferior longitudinal fasciculus microstructure in Parkinson's disease: a systematic review of diffusion tensor imaging studies. Front Neurol 2018;9:598-.

  7. Shen B, Pan Y, Jiang X, Wu Z, Zhu J, Dong J, et al. Altered putamen and cerebellum connectivity among different subtypes of Parkinson's disease. CNS Neurosci Ther. 2020;26(2):207–14.

    Article  PubMed  Google Scholar 

  8. Mirdamadi JL. Cerebellar role in Parkinson's disease. J Neurophysiol. 2016;116(3):917–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu T, Hallett M. The cerebellum in Parkinson's disease. Brain. 2013;136(Pt 3):696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roostaei T, Nazeri A, Sahraian MA, Minagar A. The human cerebellum: a review of physiologic neuroanatomy. Neurol Clin. 2014;32(4):859–69.

    Article  PubMed  Google Scholar 

  11. Rolland AS, Tande D, Herrero MT, Luquin MR, Vazquez-Claverie M, Karachi C, et al. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J Neurochem. 2009;110(4):1321–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis SJG, O’Callaghan C, Shine JM, Hornberger M, Balsters JH, Halliday GM. Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity. Brain. 2016;139(3):845–55.

    Article  PubMed  Google Scholar 

  13. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Article  CAS  PubMed  Google Scholar 

  14. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7-8):435–55.

    Article  PubMed  Google Scholar 

  15. Lebel C, Treit S, Beaulieu C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR in biomedicine.e3778-n/a.

  16. Ghazi Sherbaf F, Aarabi MH, Hosein Yazdi M, Haghshomar M. White matter microstructure in fetal alcohol spectrum disorders: a systematic review of diffusion tensor imaging studies. Hum Brain Mapp. 2018.

  17. Acosta-Cabronero J, Nestor PJ. Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations. Front Aging Neurosci. 2014;6:266.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mahlknecht P, Krismer F, Poewe W, Seppi K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 2017;32(4):619–23.

    Article  CAS  Google Scholar 

  19. Ghazi Sherbaf F, Mojtahed Zadeh M, Haghshomar M, Aarabi MH. Posterior limb of the internal capsule predicts poor quality of life in patients with Parkinson's disease: connectometry approach. Acta Neurol Belg. 2019;119(1):95–100.

    Article  PubMed  Google Scholar 

  20. Wells GA, Shea B, O’Connell Da, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford; 2000.

  21. Disease MDSTFoRSfPs. The Unified Parkinson's Disease Rating Scale (UPDRS): status and recommendations. 2003;18(7):738-50.

  22. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020–8.

    Article  PubMed  Google Scholar 

  23. Marsili L, Rizzo G, Colosimo C. Diagnostic criteria for Parkinson’s disease: from James Parkinson to the concept of prodromal disease. 2018;9(156).

  24. Barbagallo G, Caligiuri ME, Arabia G, Cherubini A, Lupo A, Nistico R, et al. Structural connectivity differences in motor network between tremor-dominant and nontremor Parkinson's disease. Hum Brain Mapp. 2017;38(9):4716–29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Canu E, Agosta F, Markovic V, Petrovic I, Stankovic I, Imperiale F, et al. White matter tract alterations in Parkinson's disease patients with punding. Parkinsonism Relat Disord. 2017;43:85–91.

    Article  PubMed  Google Scholar 

  26. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T, et al. Brain structural and functional connectivity in Parkinson's disease with freezing of gait. Hum Brain Mapp. 2015;36(12):5064–78.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fling BW, Cohen RG, Mancini M, Nutt JG, Fair DA, Horak FB. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain. 2013;136(Pt 8):2405–18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gu Q, Huang P, Xuan M, Xu X, Li D, Sun J, et al. Greater loss of white matter integrity in postural instability and gait difficulty subtype of Parkinson's disease. Can J Neurol Sci. 2014;41(6):763–8.

    Article  PubMed  Google Scholar 

  29. Lee E, Lee JE, Yoo K, Hong JY, Oh J, Sunwoo MK, et al. Neural correlates of progressive reduction of bradykinesia in de novo Parkinson's disease. Parkinsonism Relat Disord. 2014;20(12):1376–81.

    Article  PubMed  Google Scholar 

  30. Lenfeldt N, Hansson W, Larsson A, Nyberg L, Birgander R, Forsgren L. Diffusion tensor imaging and correlations to Parkinson rating scales. J Neurol. 2013;260(11):2823–30.

    Article  PubMed  Google Scholar 

  31. Luo C, Song W, Chen Q, Yang J, Gong Q, Shang HF. White matter microstructure damage in tremor-dominant Parkinson's disease patients. Neuroradiology. 2017;59(7):691–8.

    Article  PubMed  Google Scholar 

  32. Peterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB. Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze. J Neurol Neurosurg Psychiatry. 2015;86(7):786–92.

    Article  PubMed  Google Scholar 

  33. Vercruysse S, Leunissen I, Vervoort G, Vandenberghe W, Swinnen S, Nieuwboer A. Microstructural changes in white matter associated with freezing of gait in Parkinson's disease. Mov Disord. 2015;30(4):567–76.

    Article  PubMed  Google Scholar 

  34. Vervoort G, Leunissen I, Firbank M, Heremans E, Nackaerts E, Vandenberghe W, et al. Structural brain alterations in motor subtypes of Parkinson’s disease: evidence from probabilistic tractography and shape analysis. PLoS ONE. 2016;11(6):e0157743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang M, Jiang S, Yuan Y, Zhang L, Ding J, Wang J, et al. Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease. J Neurol. 2016;263(8):1583–92.

    Article  CAS  PubMed  Google Scholar 

  36. Wen M-C, Heng HSE, Lu Z, Xu Z, Chan LL, Tan EK, et al. Differential white matter regional alterations in motor subtypes of early drug-naive Parkinson’s disease patients. Neurorehabil Neural Repair. 2018;32(2):129–41.

    Article  PubMed  Google Scholar 

  37. Wu JY, Zhang Y, Wu WB, Hu G, Xu Y. Impaired long contact white matter fibers integrity is related to depression in Parkinson's disease. CNS Neurosci Ther. 2018;24(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  38. Blain CR, Barker GJ, Jarosz JM, Coyle NA, Landau S, Brown RG, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67(12):2199–205.

    Article  CAS  PubMed  Google Scholar 

  39. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd NH. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging. Eur Radiol. 2013;23(6):1459–66.

    Article  PubMed  Google Scholar 

  40. Prodoehl J, Li H, Planetta PJ, Goetz CG, Shannon KM, Tangonan R, et al. Diffusion tensor imaging of Parkinson's disease, atypical parkinsonism, and essential tremor. Mov Disord. 2013;28(13):1816–22.

    Article  PubMed  Google Scholar 

  41. Abos A, Baggio HC, Segura B, Campabadal A, Uribe C, Giraldo DM, et al. Differentiation of multiple system atrophy from Parkinson's disease by structural connectivity derived from probabilistic tractography. Sci Rep. 2019;9(1):16488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lucas-Jimenez O, Ojeda N, Pena J, Diez-Cirarda M, Cabrera-Zubizarreta A, Gomez-Esteban JC, et al. Altered functional connectivity in the default mode network is associated with cognitive impairment and brain anatomical changes in Parkinson's disease. Parkinsonism Relat Disord. 2016;33:58–64.

    Article  PubMed  Google Scholar 

  43. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology. 2013;80(20):1841–9.

    Article  CAS  PubMed  Google Scholar 

  44. Koshimori Y, Segura B, Christopher L, Lobaugh N, Duff-Canning S, Mizrahi R, et al. Imaging changes associated with cognitive abnormalities in Parkinson's disease. Brain Struct Funct. 2015;220(4):2249–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kamagata K, Motoi Y, Tomiyama H, Abe O, Ito K, Shimoji K, et al. Relationship between cognitive impairment and white-matter alteration in Parkinson's disease with dementia: tract-based spatial statistics and tract-specific analysis. Eur Radiol. 2013;23(7):1946–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agosta F, Canu E, Stefanova E, Sarro L, Tomic A, Spica V, et al. Mild cognitive impairment in Parkinson's disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp. 2014;35(5):1921–9.

    Article  PubMed  Google Scholar 

  47. Baggio HC, Segura B, Ibarretxe-Bilbao N, Valldeoriola F, Marti MJ, Compta Y, et al. Structural correlates of facial emotion recognition deficits in Parkinson's disease patients. Neuropsychologia. 2012;50(8):2121–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chondrogiorgi M, Astrakas LG, Zikou AK, Weis L, Xydis VG, Antonini A, et al. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson's disease patients. Brain Imaging Behav. 2019;13(1):232–40.

    Article  PubMed  Google Scholar 

  49. Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, et al. Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease? Mov Disord. 2016;31(1):103–10.

    Article  PubMed  Google Scholar 

  50. Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, et al. Cognitive status correlates with white matter alteration in Parkinson's disease. Hum Brain Mapp. 2012;33(3):727–39.

    Article  PubMed  Google Scholar 

  51. Price CC, Tanner J, Nguyen PT, Schwab NA, Mitchell S, Slonena E, et al. Gray and white matter contributions to cognitive frontostriatal deficits in non-demented Parkinson's disease. PLoS One. 2016;11(1):e0147332-e.

    Article  CAS  Google Scholar 

  52. Theilmann RJ, Reed JD, Song DD, Huang MX, Lee RR, Litvan I, et al. White-matter changes correlate with cognitive functioning in Parkinson's disease. Front Neurol. 2013;4:37.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Diez-Cirarda M, Ojeda N, Pena J, Cabrera-Zubizarreta A, Gomez-Beldarrain MA, Gomez-Esteban JC, et al. Neuroanatomical correlates of theory of mind deficit in Parkinson's disease: a multimodal imaging study. PLoS One. 2015;10(11):e0142234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gallagher C, Bell B, Bendlin B, Palotti M, Okonkwo O, Sodhi A, et al. White matter microstructural integrity and executive function in Parkinson's disease. J Int Neuropsychol Soc. 2013;19(3):349–54.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu Z, Zhang Y, Wang H, Xu D, You H, Zuo Z, et al. Altered cerebral perfusion and microstructure in advanced Parkinson's disease and their associations with clinical features. Neurol Res. 2021;1-10.

  56. Holtbernd F, Romanzetti S, Oertel WH, Knake S, Sittig E, Heidbreder A, et al. Convergent patterns of structural brain changes in rapid eye movement sleep behavior disorder and Parkinson’s disease on behalf of the German rapid eye movement sleep behavior disorder study group. Sleep. 2021;44(3):zsaa199.

    Article  PubMed  Google Scholar 

  57. Lim JS, Shin SA, Lee JY, Nam H, Lee JY, Kim YK. Neural substrates of rapid eye movement sleep behavior disorder in Parkinson's disease. Parkinsonism Relat Disord. 2016;23:31–6.

    Article  PubMed  Google Scholar 

  58. Ford AH, Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Burn DJ, et al. Rapid eye movement sleep behavior disorder in Parkinson's disease: magnetic resonance imaging study. Mov Disord. 2013;28(6):832–6.

    Article  PubMed  Google Scholar 

  59. Chung SJ, Choi YH, Kwon H, Park YH, Yun HJ, Yoo HS, et al. Sleep disturbance may alter white matter and resting state functional connectivities in Parkinson's disease. Sleep. 2017;40(3).

  60. Gou L, Zhang W, Li C, Shi X, Zhou Z, Zhong W, et al. Structural brain network alteration and its correlation with structural impairments in patients with depression in de novo and drug-naive Parkinson's disease. Front Neurol. 2018;9:608.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang P, Xu X, Gu Q, Xuan M, Yu X, Luo W, et al. Disrupted white matter integrity in depressed versus non-depressed Parkinson's disease patients: a tract-based spatial statistics study. J Neurol Sci. 2014;346(1-2):145–8.

    Article  PubMed  Google Scholar 

  62. Prange S, Metereau E, Maillet A, Lhommée E, Klinger H, Pelissier P, et al. Early limbic microstructural alterations in apathy and depression in de novo Parkinson's disease. Mov Disord. 2019;34(11):1644–54.

    Article  PubMed  Google Scholar 

  63. Garcia-Diaz AI, Segura B, Baggio HC, Marti MJ, Valldeoriola F, Compta Y, et al. Structural brain correlations of visuospatial and visuoperceptual tests in Parkinson's disease. J Int Neuropsychol Soc. 2018;24(1):33–44.

    Article  PubMed  Google Scholar 

  64. Lee WW, Yoon EJ, Lee JY, Park SW, Kim YK. Visual hallucination and pattern of brain degeneration in Parkinson's disease. Neurodegener Dis. 2017;17(2-3):63–72.

    Article  PubMed  Google Scholar 

  65. Arrigo A, Calamuneri A, Milardi D, Mormina E, Rania L, Postorino E, et al. Visual system involvement in patients with newly diagnosed Parkinson disease. Radiology. 2017;285(3):885–95.

    Article  PubMed  Google Scholar 

  66. Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, et al. Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson's disease. Mol Psychiatry. 2018;23(2):459–66.

    Article  CAS  PubMed  Google Scholar 

  67. Yoo HB, Lee JY, Lee JS, Kang H, Kim YK, Song IC, et al. Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. J Clin Neurol. 2015;11(1):42–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Georgiopoulos C, Warntjes M, Dizdar N, Zachrisson H, Engström M, Haller S, et al. Olfactory impairment in Parkinson's disease studied with diffusion tensor and magnetization transfer imaging. 301-11.

  69. Ibarretxe-Bilbao N, Junque C, Marti MJ, Valldeoriola F, Vendrell P, Bargallo N, et al. Olfactory impairment in Parkinson's disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. 1888-94.

  70. Wen MC, Xu Z, Lu Z, Chan LL, Tan EK, Tan LCS. Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson's disease. 12559.

  71. Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease.269-73.

  72. Haghshomar M, Rahmani F, Hadi Aarabi M, Shahjouei S, Sobhani S, Rahmani M. White matter changes correlates of peripheral neuroinflammation in patients with Parkinson’s disease. Neuroscience. 2019;403:70–8.

    Article  CAS  PubMed  Google Scholar 

  73. Rossi ME, Ruottinen H, Saunamaki T, Elovaara I, Dastidar P. Imaging brain iron and diffusion patterns: a follow-up study of Parkinson's disease in the initial stages. Acad Radiol. 2014;21(1):64–71.

    Article  PubMed  Google Scholar 

  74. Kikuchi K, Hiwatashi A, Togao O, Yamashita K, Somehara R, Kamei R, et al. Structural changes in Parkinson's disease: voxel-based morphometry and diffusion tensor imaging analyses based on (123)I-MIBG uptake. Eur Radiol. 2017;27(12):5073–9.

    Article  PubMed  Google Scholar 

  75. Polli A, Weis L, Biundo R, Thacker M, Turolla A, Koutsikos K, et al. Anatomical and functional correlates of persistent pain in Parkinson's disease. Mov Disord. 2016;31(12):1854–64.

    Article  PubMed  Google Scholar 

  76. Kim HJ, Kim SJ, Kim HS, Choi CG, Kim N, Han S, et al. Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson's disease. Neurosci Lett. 2013;550:64–8.

    Article  CAS  PubMed  Google Scholar 

  77. Youn J, Lee JM, Kwon H, Kim JS, Son TO, Cho JW. Alterations of mean diffusivity of pedunculopontine nucleus pathway in Parkinson's disease patients with freezing of gait. Parkinsonism Relat Disord. 2015;21(1):12–7.

    Article  PubMed  Google Scholar 

  78. Karagulle Kendi AT, Lehericy S, Luciana M, Ugurbil K, Tuite P. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol. 2008;29(3):501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schweder PM, Joint C, Hansen PC, Green AL, Quaghebeur G, Aziz TZ. Chronic pedunculopontine nucleus stimulation restores functional connectivity. Neuroreport. 2010;21(17):1065–8.

    Article  PubMed  Google Scholar 

  80. Meijer FJ, van Rumund A, Tuladhar AM, Aerts MB, Titulaer I, Esselink RA, et al. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism. Neuroradiology. 2015;57(7):655–69.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR. Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol. 2012;33(11):2123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Minett T, Su L, Mak E, Williams G, Firbank M, Lawson RA, et al. Longitudinal diffusion tensor imaging changes in early Parkinson's disease: ICICLE-PD study. J Neurol. 2018;265(7):1528–39.

    Article  PubMed  Google Scholar 

  83. Taylor KI, Sambataro F, Boess F, Bertolino A, Dukart J. Progressive decline in gray and white matter integrity in de novo Parkinson’s disease: an analysis of longitudinal Parkinson progression markers initiative diffusion tensor imaging data. Frontiers in Aging Neuroscience. 2018;10(318).

  84. Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease. Eur J Radiol. 2011;77(2):269–73.

    Article  PubMed  Google Scholar 

  85. Tessa C, Giannelli M, Della Nave R, Lucetti C, Berti C, Ginestroni A, et al. A whole-brain analysis in de novo Parkinson disease. AJNR Am J Neuroradiol. 2008;29(4):674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wen MC, Heng HS, Ng SY, Tan LC, Chan LL, Tan EK. White matter microstructural characteristics in newly diagnosed Parkinson's disease: an unbiased whole-brain study. Sci Rep. 2016;6:35601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li X-R, Ren Y-D, Cao B, Huang X-L. Analysis of white matter characteristics with tract-based spatial statistics according to diffusion tensor imaging in early Parkinson’s disease. Neurosci Lett. 2018;675:127–32.

    Article  CAS  PubMed  Google Scholar 

  88. Agosta F, Kostic VS, Davidovic K, Kresojevic N, Sarro L, Svetel M, et al. White matter abnormalities in Parkinson's disease patients with glucocerebrosidase gene mutations. Mov Disord. 2013;28(6):772–8.

    Article  CAS  PubMed  Google Scholar 

  89. Mormina E, Arrigo A, Calamuneri A, Granata F, Quartarone A, Ghilardi MF, et al. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease. Neuroradiology. 2015;57(3):327–34.

    Article  PubMed  Google Scholar 

  90. Melzer TR, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Watts R, et al. Tracking Parkinson's disease over one year with multimodal magnetic resonance imaging in a group of older patients with moderate disease. PLoS One. 2015;10(12):e0143923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chondrogiorgi M, Astrakas LG, Zikou AK, Weis L, Xydis VG, Antonini A, et al. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson's disease patients. 232-40.

  92. Chiang PL, Chen HL, Lu CH, Chen PC, Chen MH, Yang IH, et al. White matter damage and systemic inflammation in Parkinson's disease. BMC Neurosci. 2017;18(1):48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wen M-C, Xu Z, Lu Z, Chan LL, Tan EK, Tan LCS. Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson’s disease. Sci Rep. 2017;7(1):12559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bharti K, Suppa A, Pietracupa S, Upadhyay N, Giannì C, Leodori G, et al. Abnormal cerebellar connectivity patterns in patients with Parkinson's disease and freezing of gait. Cerebellum. 2019;18(3):298–308.

    Article  PubMed  Google Scholar 

  95. Chondrogiorgi M, Tzarouchi LC, Zikou AK, Astrakas LG, Kosta P, Argyropoulou MI, et al. Multimodal imaging evaluation of excessive daytime sleepiness in Parkinson's disease. Int J Neurosci. 2016;126(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  96. Georgiopoulos C, Warntjes M, Dizdar N, Zachrisson H, Engstrom M, Haller S, et al. Olfactory impairment in Parkinson's disease studied with diffusion tensor and magnetization transfer imaging. J Parkinsons Dis. 2017;7(2):301–11.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ibarretxe-Bilbao N, Junque C, Marti MJ, Valldeoriola F, Vendrell P, Bargallo N, et al. Olfactory impairment in Parkinson's disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord. 2010;25(12):1888–94.

    Article  PubMed  Google Scholar 

  98. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–87.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Olesen MN, Soelberg K, Nilsson AC, Jarius S, Madsen JS, Grauslund J, et al. Cerebrospinal fluid biomarkers of inflammation and neurodegeneration in acute optic neuritis. Mult Scler J. 2018;24(2):253–4.

    Google Scholar 

  100. Gartner LPP, Maria A. Textbook of Neuroanatomy; 2009.

  101. Kwon HG, Hong JH, Jang SH. Anatomic location and somatotopic arrangement of the corticospinal tract at the cerebral peduncle in the human brain. AJNR Am J Neuroradiol. 2011;32(11):2116–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Merlini L, Vargas MI, De Haller R, Rilliet B, Fluss J. MRI with fibre tracking in Cogan congenital oculomotor apraxia. Pediatr Radiol. 2010;40(10):1625–33.

    Article  PubMed  Google Scholar 

  103. Mtui EG, Gregory; Dockery, Peter. Fitzgerald's Clinical Neuroanatomy and Neuroscience Elsevier; 2016.

  104. Gillig PM, Sanders RD. Psychiatry, neurology, and the role of the cerebellum. Psychiatry (Edgmont). 2010;7(9):38–43.

    Google Scholar 

  105. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1-2):191–7.

    Article  CAS  PubMed  Google Scholar 

  107. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  CAS  PubMed  Google Scholar 

  108. Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Floris DL, Barber AD, Nebel MB, Martinelli M, Lai M-C, Crocetti D, et al. Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Mol Autism. 2016;7(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Knecht S, Dräger B, Flöel A, Lohmann H, Breitenstein C, Deppe M, et al. Behavioural relevance of atypical language lateralization in healthy subjects. Brain. 2001;124(8):1657–65.

    Article  CAS  PubMed  Google Scholar 

  111. Biduła SP, Przybylski Ł, Pawlak MA, Króliczak G. Unique neural characteristics of atypical lateralization of language in healthy individuals. Front Neurosci 2017;11:525-.

  112. Lefaivre SC, Brown MJN, Almeida QJJC, Ataxias. Cerebellar involvement in Parkinson’s disease resting tremor 2016;3(1):13.

  113. Bedard P, Sanes JN. On a basal ganglia role in learning and rehearsing visual-motor associations. NeuroImage. 2009;47(4):1701–10.

    Article  PubMed  Google Scholar 

  114. Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, Kimura J, et al. Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain. 1999;122(Pt 7):1271–82.

    Article  PubMed  Google Scholar 

  115. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson's disease. NeuroImage. 2007;34(2):714–23.

    Article  PubMed  Google Scholar 

  116. Projection techniques for evaluating surgery in Parkinson's disease.Third Symposium on Parkinson's Disease, R Coll Surg Edinburgh 1996.

  117. Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson's disease. Brain. 2001;124(Pt 11):2131–46.

    Article  CAS  PubMed  Google Scholar 

  118. Jankovic J. Parkinson’s disease: clinical features and diagnosis. 2008;79(4):368-76.

  119. Moustafa AA, Poletti M. Neural and behavioral substrates of subtypes of Parkinson's disease. Front Syst Neurosci. 2013;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, et al. Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40(10):1529–34.

    Article  CAS  PubMed  Google Scholar 

  121. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734–44.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nieuwboer A, Giladi N. Characterizing freezing of gait in Parkinson's disease: models of an episodic phenomenon. Mov Disord. 2013;28(11):1509–19.

    Article  PubMed  Google Scholar 

  123. Yang X, Huang Q, Yang H, Liu S, Chen B, Liu T, et al. Astrocytic damage in glial fibrillary acidic protein astrocytopathy during initial attack. Multiple Sclerosis Relat Disord. 2019;29:94–9.

    Article  Google Scholar 

  124. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron. 2008;59(6):1037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roheger M, Kalbe E, Liepelt-Scarfone I. Progression of cognitive decline in Parkinson's disease. J Parkinsons Dis. 2018;8(2):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cosgrove J, Alty JE, Jamieson S. Cognitive impairment in Parkinson's disease. 2015;91(1074):212-20.

  127. Gouras P, Bishop PO. Neural basis of vision. Science (New York, NY). 1972;177(4044):188–9.

    Article  CAS  Google Scholar 

  128. Harris S, Comi G, Cree BAC, Steinman L, Sheffield JK, Silva D, et al. Neurofilament light chains as a marker of concurrent and future active disease in relapsing multiple sclerosis: an analysis of baseline data from the phase 3 ozanimod clinical trials. Neurology. 2019;92(15).

  129. Armstrong RA. Visual symptoms in Parkinson's disease. Parkinsons Dis. 2011;2011:908306.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR. Visual dysfunction in Parkinson's disease. Brain. 2016;139(11):2827–43.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kim CS, Sung YH, Kang MJ, Park KH. Rapid eye movement sleep behavior disorder in Parkinson's disease: a preliminary study. J Mov Disord. 2016;9(2):114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schrempf W, Brandt MD, Storch A, Reichmann H. Sleep disorders in Parkinson's disease. J Parkinsons Dis. 2014;4(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  133. Sateia MJ. International Classification of Sleep Disorders-Third Edition. Chest. 2014;146(5):1387–94.

    Article  PubMed  Google Scholar 

  134. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, et al. Circadian rhythm sleep disorders: part i, basic principles, shift work and jet lag disorders. Sleep. 2007;30(11):1460–83.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kanter JW, Busch AM, Weeks CE, Landes SJ. The nature of clinical depression: symptoms, syndromes, and behavior analysis. Behav Anal. 2008;31(1):1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chaudhury D, Liu H, Han M-H. Neuronal correlates of depression. Cell Mol Life Sci. 2015;72(24):4825–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Marsh L. Depression and Parkinson's disease: current knowledge. Curr Neurol Neurosci Rep. 2013;13(12):409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Molde H, Moussavi Y, Kopperud ST, Erga AH, Hansen AL, Pallesen S. Impulse-control disorders in Parkinson's disease: a meta-analysis and review of case-control studies. Front Neurol. 2018;9:330.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis. 2012;46(3):527–52.

    Article  PubMed  Google Scholar 

  140. Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson's disease. Ann Neurol. 1992;32(S1):S125–S7.

    Article  PubMed  Google Scholar 

  141. Caan MW, Khedoe HG, Poot DH, Arjan J, Olabarriaga SD, Grimbergen KA, et al. Estimation of diffusion properties in crossing fiber bundles. IEEE Trans Med Imaging. 2010;29(8):1504–15.

    Article  PubMed  Google Scholar 

  142. Metzler-Baddeley C, O'Sullivan MJ, Bells S, Pasternak O, Jones DK. How and how not to correct for CSF-contamination in diffusion MRI. Neuroimage. 2012;59(2):1394–403.

    Article  PubMed  Google Scholar 

  143. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62(3):717–30.

    Article  PubMed  Google Scholar 

  144. Ofori E, Pasternak O, Planetta PJ, Burciu R, Snyder A, Febo M, et al. Increased free water in the substantia nigra of Parkinson's disease: a single-site and multi-site study. Neurobiol Aging. 2015;36(2):1097–104.

    Article  CAS  PubMed  Google Scholar 

  145. Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain. 2016;139(2):495–508.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the authors of the included articles in this systematic review due to sharing the relevant data.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MH, PS, MHA; Literature search and data extraction: FA, AP; Formal analysis and investigation: MH, PS, HS; Writing - original draft preparation: MH; Writing - review and editing: PS, HS, AK; All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Parnian Shobeiri.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any part with the requirement of informed consent for subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshomar, M., Shobeiri, P., Seyedi, S.A. et al. Cerebellar Microstructural Abnormalities in Parkinson’s Disease: a Systematic Review of Diffusion Tensor Imaging Studies. Cerebellum 21, 545–571 (2022). https://doi.org/10.1007/s12311-021-01355-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01355-3

Keywords

Navigation