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Abstract
This paper presents a model of learning by the cerebellar circuit. In the traditional and dominant learning model, training 
teaches finely graded parallel fibre synaptic weights which modify transmission to Purkinje cells and to interneurons that 
inhibit Purkinje cells. Following training, input in a learned pattern drives a training-modified response. The function is that 
the naive response to input rates is displaced by a learned one, trained under external supervision. In the proposed model, 
there is no weight-controlled graduated balance of excitation and inhibition of Purkinje cells. Instead, the balance has two 
functional states—a switch—at synaptic, whole cell and microzone level. The paper is in two parts. The first is a detailed 
physiological argument for the synaptic learning function. The second uses the function in a computational simulation of 
pattern memory. Against expectation, this generates a predictable outcome from input chaos (real-world variables). Training 
always forces synaptic weights away from the middle and towards the limits of the range, causing them to polarise, so that 
transmission is either robust or blocked. All conditions teach the same outcome, such that all learned patterns receive the 
same, rather than a bespoke, effect on transmission. In this model, the function of learning is gating—that is, to select pat-
terns that trigger output merely, and not to modify output. The outcome is memory-operated gate activation which operates 
a two-state balance of weight-controlled transmission. Group activity of parallel fibres also simultaneously contains a second 
code contained in collective rates, which varies independently of the pattern code. A two-state response to the pattern code 
allows faithful, and graduated, control of Purkinje cell firing by the rate code, at gated times.
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Introduction

Summary

This paper presents a theory of learning at the parallel fibre 
synapse which builds on previously published work [1, 2]. It 
is part of the wider proposal that the working of the circuit 
is not governed by a single overarching, unifying principle 
but is instead a suite of solutions to a number of design 
problems. Each paper covers a different aspect, written to 
stand alone.

The present paper, like the others, is in the form of a 
physiologically detailed hypothesis quantified by modelling. 
It argues that learning polarises synaptic weights, so that 
transmission is either robust or severely depressed, contrary 

to the traditional view that training teaches precision-gradu-
ated synaptic modification. The author has previously argued 
that parallel fibre activity contains two codes concurrently, a 
pattern code and a group rate code, contained in independent 
variables of the same parallel fibre activity [1]. The function 
of learning is gating [2]—pattern memory does not other-
wise modify output. The gate has two states (functionally, 
a switch). This does not confine Purkinje cells to a binary 
response. On the contrary, it has the important (i.e., neces-
sary) feature that, at gated times, interference by memory is 
prevented, so that transmission of the rate code is faithful 
and finely graduated.

The subject of this paper is synaptic modification by 
learning. This is complementary to the previously argued, 
functionally binary effect of pattern memory [2], but a dif-
ferent mechanism. Like the previous proposal, however, it 
operates at functionally unitary circuit level.
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Background

Parallel fibre synaptic activation that is repeatedly paired 
with a convergent climbing fibre signal induces long-term 
depression (LTD) of synaptic transmission at the parallel 
fibre-Purkinje cell synapse [3–5]. Enduring changes typi-
cally require repeated pairings—at least tens if not hun-
dreds. The same conditions also induce modification of 
the parallel fibre-stellate cell synapse, but with the oppo-
site sign, strengthening transmission [6–9] (long-term 
potentiation, LTP). (Fig. 1 is a schematic of the effect of 
learning on the pathway of signal transmission through the 
circuit.) The direction of learning at both synapse types 
is reversed when synaptic activation is not paired with a 
climbing fibre signal. Synaptic modification under climb-
ing fibre instruction is involved in making new pathways 
which drive, for example, the conditioned blink reflex 
[originally: 10, 11].

It has been for years the central question of cerebellar 
theory, in what way and for what purpose do parallel fibre 
synaptic modifications change the Purkinje cell response? 
The attempt to understand the cerebellum has traditionally 
been dominated by a group of proposals collectively called 
the supervised learning model, which share some main 
features. The central premise is an assumption that the cer-
ebellum implements a machine learning algorithm, so that 
the naive response to unknown input is displaced follow-
ing training by a learned response to remembered patterns. 
Learning is stored as synaptic changes such that, following 
training, input to a Purkinje cell in a remembered pattern is 
passed through a corresponding set of precision-modified 
synaptic weights [12–15], strengthening transmission of 
some signals and weakening transmission of others. This 
has the result that the naive, unmodified response to input 
rates is displaced by a learned response which the pat-
tern triggers. (A more in-depth commentary appears in the 
‘Discussion’ section.) This proposal received early support 
from experimental confirmation of a role of climbing fibre 
signals in parallel fibre-Purkinje cell synaptic modification 
[16, 17] and from tracing of the conditioned eye blink 
reflex pathway through the cerebellum [10, 18]. An early 
and influential form of the model proposed that climb-
ing fibre signals are triggered by behavioural errors [12], 
and this, too, seemed vindicated when it was reported that 
incorrect reaching movements by monkeys were associated 
with an increase in complex spikes, known to be a reliable 
indicator for climbing fibre discharge [19].

However, later evidence ultimately failed to provide 
corroboration of the expected role of LTD in motor learn-
ing [20–22], or that synaptic weights are functionally 
graduated [23], and more recently the notion that climb-
ing fibre signals code errors has been called into question 

(see 24 for a review, which concludes they probably do 
not). For these and other reasons (see the ‘Discussion’ sec-
tion), there are issues with the evidence for the old model, 
without naturally suggesting an alternative.

Evidence is not the only problem. It has never really been 
challenged, but is in fact not clear, whether a machine learn-
ing algorithm would be good at learning from real-world 
input data available to the cerebellum. In this context, ‘input 
data’ does not refer to individual signal metrics, or which 
particular cells are active, but other variables that affect the 
learning outcome, which override signal characteristics, so 
that they control the outcome.

For the system to reliably acquire a learned response to 
a remembered pattern, synaptic modification must tolerate 
overlap with other patterns. In unpaired trials, the direc-
tion of learning is reversed, so it must tolerate overlap with 
unpaired patterns too. Synapses are indefinitely plastic in 
both directions. The learning outcome is the result of a roll-
ing history of relatively recent trials. At any given synapse, 
it depends ultimately on the ratio and sequence of synaptic 
activations which are paired with a climbing fibre signal 
(learning trials) and activations which are not (extinction 
trials). That depends in turn, at each synapse, on which pat-
terns it is a member of, which of them occur in the relevant 
‘period’ of recent history, how many times each, in what 
ratio with other patterns, and in what sequence.

A synapse may participate in a number of patterns (which 
may be all paired, all unpaired, or more likely a mixture). 
The number is controlled by a probability distribution—so 
the relative proportions that participate in 0 patterns, in 1, in 
2, and so on is well predicted [2]—but the ratio and sequence 
are not, because real-world variables are not random and not 
predicted by fixed probabilities. As a result, each synapse is 
likely to receive a course of recent training which is for the 
most part independent of the training received at any other 
synapse. On the face of it, this should mean that the outcome 
at any particular synapse could feasibly be anything. That 
is not to say the outcome at synapses in a learned pattern 
is always or necessarily unrelated, but equally there is no 
reason why it always or necessarily would be, because there 
is no statistical safeguard against a noisy outcome.

The Proposal

Yet a predictable outcome of training is a functional impera-
tive. There cannot be uncertainty. The proposed cerebel-
lar solution is that signals in a ‘remembered’ pattern are 
received at a representative random sample of learned syn-
aptic weights, such that all learned patterns receive the same, 
rather than a bespoke, effect on transmission. In this model, 
learning implements and memory operates a pattern-acti-
vated gate in the form of a two-state balance of excitation 
and inhibition of Purkinje cells. There is not a graded effect 
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Fig. 1   Schematic of circuit wiring. Each Purkinje cell receives inti-
mate contact from a single climbing fibre, and a climbing fibre may 
contact 1–10 Purkinje cells. Microzones are defined by receiving 
input from functionally grouped climbing fibres which discharge 
together. Unlike mossy fibres, which are eclectically sourced (and 
more numerous), climbing fibres originate exclusively in the infe-
rior olivary nucleus in the nearby brainstem. Pairing of parallel fibre 
synaptic activation with a convergent climbing fibre signal induces 

long-term depression of the parallel fibre-Purkinje cell synapse, i.e. 
enduring weakening of signal transmission. Synaptic transmission 
of granule cell signals to stellate cells is modified by training in the 
same conditions as the parallel fibre-Purkinje cell synapse but in the 
opposite direction. That is to say, transmission is strengthened by syn-
aptic activation paired with a climbing fibre signal. Transmission at 
synapses not trained in this way is entirely absent, even tested with 
stimulation at hundreds of Hz
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of synaptic memory. Indeed, it is a necessary feature of this 
mechanism that it eliminates interference by weights with 
faithful transmission of rate coded signals. 

The mechanism is the physiological implementation of a 
function that describes a sigmoidal synaptic learning curve. 
The function is iterative—the size of change at each step 
depends on the output of the last, that is, on aggregate prior 
learning. This is because learning is calcium dependent 
and learned synaptic changes modify postsynaptic calcium 
amplitude.

Part of the proposal is that the shape of the learning curve 
is importantly functional, because it forces a well-predicted 
outcome regardless of input variables. To preserve the shape 
of the curve—to ring fence the relationship of learning and 
calcium—there is strict physiological control (by elimina-
tion) of other variables. This is the result, by design, of a 
number of features of cell anatomy and circuit architecture, 
giving a stripped-down character to the learning function.

The paper is accordingly divided into two parts. The first 
part is a physiological argument for the restriction of vari-
ables in the function and for the shape of the learning curve. 
The second part uses the learning function in a computa-
tional simulation to predict the outcome of learning across 
a population of synapses which are active in sparse sub-
groups, in simulated real-world conditions.

Methodology

The methodology is in some ways untypical for a network 
model. Network models often impose high-level ideas (and 
simplifying assumptions) top down onto what are in reality 
richly detailed biological systems. The present approach was 
in reverse, building with the evidence from the ground up 
and using modelling to test the ideas, so that the network 
level proposals are populated and supported by a detailed 
level of evidence.

Physiological Model of Learning

Design‑Assisted Control of Variables in the Learning 
Function

This section argues for the physiological elimination of vari-
ables from the learning function, by cell and circuit design, 
thereby isolating an effect on calcium of learning itself.

The Parallel Fibre‑Purkinje Cell Synapse

Stellate cell territories are flattened in the same plane as 
Purkinje cells, orthogonal to parallel fibres, so that they 
occupy the spaces between Purkinje cells [25]. Parallel 
fibres make contact in passing on stellate cells, as they do on 

Purkinje cells. The balance between excitatory and inhibi-
tory input to a Purkinje cell is therefore affected by synaptic 
modification, which can be in both directions at both syn-
apse types.

At the parallel fibre-Purkinje cell synapse, LTD involves 
removal by endocytosis of AMPA receptors from the post-
synaptic membrane [26], and LTP their insertion [27], both 
calcium dependent. In mature Purkinje cells, most AMPA 
receptors contain the calcium-impermeable GluR2/GluR3 
subunit. Calcium entry into the cell is through voltage-gated 
calcium channels [28–30] activated by AMPA-receptor-
mediated depolarisation, so that learning acts on the condi-
tions that teach it.

Parallel fibre-triggered calcium influx is locally confined 
[29]. Parallel fibres make contact on spines on thin distal 
branches of the Purkinje cell arbour, one per spine. A num-
ber of mechanisms combine to ensure that calcium elevation 
triggered by parallel fibre synaptic activation is confined to 
a spine-limited synapse-specific effect [29, 31]. Segrega-
tion of parallel fibre-evoked calcium transients is quite well 
understood [30].

Climbing fibre signals also trigger Purkinje cell dendritic 
calcium influx. Calcium transients peak at short latency with 
near simultaneous timing in all branches of the Purkinje cell 
dendritic arbour, including distal branches that bear spines 
[32]. While peak calcium transient amplitude varies with 
dendritic diameter and the density of calcium channels [33], 
these do not vary at the site of learning, in spine-bearing 
branchlets. So, timing and amplitude of transients do not 
vary between branches at the site of learning. Transients 
are separated by slow climbing fibre discharge rates [34], 
reflecting membrane properties [35], so do not overlap at 
typical rates, and do not sum anyway. ‘CS [complex spike]-
evoked Ca2+ transients [are] a similar amplitude even when 
the dendritic Ca2+ level is already elevated’ in anaesthetised 
rats [32 p.10849]. Spines themselves share the same dimen-
sions [31], so there is no variation of calcium concentration 
because of spine size. In theory, variation might result if 
climbing fibre input to a Purkinje cell on different occa-
sions was to a variable number or permutation of synapses, 
or because it was from more than one climbing fibre, such 
that all synapses did not all receive the same signal. Poten-
tial variability in this way is absent because climbing fibre 
input to a Purkinje cell is from a single cell to all synapses 
simultaneously.

Climbing fibre signals themselves, which evoke dendritic 
transients, are in short bursts of a few spikes. These were 
originally reported to have an all-or-nothing signature [36] 
and then argued to code a variable lesson in the number of 
spikes they contain [37–39]. More recently it was counter-
proposed that bursts contain a randomly variable and unreli-
ably transmitted number of spikes which notify only whether 
a signal is present or not [2], arguing for a rehabilitation of 
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the original view. This paper takes the view that instruc-
tion signals are functionally binary. As this is an important 
point but only briefly dealt with here, because the rationale 
has appeared previously [2], it is reproduced in Supplemen-
tary Materials (Supplementary Materials 1, ‘Climbing fibre 
instruction signals are not functionally variable’).

The significance of the foregoing remarks is that there is 
a systematic elimination of variables that could, and presum-
ably would otherwise, affect postsynaptic calcium amplitude 
at the site of synaptic learning. This is achieved by a con-
certed effect of anatomy and electrophysiology—that is, by 
design. The parallel fibre transient is confined to a single 
spine, and each spine to contact from a single parallel fibre, 
and the climbing fibre transient peaks very fast with whole-
arbour synchrony, and does not receive a variable effect in 
spine-bearing branchlets from dendritic transmission proper-
ties, signal frequency, or functional variation of the climbing 
fibre signal, which is received from a single cell.

The Parallel Fibre‑Stellate Cell Synapse

There is less evidence for the same conclusion at the parallel 
fibre-stellate cell synapse than for the parallel fibre-Purkinje 
cell synapse, because there is less evidence generally, but 
what there is likewise suggests a pattern of adaptations that 
eliminate variables that affect calcium. Induction pathways 
in both directions are calcium dependent (for postsynaptic 
LTP, 6; for LTD, 7). ‘EPSCs at the parallel fibre to stel-
late cell synapse are predominantly mediated by AMPA 
receptors that lack GluR2 subunits’ and which are therefore 
permeable to calcium [40 p.559, citing 41]. Diffusion of 
dendritic calcium is heavily restricted [7], so that parallel 
fibre-triggered calcium is localised. Climbing fibres signal to 
stellate cells exclusively by glutamate spillover, which acti-
vates extrasynaptic receptors [42], so that there is a synchro-
nised whole-arbour climbing fibre transient notwithstanding 
that dendrites do not all form part of the same connected 
tree. Plastic modulation of transmission is by competing 
induction pathways—blocking either reveals induction in 
the other direction [43].

The Shape of the Learning Curve

Why is control of calcium important—what effect does cal-
cium have on synaptic modification? There are thought to 
be two effects, on the direction and on the size of change, 
trial-by-trial.

Direction

The direction of change depends on the presence or not 
of a climbing fibre signal. To explain this, the idea of a 

calcium threshold [4] gained traction. In that proposal, the 
sum of calcium triggered by paired input is necessary to 
exceed the threshold for LTD, while a parallel fibre transient 
alone, below threshold, teaches LTP. This has been chal-
lenged. In vitro evidence suggests that high-frequency paral-
lel fibre activation causes CaMKII phosphorylation which 
blocks LTD induction, preventing LTD induction by parallel 
fibre only activation [44]. LTD is blocked even at calcium 
amplitude that would otherwise induce it (of which paral-
lel fibres are—otherwise—capable on their own). Climbing 
fibre instruction signals remove the block. ‘Climbing fibre 
co-activation prevents inhibitory autophosphorylation and 
restores LTD’ [44 p.13224].

This is not the only reason a climbing fibre signal is nec-
essary for LTD. LTD is also dependent on corticotropin 
releasing factor, which is absent without climbing fibre sig-
nals [45], and on postsynaptic NMDA receptor activation at 
the climbing fibre-Purkinje cell synapse, which contributes 
to the climbing fibre-evoked calcium transient [46].

So, there is evidence that—and in the model—the direc-
tion depends on the presence, or not, of a climbing fibre 
signals, paired with synaptic activation, but the mechanism 
is not a calcium threshold. It is instead a block of phospho-
rylation and other agents.

Size

Assuming that, otherwise, induction in both directions scales 
with calcium amplitude according to some unknown func-
tion (which is feasibly but not necessarily linear), we can 
quantify synaptic change by making two predictions sug-
gested by the evidence, and one which is unreported, as far 
as the author is aware. First, when a climbing fibre signal 
removes the block on LTD induction, LTP and LTD induc-
tion pathways are concurrently active and therefore in com-
petition for calcium. In fact, this is reported for the parallel 
fibre-stellate cell synapse [43]. Second, the calcium supply is 
modulated by learning itself, because calcium entry into the 
postsynaptic cell is through or mediated by synaptic AMPA 
receptors. This is true for learning in both directions, in the 
presence of a climbing fibre signal or not. Third, the LTD 
induction pathway has higher affinity for calcium than the 
LTP induction pathway.

Together with the block of other variables, this is a physi-
ological basis to propose that synaptic learning in both direc-
tions is described by an iterative sigmoid function, where 
per-step change accelerates after a slow start and then slows 
down towards a limit. Without a climbing fibre signal, the 
direction is always LTP, because parallel fibre-only acti-
vation causes CaMKII phosphorylation. When a climbing 
fibre signal is present, the direction is LTD because, with 
the block removed, the LTD induction pathway is more 
competitive, having a proposed higher affinity for calcium. 
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The amount of change in each trial is a function of the last, 
because the aggregate learning outcome controls the calcium 
supply in the next.

This is not to overlook that induction is the outcome of 
complex molecular events. Rather, it is to propose that the 
outcome of those events is predicted by calcium amplitude 
and therefore by the effect on calcium of prior learning.

This paragraph is a hypothetical description of the mutual 
effect of calcium amplitude and learning across a course 
of training with all trials paired, at a previously severely 
depressed synapse. In early trials, calcium influx is weak 
because AMPA receptors are absent or sparse. Indeed, acti-
vation of AMPA receptors may be insufficient on its own 
to activate voltage-gated calcium channels, so that mGluRs 
may be necessary to assist calcium entry into the cell [29]. 
Therefore, LTP is in small early steps. As training proceeds, 
insertion of AMPA receptors into the postsynaptic mem-
brane mediates stronger calcium influx, so that learning is in 
steps of increasing size. Ultimately, learning levels off where 
there is a diminishing return of more change. The limiting 
factor(s) may be a restriction on the density of AMPA recep-
tors or the finite pool of calcium channels or an effect of 
calcium channel characteristics—T-type channels are only 
open in a limited, strongly polarised voltage range and then 
completely inactivated until the cell membrane repolarises 
[29], so that a fast-falling voltage would mean they are open 
for less time.

LTD may be described in similar terms, also hypothetical 
but based on the same evidence and predictions, starting this 
time with a robustly transmitting synapse. With the LTD 
block removed, change is the net outcome of competition for 
calcium. Early steps are small because calcium is abundant, 
so that LTP induction is barely affected by competition and 
keeps pace with LTD. The net outcome is still (because it 
is always, in paired trials) LTD [44], but initial progress 
is slow. In the middle range, the competition favours more 
competitive LTD because the calcium supply is progres-
sively restricted and diminishing, so that net learning accel-
erates. Then, as the number of AMPA receptors becomes 
further depleted, in the later phase of training, the rate of 
receptor internalisation slows down again because calcium 
becomes severely depleted, so that the LTD pathway is also 
calcium-starved. This may be joined by other factors—the 
diminishing number of remaining AMPA receptors means 
there are fewer for the internalisation mechanism to act on, 
for example.

Both the description of LTP and of LTD describe only 
the artificial case where no trials are paired or they are all 
paired, respectively. But they provide the rationale to derive 
a model which can then be used to predict the outcome when 
training variables are generated trial by trial that simulate 
real-world conditions, which is to say, unpredictably and in 
no particular pattern.

Computational Model of Learning

The Core Model

To quantify these ideas, we might model trial-by-trial paral-
lel fibre-Purkinje cell LTD induction as a sigmoid function 
of the presence, or not, of an instruction signal in that trial 
and the effect of learned change, as it is acquired, on the 
outcome of further training. The function is lean because 
instruction signals are not variable and because the effect of 
a parallel fibre signal on calcium in the postsynaptic spine is 
isolated by elimination of other variables. We might express 
this as:

where L varies in the range 0 < L < 1 . Ln is the outcome 
of trial n . A rising value of Ln represents LTD. Tn is either 
1 (if there is a climbing fibre signal) or 0 (if there is not). k 
is a constant, the learning coefficient, which adjusts Δ/trial 
(step size). L lim→1 is not where AMPA receptors are fully 
depleted, necessarily; it is where an effect of further training 
is exhausted. As noted, this (of course) belies the underly-
ing complexity of molecular events, but because induction 
in both directions is calcium dependent, control of calcium 
predicts the outcome in the assumed absence of other (cal-
cium independent) molecular variables.

So far, there is no early-stage inertia; nor is there an effect 
of parallel fibre signal frequency or of Purkinje cell den-
dritic membrane potential on calcium influx. These will all 
be added.

Adding early-stage inertia, Ln is Ln−1 plus the product of

where fA(x) is a function which adjusts the strength of 
inertia, treated as a constant equal to 1. Signal frequency 
and membrane potential are added later.

The Learning Coefficient: Repetition Is the Signal 
to Learn

The effect of changing the learning coefficient k is shown 
in Fig. 2. This suggests a reason that learning needs rep-
etition, so that in conditioning studies it may take several 
blocks of trials. A too large value yields unpredictable 
results when trials are paired with a probability p < 1, 
especially mid-range probabilities. This disappears with 
a smaller value of k . With small step size, learning takes 
longer but the outcome is consistent—either there is 
robust synaptic modification or there is no change. There 
is no other or intermediate outcome. A predictable effect 
that proceeds only in modest per-trial steps means that 

Ln = Ln−1 + k
(
Tn − Ln−1

)

k
(
Tn − Ln−1

)
and

{
either fA

(
Ln−1

)
, Tn = 1

or fA
(
1 − Ln−1

)
, Tn = 0
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repetition can be used as the signal to learn. However, 
too-small steps would mean learning was very protracted 
(Fig. 2f). Presumably, at some point, protractedness would 
be inefficient and slow, so that per-trial step size is a trade-
off between the advantages and disadvantages of using 
repetition as a signal. The value of k that approximates the 
reported number of trials with all trials paired (Fig. 2a, red 
data) is the value used in the group learning simulation.

Chaotic Real‑World Training Variables

Learning in experimental all-trials-paired conditions—and, 
similarly, extinction training with all trials unpaired—is 
highly artificial. In real-world conditions, a number of vari-
ables contribute an unpredictable influence on synaptic mod-
ification, and these are outside cerebellar influence. Most 
synapses participate in more than one stored pattern. Each 

Fig. 2   The effect of step size on 
learning. Parallel fibre synaptic 
activation teaches synaptic 
change. The direction of change 
depends on whether activation 
is paired with a climbing fibre 
signal. a Hypothesised learning 
and extinction curves for the 
parallel fibre synapse, with 
trials all paired and all unpaired 
respectively, varying the learn-
ing constant, k , in a sigmoidal 
function. k = 0.8, 0.4, 0.2, 0.1, 
and 0.05 from left to right. b–f 
illustrate the effect of varying 
k when activations are not all 
paired i.e. p ≠ 1 or 0, likely 
outside experimental condi-
tions. To isolate the effect of k , 
p is fixed ( P(paired) = 0.6). The 
colour code is the same as in 
(a). Unpaired trials teach extinc-
tion, i.e., training is a randomly 
concatenated sequence of up 
and down steps, for 1,500 trials. 
Each panel (b–f) shows six 
simulations. b k = 0.8. Despite 
the highest value of k , there is 
no learning. c k = 0.4. Learning 
is explosive, but its onset is ran-
dom. d k = 0.2. The end result 
is reliable but the onset is still 
arbitrary and erratic. e k = 0.1. 
There is reliable, consistently 
paced learning. f Learning is at 
longer latency with no improve-
ment of consistency
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synapse participates in an independent random sample of 
patterns [because of decorrelation: 47]. Of that sample, the 
incidence of each pattern in any given rolling period of real-
world training (i.e., set of trials), the ratio of the incidence 
of each to the others, and the sequence, are not random and 
do not occur with a fixed probability. Nor are they fixed or 
permanent; learning proceeds indefinitely and synapses are 
indefinitely plastic, new learning displacing old. To make 
the permutations more complex, synaptic change is revers-
ible. Synaptic activation in the absence of a climbing fibre 
signal teaches modification in the opposite direction so that 
the recent ratios of paired to unpaired synaptic activations, 
and the sequence they occur in, are further variables. Finally, 
the amount of change induced by each training episode 
depends on the pre-episode weight of that synapse, and also 
which direction learning is in, in that trial. Taken together, 
the result is that each synapse receives an independently 
concatenated course of training which lacks a statistically 
reliable relationship with the learning outcome at any other 
synapse, indefinitely.

Nucleo‑olivary Feedback

Yet chaotic training variables must be converted into a pre-
dictable outcome (by default, because an arbitrary outcome 
would drive negative selection pressure). The—proposed—
cerebellar solution involves inhibitory feedback to the infe-
rior olive, the source of climbing fibre signals.

The output of a microzone, carried by Purkinje cells, 
is channelled down onto a smaller group of cells in deep 
nuclei, which forms part of the circuit and includes pro-
jection neurons which carry the output of the circuit. Each 
group sends an inhibitory (GABA) projection to the con-
tralateral olivary complex [48, 49]. ‘A significant percent-
age of cerebellar nuclear projection cells, perhaps as many 
as half, provide GABAergic input to the inferior olive’ 
[50 p.14352]. Other estimates suggest 30–35% [51]. Most 
Purkinje cells contact GABAergic as well as glutamatergic 
nuclear projection neurons [52, 53]. About half of GABAe-
rgic and half of non-GABAergic terminals received by oli-
vary cells are in glomeruli, where they co-terminate on gap 
junction-connected spines, and the rest on primary and inter-
mediate dendrites [54].

Olivary groups innervate Purkinje cells with which they 
co-terminate in deep nuclei [55], so that they complete 
largely closed circuits [56–59]. Supplementary Materials 
contain a review of some of the evidence of closed circuits 
(Supplementary Materials 2, ‘A short review of the evidence 
of closed cerebellar circuits’).

Feedback is a learned response following training with a 
conditioning protocol, and inhibition is targeted and timed 
to block the signals that trained it [56]. Nucleo-olivary pro-
jection cells fire spontaneously. Elevation of firing of the 

feedback pathway coincides with a transient fall in Purkinje 
cell rates [60, 61]. The fall in the Purkinje cell rate is in 
part the result of coordinated inhibition of Purkinje cells 
by interneurons. There is accordingly, as training proceeds, 
a progressive swing in the balance between excitatory and 
inhibitory input to a Purkinje cell, as training weakens 
direct excitation and strengthens feed-forward inhibition of 
Purkinje cells via interneurons. GABAergic nuclear cells are 
reported to be sensitive to—indeed specialised to respond 
to—changes in the simple spike rate [62].

Adding Nucleo‑olivary Feedback to the Model

It is poorly understood what direct effect feedback has where 
it terminates and unknown what its function is. If climbing 
fibre instruction signals are binary (see above and [2]), it fol-
lows that feedback does not change what they teach, so that 
feedback is itself binary—not the firing rate of the feedback 
signal per se, but in its effect—such that, in any trial, feed-
back is either sufficient to block the climbing fibre signal in 
that trial or it is not.

In what would otherwise be a paired trial, but where the 
climbing fibre signal is blocked by feedback, the direction of 
learning is reversed. Using the Heaviside function, H(x) , we 
might represent the presence, or not, of a teaching signal as:

where r is parallel fibre signal frequency, such that, at 
each synapse, rLn−1 is the product of parallel fibre signal 
frequency and synaptic weight, and ⟨rLn−1⟩ is the average of 
the products. A rising value of ⟨rLn−1⟩ accompanies increas-
ing depression of the Purkinje cell rate and corresponding 
disinhibition of the feedback pathway.1 f ⟨r⟩ is the threshold 
where a rising value of ⟨rLn−1⟩ blocks olivary discharge, so 
that there is no climbing fibre signal in that trial, determined 
on a trial-by-trial basis. So Ln is the sum of Ln−1 and the 
product of

in trials where excitatory drive to the inferior olive is 
present.

What is the derivation of the threshold f ⟨r⟩ and of the 
relationship f ⟨r⟩ − ⟨rLn−1⟩?

Parallel fibres that contact a Purkinje cell make contact 
at an average of 1.24 synapses, that is, one and sometimes 
two [63, 64]. If we assume contact is at one synapse per cell, 

Tn = H
�
f ⟨r⟩ − ⟨rLn−1⟩

�

k
��
H
�
f ⟨r⟩ − ⟨rLn−1⟩

��
− Ln−1

�
and

�
Ln−1, Tn = 1

1 − Ln−1, Tn = 0

1  This is because Ln−1 represents weakening of parallel fibre-Purkinje 
cell synaptic transmission and strengthening of parallel fibre-
interneuron transmission.
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and that it is immaterial whereabouts on the Purkinje cell 
dendritic arbour contact is made,2 we can represent:

1)	 The effect of a signal on postsynaptic firing as a function 
of the product of signal frequency and synaptic weight, 
and overall, collectively, as the average of the products; 
and

2)	 Feedback signal frequency as a function of the Purkinje 
cell rate.

Point (2) requires the further assumption that the firing 
of microzone-grouped Purkinje cells is concerted, so that 
all nuclear cells receive the same effect although they each 
receive input from a different sub-group of Purkinje cells. 
This condition is met: see the discussion.

A climbing fibre signal is blocked where inhibition of an 
olivary group prevails against excitation that normally trig-
gers a signal. Presumably, and in the model, the necessary 
strength of feedback is proportionate to excitation of the 
group, so that strong excitation must be met by proportion-
ately stronger feedback, for example.

It is poorly understood what controls frequency modula-
tion of excitatory input to the inferior olive and what func-
tion that might have. The model addresses this by predicting 
that mossy fibre activity that drives input to a microzone 
and input to the inferior olive group that forms part of the 
same circuit is at related rates. This allows the threshold 
to be automatically adjusted on a trial-by-trial basis, so 
that it is proportionate on each occasion to a function of 
rates received as input to the system. Thus, incidentally, the 
strength of drive to the inferior olive influences the learning 
outcome notwithstanding that it is not reflected in the firing 
signature of climbing fibre signals themselves.

The next two sections discuss, respectively, the physi-
ological and computational mechanisms that provide the 
necessary relationship with mossy fibre rates.

The Physiological Basis to Predict a Relationship

Stellate cells in the C3 region of the cerebellar cortex, which 
is involved in forelimb movement, respond (by firing) exclu-
sively to stimulation of an associated discrete region of the 
body surface, or receptive field [8, 65–67], and not to stimu-
lation of other fields. It is thought that this stimulation drives 
paired input which trains potentiation of the parallel fibre-
stellate cell synapse, consistent with in vitro evidence [6, 
68]. Input to stellate cells evoked by stimulation of other 
fields is to untrained synapses, where it is therefore without 

effect [65]. Transmission at an untrained synapse is unde-
tectable even at several 100 Hz (Henrik Jörntel, private cor-
respondence dated 31 March 2017).

Receptive field-specific input to C3 circuits effectively 
extends modular cerebellar circuit wiring to the body sur-
face. Stimulation evokes mossy fibre and climbing fibre 
signals that travel by different pathways to converge on the 
same vertical slice of the cerebellar cortex [69, 70]. On the 
whole, there is ‘a close correspondence [of terminal fields] 
between inputs conveyed by climbing fibres to the molecu-
lar layer [where they terminate on Purkinje cells] and those 
conveyed by mossy fibres to the underlying granular layer 
[where they terminate on granule cells]’ [71 p.677]. Thus 
learning is induced with a single peripheral stimulus which 
evokes paired input—not just the same form of stimulus but 
the same event. This ‘is a feature that seems to be observed 
across species and other parts of the cerebellar cortex (for 
example, crus II in the rat)’ [72, p.305].

So, mossy fibre rates received as direct input to a micro-
zone, and rates received as input to the inferior olive, are 
correlated if and to the extent they reflect the same or cor-
related parameters of stimulation. This does not (of course) 
establish a correlation, but it provides a basis in evidence to 
predict one.

The Computational Relationship

In terms of a computational relationship, the author has 
proposed previously that mean firing rates of concurrently 
active mossy fibres have a relatively straightforward and 
feasibly linear relationship with mean parallel fibre signal 
frequencies downstream, over a minimum number of ran-
domly sampled parallel fibres, a threshold satisfied by the 
homeostatically regulated number received as input to a 
Purkinje cell [1]. 

If that proposal is correct, ⟨r⟩ is related to excitatory input 
rates to the cell group in the inferior olive which forms part 
of the same circuit, with coupled timing, allowing the feed-
back threshold to be set at a function of ⟨r⟩ , f ⟨r⟩ . In the 
model, the function is a coefficient < 1. The threshold must 
be exceeded by the mean of the products of r and Ln−1 to 
block a climbing fibre signal in a paired trial. The model 
assumes that ⟨r⟩ scales linearly with excitatory input to the 
inferior olive. Linearity is not necessary—the actual rela-
tionship may be different—but has the merit of being both 
credible and convenient. So, ⟨r⟩ is a measure of excitatory 
input to the inferior olive, and f ⟨r⟩ can be taken as a measure 
of the strength of inhibitory feedback sufficient to tip the 
scales, where ⟨rLn−1⟩ is high enough for a block, calculated 
trial by trial.

⟨rLn−1⟩ jointly represents learning at the parallel fibre syn-
apse on Purkinje cells and on interneurons.

2  Reasonable, because it is physiologically justified by the distribu-
tion of spines and the randomised distribution of active cells among 
the parallel fibre population that make contact.
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Results

To bring all this together, it allows us to model the effect of 
training on a synaptic population whose members receive 
training that is randomly interlarded with extinction trials, 
and including an effect of nucleo-olivary feedback (Fig. 3). 
In each trial, synaptic activation is in one of a number of 
possible patterns generated in a random sequence. The ratio 
and sequence of paired and unpaired trials at each synapse 
is randomised with a synapse-assigned probability. Follow-
ing training, in some nominally paired trials, the climbing 

fibre signal is blocked by feedback, reversing the direction 
of change. Firing rates of simulated parallel fibres that are 
active together vary from cell to cell, and the firing rate of 
each cell is variable on different occasions when it is active.

With this model, there is a well-predicted and stable out-
come (Fig. 3c-f) of chaotic input to the system. The outcome 
is that stored patterns are always divided by training into 
a subgroup of synapses where modification saturates and 
a subgroup where the sign is reversed, in proportions that 
reflect the feedback threshold. To restate that, the synap-
tic outcome within a pattern polarises. A group threshold 
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allows individual weights in the same pattern to be trained in 
different directions. A high feedback threshold means a pro-
portionately high fraction saturate and low threshold a pro-
portionately lower fraction. The proportion in the simulation 
approximates the reported proportion of strongly depressed 
parallel fibres on a Purkinje cell in the rat [23].

At low numbers used in the simulation, it is in some 
cases not possible to divide a group so that they all polarise, 
with the result that a synapse is stranded at an intermedi-
ate weight to maintain the group average (Fig. 3d). With 
larger numbers, outliers disappear because a split is always 
possible.

The probability of paired vs unpaired trials at all synapses 
is intentionally in the range that would teach change in the 
Fig. 2 simulation, to show that a split is always forced. To 
put this in another way, it is to show that, even with probabil-
ities that would otherwise all teach synaptic change, learn-
ing always generates the same split in proportions which are 
dependent only on the feedback threshold. It does not matter 
to the outcome what exact probability of pairing synapses 
have individually. Any spread of probabilities will force the 
same split, given the same feedback threshold.

As noted early on, to get a stochastic result from ran-
domly compounded training variables they must occur with 
a fixed probability, problematic because external variables 
are not random and do not have a fixed probability, and out-
side cerebellar control. The cerebellar solution is that indi-
vidual probabilities, and individual synaptic outcomes, are 
immaterial. There is always the same split, regardless. In 
fact, non-fixed probabilities are used to destabilise the mid-
dle of the curve, so that weights migrate towards the limits 
of the range. A within-pattern variable probability of pair-
ing at each synapse in fact contrives a predictable outcome 
(which is absent when variables are controlled—Fig. 3a), 
because the limits of the range are more stable than the mid-
dle. Uncertainty is a necessary ingredient of training because 
it increases instability at intermediate synaptic weights.

Post Script: Purkinje Cell Dendritic Membrane 
Potential

Calcium entry into Purkinje cell dendrites is affected by 
local dendritic membrane potential. Membrane potential can 
be raised or lowered depending on whether the Purkinje cell 
receives or has recently received inhibition from interneu-
rons [73, 74] or excitatory input from parallel fibres [75].3 
An effect of membrane potential on learning is shown—in 
experimental conditions—by optogenetically suppressing 
calcium in VOR circuits [74].

Accordingly, following training, we might expect an 
arbour-wide—indeed microzone-wide—learned effect on 
calcium influx caused by feedforward inhibition of Purkinje 
cells. As the effect is to reduce calcium influx, it should pref-
erentially affect low-affinity LTP in extinction trials. If so, 
this would mean that at higher values of Ln , extinction is in 
smaller per trial increments than acquisition (down steps are 
smaller than up).

To reflect this, the model includes a function which modi-
fies step size, making down steps smaller as Ln approaches 1

in extinction trials where Ln−1 exceeds b (the new func-
tion in square brackets replaces k and fA(x) disappears). This 
adjustment is made in the Fig. 3 simulation. This may help 
to explain the seeming ‘disappearance’ (really: reduction) of 

Ln = Ln−1 +

[
1 − Ln−1

(1 − b)(1 − k)

](
Tn − Ln−1

)(
1 − Ln−1

)
, Tn = 0; Ln−1 > b

Fig. 3   The effect of a collective feedback threshold on learning. A 
simulation of modification by training of 4 groups of four synapses, 
showing the proposed effect of nucleo-olivary feedback. Each syn-
apse also participates in one of a further four groups, so that the 
groups can be visualised as a matrix. All 16 synapses are shown in 
(c)–(f), four in each panel. Grouped synapses receive climbing fibre 
signals together. Only one (randomly selected) group receives climb-
ing fibre input per trial. There is a climbing fibre signal in an aver-
age of half of trials. In other trials, a synapse may either receive an 
unpaired input or else is silent, at random, but with a probability 
assigned to each synapse (which therefore determines the probability, 
at that synapse, that signals are paired). The ratio of paired to total 
trials is not intended to be physiological and is immaterial. The model 
simulates, rather, the change at a synapse trained with randomly con-
catenated paired and unpaired trials, where learning in paired trials 
is in groups that overlap. The black line is the average of the prod-
uct of signal frequency and synaptic weight for the group. Following 
training, this is always stable at or near the feedback threshold, the 
value where climbing fibre signals are blocked in (what would other-
wise be) paired trials. (a) and (b) are for comparison with (c)–(f). In 
(a), firing rates and the probability of paired trials are fixed (200 Hz; 
p = 0.8). All groups are active, but data are shown for only one, as 
an example of the result. Learning gets ‘locked’ in a balance of mid-
range but individually arbitrary weights (in a wide range). In (b), 
conditions are the same except that firing rates are randomly variable 
within synapse-prescribed limits. Synaptic modification appears to 
be in the early phase of slow polarisation, but the outcome remains 
inconclusive even after 3,000 trials. In (c)–(f) signals are each ran-
domly assigned a firing rate in the range 100–300 Hz, and the prob-
ability that signals are paired is randomly generated for each syn-
apse, such that each group contains a low ( p = 0.66–0.72), mid-low 
( p = 0.72–0.78), mid-high ( p = 0.78–0.84), and high ( p = 0.84–0.9) 
probability. In all groups, following training, learning polarises and 
weights are stable. Fourteen out of sixteen synapses are pulled to the 
limits of the range. The other two are also stable but stranded at an 
intermediate weight to maintain the group average. At higher num-
bers, with larger groups, stranded weights are unnecessary

◂

3  Possibly, membrane potential also depends on whether the cell is 
in an up or a down state—however, in the presence of Purkinje cell 
membrane bistability in awake, behaving animals is contentious, 
that is, probably absent (76.Schonewille, M., et al., Purkinje cells in 
awake behaving animals operate at the upstate membrane potential. 
Nat Neurosci, 2006. 9(4): p. 459–61; author reply 461, 77.Yartsev, 
M.M., et  al., Pausing purkinje cells in the cerebellum of the awake 
cat. Front Syst Neurosci, 2009. 3: p. 2.).
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climbing fibre signals in trained circuits [48, 78]. Function-
ally, it causes L to be ‘pulled’ more strongly towards a high 
value and increases the stability of memories once acquired.

Discussion

Attempts to explain cerebellar function have been domi-
nated by a motor learning role for climbing fibre signals 
since Marr’s original proposal [79]. The common features 
of traditional learning models are referred to as the super-
vised learning model [80]. The two main subclasses are the 
perceptron [originally: 12] and adaptive filter models [origi-
nally: 13].

The central premise of the supervised learning model is 
an assumption that learning is stored as long-term, finely 
graduated parallel fibre synaptic changes, trained under 
supervision of external instruction signals [12–15], pro-
vided by climbing fibres. This has the function that the naive 
Purkinje cell response to granule cell firing rates is displaced 
by a learned response controlled by incrementally acquired 
modification of synaptic weights. Weights are controlled 
by a learning algorithm. Learning is generally envisaged 
to correct behavioural errors, signalled by climbing fibre 
signals. A function of the organisation of Purkinje cells into 
microzones is absent, and firing of Purkinje cells is implic-
itly regarded as output of the system.

It is not always possible to directly compare models point 
by point, because they do not frame problems in the same 
way, or ask all the same questions, or make comparable pro-
posals. To compare the present proposals to other models, 
it is therefore necessary to narrow down the field and the 
points under consideration. The writer has attempted to do 
that in two main ways. One is to restrict the focus to the 
scope of the paper: learning at the parallel fibre synapse. The 
other is to focus on a discussion of the evidence, after all the 
only real gauge of the strengths and weaknesses of a theory.

It is uncommon for computational papers to re-evaluate 
the evidence for core features of the model class they belong 
to, because it is considered unnecessary. The thinking is, 
implicitly, that early work established a platform of evidence 
that it would be needless to argue again. To compare claims 
to a basis in evidence, therefore, we must revisit the original 
justification and therefore the original proposals: for the per-
ceptron, Albus [12, 81], and Fujita [13] for the adaptive filter 
model. Marr [79] is included because his proposals are in 
some ways fundamentally different.4 Table 1 contains a sum-
mary of a (non-exhaustive) comparison of main features of 
those models with each other and with the present proposals.

All of the models, including the present proposals, share 
the idea that climbing fibres have a teaching function, and 
that teaching modifies parallel fibre synaptic transmission 
strength. Where they fundamentally differ is whether output 
of the system is ultimately encoded in input rates to the sys-
tem or generated internally by a graduated effect of synaptic 
weights on signal transmission. In the present model, it is the 
first, with learning confined to the role of memory-operated 
gating. In the supervised learning model, it is the second.

A gate is not a new idea [79]. Marr’s original proposal 
was that the function of synaptic modification was to select 
learned patterns for transmission, while blocking transmis-
sion of other patterns, rather than to modify the postsynaptic 
effect. For that purpose, he envisaged that a synapse was 
‘either totally modified or totally unmodified’ [79 p. 456]. 
It was only afterwards that he became associated with the 
idea of learning-adapted weights, added by Albus [12]. Albus 
combined Marr’s idea of parallel fibre synaptic learning 
under climbing fibre supervision with an algorithm for binary 
classification of images developed earlier by Rosenblatt [83].

The idea of training-graduated synaptic weights was later 
adopted by Fujita in his proposal that the cerebellum may 
work in a way that is analogous to an adaptive filter [13]. 
Adaptive filters are used to adjust the amplitude (e.g. volt-
age) of selected parts of a signal received as input, such as 
preferred (or unwanted) frequencies.5 Fujita saw this as fixing 
limitations of a model based on pattern recognition (which 
could only generate episodic output), by replacing it with one 
which received analog input and generated analog output. He 
assumed also that climbing fibre signals are analog, coded in 
a time-varying rate of discharge. In fact, while some mossy 
fibres fire continuously during movement, both granule cells 
[84–86] and climbing fibres [36, 38, 82] fire in short high-
frequency bursts. Climbing fibre bursts are at an invariant 
intraburst rate [37] and separated by an unusually long refrac-
tory period. Fujita is candid that his model ‘is based upon a 
number of assumptions and simplifications’ [13 p. 202].

The perceptron and adaptive filter models importantly dif-
fer with Marr (and the present model). Marr saw learning as 
a way of selectively permitting transmission of remembered 
patterns. In the perceptron and adaptive filter models, it is 
used instead to change the Purkinje cell response, replacing 
control by input rates with control by a learning algorithm.

Evidence of a learning algorithm is circumstantial—
while synaptic modification may be what we would expect 
to observe if the Purkinje cell is a perceptron or adaptive fil-
ter, it might equally well have other explanations. It is simi-
larly unsubstantiated that the cerebellum is the physiological 
implementation of whatever the algorithm does—neither the 

4  Marr’s evidence, incidentally, was mainly a recently published 
book by Eccles and others [80.Eccles, J.C., M. Ito, and J. Szen-
tágothai, The cerebellum as a neuronal machine. 1967, Berlin, New 
York etc.: Springer-Verlag. 335 p.].

5  Adaptive filters are used, for example, to remove mains hum from a 
heart trace and feedback from an amplified acoustic signal.
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Table 1   Comparison on some main points of the principle learning models with each other and with the present model. Important note: this is 
not a comprehensive list but focussed on points most relevant to the present scope

* Marr assumes ‘that the central nervous system has a means of converting a signal in a Purkinje cell axon into’ a motor command [77 p.455]
** Albus briefly moots that heterogeneously trained PCs may code a motor sequence, but this does not form part of the model. The short section 
on firing of nuclear cells really only states in the form of mathematical symbols what inputs nuclear cells receive

Marr New model Albus/perceptron Fujita/adaptive filter

cf signal in teaching role Yes Yes Yes Yes
Sign of cf-trained pf-PC 

change
LTP LTD LTD LTD

Binary or graded synaptic 
modification

‘Totally modified or totally 
unmodified’

Binary effect on collective 
transmission

Graduated Graduated

Function of learning Transmission of learned 
patterns

Transmission of learned 
patterns

Learned ability to group 
input patterns into prede-
fined classes

Selectively weighted trans-
mission of pf signals to 
give a ‘desired response’

Response depends on 
pattern

No No Yes Yes

Functionally variable cf 
signature

No No Yes Yes, contained in a time-
varying discharge rate

Heterogeneous lessons No No Yes Analog signal
Unit of learning and 

memory
PC Microzone PC PC

cf-trained learning at pf-
MLI synapse

No LTP Yes, in different directions 
on outer and deeper level 
cells

Yes

Learning algorithm No No Yes Yes—assumed criterion of 
system performance is 
the mean square error

Physiological derivation 
of synaptic learning 
function

No function Yes No No

Output of the model Single PC firing rate* Functionally indivisible
(i) learning and (ii) behav-

iour of the circuit

Single PC firing rate** Single PC firing rate

What codes PC firing? pf rates: data packaged 
in single signals, as 
‘codons’

pf rates: data indivisibly 
coded in all input

pf synaptic weights pf synaptic weights

Plastic outcome coupled to 
training variables?

No proposed physiological 
or computational mecha-
nism that sets weights

No Yes Yes

PC-nuclear anatomical 
contact ‘rules’

Outside cortex-only scope Functional and integrated Not included Not included

Nucleo-olivary feedback Outside cortex-only scope Functional and integrated Not included Not included
Function of unknown 

patterns
None Self-inhibition by the cir-

cuit of its own output
No unknown patterns None: an effect of noise is 

eliminated by training
What limits pattern 

memory capacity?
Inhibition must block 

a response to random 
patterns

Conceivably no limit Ultimately, overlap causes 
classification errors

Pattern memory is not the 
function of learning

Majority pf-PC synaptic 
‘silence’

Supports predicted synap-
tic modification

Supports predicted synap-
tic modification

At best, not supporting 
evidence

At best, not supporting 
evidence

Recorded firing linearly 
codes behavioural param-
eters

Consistent with binary 
weights

Consistent with polarised 
weights

Problematic Problematic
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perceptron nor adaptive filter can cite a physiological deriva-
tion of the algorithm.

They both, however, importantly predict fine-grained 
graduation of trained synaptic weight adjustments—the 
mechanism of pattern recognition. The evidence is unfa-
vourable. Naturally occurring depression at the parallel 
fibre-Purkinje cell synapse seems to be widespread and uni-
formly severe. The large majority of synapses are strongly 
depressed, so-called ‘silent’ synapses making up as much as 
80–85% [23]. This is not to say that depressed synapses are 
all equally or fully stripped of AMPA receptors, although 
some of them are [87]. But transmission is uniform in 
being compressed into a narrow range where there is ‘no 
detectable somatic response’ to granule cell stimulation [23 
p.9676]. This is consistent with a high estimate of ‘elec-
trically silent’ synapses made by parallel fibres activated 
by cutaneous stimulation [9]. Attempts have been made to 
explain the data [14, 15], but another explanation is that the 
evidence does not support the model.

Cell firing data are also a problem. In computational net-
work models that use simulated synaptic weight adjustments 
to convert input values into proposed output of the system—
the method used by the supervised learning model—‘it is 
often extremely difficult to find any obvious relationships 
between the output of the individual units [single cells] and 
any of the features of the input stream or the final response 
of the system….In contrast, the firing rate of many cerebel-
lar neurons is a linear function of task-related parameters….
This linear coding of task-related parameters has been found 
at all levels of the cerebellar circuit’ [80 p.239]. The authors6 
provide thirty references for linear coding. That is, recorded 
firing of cerebellar cells conflicts with the way they are pre-
dicted to fire if there are graduated synaptic weights.

The present model does not have those problems because 
synaptic weights are not graduated. To the extent that the 
balance between inhibition and excitation of Purkinje 
cells is controlled by learning, the balance has two states, 
thereby removing interference with faithful transmission of 
rate-coded data. In fact, part of the function is precisely to 
remove an effect of weights on transmission.

The evidence of linear transmission is not limited to a 
correlation of firing and behavioural parameters. In self-
paced mouse locomotion, interneurons reflect ‘granule 
cell input with linear changes in firing rate’ [86 p.6], and 
‘locomotion-dependent modulation of the balance between 
excitation and inhibition [of Purkinje cell dendrites] gener-
ates depolarising or hyperpolarising dendritic Vm [dendritic 
membrane voltage] changes that linearly transform into bidi-
rectional modulation of PC SSp [Purkinje cell simple spike] 
output’ [86 p.9].

Linear transmission supports the idea that weights do not 
modify (by graduating) transmission and therefore indirectly 
a gating role of memory. On the face of it, however, gating 
(like other models) still has a long recognised problem [12, 
79]. This is that Purkinje cells receive inhibition from laterally 
positioned interneurons, so that inhibition of a Purkinje cell 
is driven by a largely different population of parallel fibres 
than the ones that make direct contact on it. The stellate cell 
main axon extends sagittally, so that in addition to contact on 
immediately flanking Purkinje cells, stellate cells also inhibit 
sagittally neighbouring Purkinje cells. Not all do so—there 
is a depth-dependent morphology gradient [25, 82, 88, 89]—
but deeper-lying stellate cell axons can have a range of up to 
450 µm [25], and basket cells may converge on a Purkinje cell 
from a still greater range that covers half a microzone [82, 90, 
91]. This causes the issue that it is difficult to conceive (and 
intractable to model) how direct excitatory input to a Purkinje 
cell and feed-forward inhibition combine for a precise effect.

For Marr, the role of interneurons is to hold Purkinje cells 
under inhibitory, default restraint unless parallel fibres are 
active in a learned pattern. In order for direct excitation of a 
Purkinje cell to prevail over inhibition, it was necessary that a 
very high fraction (‘close to one’) of direct input was received 
at modified synapses, which he thought were strengthened by 
training. He predicted that synapses on interneurons were 
not plastic, for which he saw no need in this role.7 Albus 
proposed that training strengthens synapses on stellate cells, 
motivated by the performance enhancement that would be 
provided by a bidirectional learning outcome. To deal with 
lateral inhibition, he argues that strengthening should be con-
fined to stellate cells in the outer molecular layer and that the 
direction of learning is reversed at deeper level, weakening 
synapses on deeper-lying stellate cells and on basket cells.8 
Fujita predicts a balance between excitation and inhibition of 
Purkinje cells that is adjustable in both directions, but does 
not commit himself to any particular mechanism. To sim-
plify feed-forward inhibitory pathways, Fujita assumes ‘one 
inhibitory interneuron for one Purkinje cell’ [13 p. 198].

Generally, there has been a limited appetite to re-engage 
with the anatomical evidence. Simplifying assumptions 
are preferred: for example, incorporating interneurons 
into a continuous, learning-modulated scale of net excita-
tion/inhibition of Purkinje cells. In fact, the problem is not 
anatomy but a modelling assumption that control of single 
Purkinje cells is somehow individually coded in the signals 

6  In fact advocates of the supervised learning model, but also of a 
balanced review.

7  Marr allows that operation in this way might lead you to expect 
(counter to the evidence) that each Purkinje cell would be partnered 
with a single molecular layer interneuron of the same size and shape, 
so it would sample the same parallel fibre activity.
8  Albus does not explain (or model) how parallel fibre-interneuron 
synaptic adjustment is confined only to the ‘immediate vicinity of 
the Purkinje cell’ under instruction or how instruction teaches weight 
change in different directions at superficial and deeper level.
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they receive and that the goal is to explain how. The present 
proposals do not have that issue because Purkinje cells are 
not the unit of learning or coding.

Marr and Albus published before it was reported that 
Purkinje cells are organised functionally into microzones 
[92–95]. Fujita raises the possibility of scaling up the ‘one 
Purkinje cell model’ to a microzone model but says that it 
‘does not explain any more functioning of the cerebellum 
than a single cell model’ [13 p. 203]. The focus was never 
reframed from ‘what controls Purkinje cells?’ to ‘why are 
they in groups?’.

The absence of a theoretical explanation of organisa-
tion of Purkinje cells into microzones meant there was no 
competition to displace the assumption that single Purkinje 
cells are the unit of learning and that ‘individual Purkinje 
cells most probably require specific error signals and learn 
heterogeneously’ [96 p.3]. This had the theoretical justifica-
tion that heterogeneous instruction made the ‘computations’ 
more powerful that it was believed the cerebellum carried 
out, assuming the cerebellum worked as predicted by the 
traditional model.

The author has argued previously that the repeating 
microcircuit is the smallest functional unit in the cerebellum 
[2] and that information contained in firing rates is not in 
single signals but encoded in statistical properties of popula-
tion activity [1]. For rate coding purposes, it does not matter 
which subgroup of cells is active or which of them fires at 
any particular rate. This allows information to be coded in 
any random sample of input to a microzone subject to a min-
imum sample size (unpublished data). With this model, there 
is an important coding function of the termination pattern 
of mossy fibres, which end in multiple, sagittally aligned 
terminal clusters9 [98–101], traditionally problem evidence 
for the single Purkinje cell model.

Climbing fibres do not terminate on a single Purkinje cell 
but on a variable number in the range 1–10, which therefore 
receive the same climbing fibre signals at the same time (at 
all climbing fibre synapses, as each Purkinje cell receives 
contact from only one climbing fibre). Moreover, climb-
ing fibres that terminate on a microzone all discharge at the 
same time, so that microzone-grouped Purkinje cells receive 
instruction signals in volley, as one. Indeed, microzones are 
defined by their climbing fibre input. This would not in itself 
conclusively rule out bespoke lessons contained in the same 
climbing fibre volley. However, the data available about the 
signature of climbing fibre discharge does not convincingly 
support the idea of functionally variable instruction. On 
the contrary, the evidence makes a robust argument for the 

opposite view, that lessons do not vary. As that case has 
been made previously, it is not repeated here but appears (in 
a fuller-than-previously-published form) in Supplementary 
Materials 1. If correct, teaching signals are not bespoke, 
because they are not functionally variable.

In the present model, standardisation of instruction sig-
nals is not a lack of flexibility but functional, contributing to 
microzone-wide learning and a concerted effect of memory 
on microzone-wide behaviour. The climbing fibre projec-
tion, originating in the contralateral inferior olive and ter-
minating with the footprint of a microzone, forms part of the 
‘cerebellar’ circuit (see Supplementary Materials 2). The 
circuit is made up on its other two sides by the output of the 
microzone to the cell group in deep nuclei which includes 
the output cells of the circuit, and the inhibitory projection 
from that group back to the olivary group (reciprocated by 
climbing fibre collaterals).

Functionally indivisible circuit behaviour predicts and 
would explain seemingly anatomically indivisible output 
of microzone-grouped Purkinje cells to a nuclear group. 
Purkinje cells outnumber nuclear cells around 10:1, a 
Purkinje cell makes individually strong contact on 4–5 
nuclear cells, and each nuclear cell receives contact from 
30 to 50 Purkinje cells [rats: 102]. There is no known 
internal organisation of the output of a microzone to a 
nuclear group [Bengtsson and Jorntell in 103 p. 663]. 
The traditional model does not explain how heterogene-
ously trained output of Purkinje cells is mixed down onto 
nuclear cells and what function that has. The present pro-
posals do not have that problem because learning is not 
heterogeneous. Unlike the single-cell model, microzone-
wide memory is reconciled with what appears to be ran-
dom sampling by nuclear cells of Purkinje cells [2].

Nucleo-olivary feedback is also poorly represented in tra-
ditional learning models. In a recent and authoritative review 
of the core features and computational principles of super-
vised learning models, inhibitory feedback to the inferior 
olive is not mentioned [80]. Feedback has an important and 
functional part in the present proposals.

Finally, it is not clear that a learning algorithm could in 
fact learn from real-world variables which are outside cer-
ebellar control, not random and do not occur with fixed prob-
abilities, and which are compounded in training in a manner 
which also has those features. This is problematic because 
overlap of paired patterns, and paired with unpaired patterns, 
means each synapse is likely to receive a unique course of 
training which does not have a reliably predictable relation-
ship with any other synapse, or with any particular pattern 
in which it participates.

In the present proposal, that is not an issue because train-
ing variables do not determine the synaptic outcome. Instead, 
the outcome is fixed—always the same—and because it is 
fixed, it is predictable. As a result, all ‘remembered’ patterns 

9  A mossy fibre axon may give rise to several terminal clusters, 
aligned sagittally, the direction of the long axis of a microzone, sepa-
rated by a minimum but otherwise apparently arbitrary distance, so 
that branch endings are randomly spaced in a sagittal band.
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receive the same effect on transmission at the functional 
scale that codes information.

There is no learning-controlled graduated balance 
between excitation and inhibition of Purkinje cells. 
Instead, it has two functional states—a switch—at syn-
aptic, whole cell and microzone level. It is unnecessary 
that depressed synapses are equally or all fully blocked, 
although some of them are [87], because transmission is 
by an effectively random sample of weights and there-
fore normalised over a scale threshold. Indeed, in the new 
model, variably graded synaptic transmission strength—
the mainstay of the supervised learning model—would 
cause dysfunctional interference with faithful transmis-
sion of rate codes.

The author has previously proposed that intelligent 
anatomy of functionally unitary circuits implements a 
memory-controlled gate [2]. The present proposal is a 
complementary and integrated but separate mechanism. 
The two together orchestrate a unitary response of the 
functionally undivided circuit.

Finally, it is a feature of the learning function that it mod-
els induction without modelling the underlying molecular 
pathways. The stripped-down character of the function might 
be likened to the neck of an hourglass. The top represents 
events outside the cerebellum which generate uncontrolled 
training variables. The bottom represents subcellular events 
involved in making parallel fibre synaptic plastic changes. 
The narrowness of the neck represents sparsening of vari-
ables that affect calcium amplitude. The narrowness of the 
neck, and role of calcium in induction, mean that control 
of calcium predicts the synaptic learning outcome, creating 
selection pressure that eliminates other variables.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12311-​021-​01325-9.
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