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Abstract
Cerebellar involvement in major depressive disorder (MDD) has been demonstrated by a growing number of studies, but it is
unknown whether cognitive functioning in depressed individuals is related to cerebellar gray matter volume (GMV) abnormal-
ities. Impaired attention and executive dysfunction are characteristic cognitive deficits in MDD, and critically, they often persist
despite remission of mood symptoms. In this study, we investigated cerebellar GMV in patients with remittedMDD (rMDD) that
showed persistent cognitive impairment. We applied cerebellum-optimized voxel-based morphometry in 37 patients with rMDD
and with cognitive deficits, in 12 patients with rMDD and without cognitive deficits, and in 36 healthy controls (HC). Compared
with HC, rMDD patients with cognitive deficits had lower GMV in left area VIIA, crus II, and in vermal area VIIB. In patients
with rMDD, regression analyses demonstrated significant associations between GMV reductions in both regions and impaired
attention and executive dysfunction. Compared with HC, patients without cognitive deficits showed increased GMV in bilateral
area VIIIB. This study supports cerebellar contributions to the cognitive dimension of MDD. The data also point towards
cerebellar area VII as a potential target for non-invasive brain stimulation to treat cognitive deficits related to MDD.
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Introduction

Cognitive dysfunction is a highly relevant symptom domain
in major depressive disorder (MDD), affecting about two-
thirds of acutely depressed patients [1]. In patients with
MDD, cognitive impairment independently mediates func-
tional outcomes, e.g., workforce performance [2]. Cognitive
dysfunction in depression typically includes deficits of atten-
tion and executive functions [1, 3]. Importantly, in 30–50% of
patients with MDD, cognitive dysfunction persists despite re-
mission of mood symptoms [1, 4]. If persistent in remitted

individuals with MDD, such impairments may mediate an
increased risk of major depression relapse [5–7]. Cognitive
dysfunction in MDD is difficult to treat with little evidence
for procognitive effects of antidepressant medication [8].
Non-pharmacological interventions, such as cognitive reme-
diation therapy, may be effective, yet data in this regard is
scarce and treatment benefits are poorly defined [9].

Against this background, there is an urgent need for a more
detailed understanding of the neural mechanisms of cognitive
dysfunction in MDD. Using structural and functional magnetic
resonance imaging (MRI), neural correlates of cognitive dys-
function in depression have been identified by numerous stud-
ies, including meta-analyses [10–13]. Although the past decade
has witnessed an increased interest in cerebellar involvement in
depression, potential cerebellar contributions to cognitive dys-
function in MDD have rarely been investigated [14]. Since
approximately half of the cerebellar cortex is associated with
non-motor functions, i.e., cognitive, affective, and self-
referential functions [15], this may be a serious omission.

FunctionalMRI (fMRI) analyses of cerebro-cerebellar con-
nectivity in large human samples have revealed a clear
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cerebellar topography, i.e., parallel neural circuits that the cer-
ebellar subregions form with different functional areas of the
cerebral cortex and with different subcortical structures [15].
There is a special role for cerebellar area VII. Unlike all other
cerebellar areas, area VII is not connected with the
somatomotor system but exclusively communicates with ce-
rebral structures that support cognitive, affective, and self-
referential processes [16]. Additional non-motor representa-
tions are located in cerebellar areas VI and IX [16].

Investigations of cerebellar structure and function with
MRI require optimized data analysis methods. Image registra-
tion should employ cerebellum-optimized templates, since the
use of conventional templates results in anatomically impre-
cise findings [17, 18]. A small number of cerebellum-
optimized MRI investigations in MDD have been published
so far. Voxel-based morphometry (VBM) with cerebellum-
optimized data analysis has been applied by two studies [19,
20]. Cerebellar resting perfusion has been examined by one
fMRI study [21]. In patients with acute depression, abnormal
gray matter volume (GMV) has been demonstrated in area IX,
a region belonging to the so-called default-mode network
(DMN) [20]. Additionally, in patients with acute MDD, ab-
normal resting perfusion within area VIIA has been associated
with depressive symptom load [21]. However, neither of those
studies specifically addressed cognitive functions. A few
fMRI studies have investigated cerebellar intrinsic con-
nectivity, yet cerebellum-optimized data analysis was
not applied in any of those studies [14, 22–26].
Keeping this important limitation in mind, there is pre-
liminary evidence for abnormal resting-state connectivity
of area VIIA with cerebral components of the so-called
cognitive control network (CCN) in patients with acute
depression [14, 24, 25].

This study investigated structural cerebellar correlates of
persistent cognitive dysfunction in patients with remitted de-
pression. Cognitive functioning in mental disorders can be
conceptualized as a dimensional construct [27]. Along a spec-
trum of functioning, this study included depressed patients
with a more severe impairment of attention and executive
functions. The study aimed at cerebellar mechanisms that con-
tribute to the cognitive dimension ofMDD. The study subjects
were participants in a project that evaluated cognitive remedi-
ation therapy in remitted MDD [28]. For this study, patients
were investigated at baseline, i.e., prior to cognitive training.
Based on evidence for cognitive processes predominantly
subserved by area VII, and based on cumulative data suggest-
ing abnormal structure and function of this cerebellar subre-
gion in acute depression, we hypothesized that patients with
remitted depression and persistent cognitive deficits would
show abnormal gray matter volume (GMV) of area VII. We
also expected that area VII GMV in patients would be signif-
icantly associatedwith cognitive performance, asmeasured by
a comprehensive neuropsychological test battery.

Material and Methods

Patient Characteristics

This study was part of a project that examined the effects of
cognitive training in patients with remitted MDD. Patient re-
cruitment and selection have been described in detail elsewhere,
as have been the preliminary behavioral outcomes of that pro-
ject [28]. Briefly, patients were diagnosed at the Department of
General Psychiatry, University Hospital Heidelberg, using the
Structured Clinical Interview for DSM-IV (SCID-I). Patients
with a history of MDD and remission at the time of the exam-
ination were included in the study. Four neuropsychological
domains were evaluated: attention, processing speed, executive
functions, and learning/memory, for details see section
“Neuropsychological Evaluation.” Patients were considered to
be cognitively impaired, if they showed deficits (standardized
test values of z < − 1) in at least two out of six cognitive
subdomains (alertness, selective attention, divided attention,
working memory, inhibition, planning; for details see section
“Neuropsychological Evaluation”). Only subjects between 18
and 60 years of age and with an IQ > 80 according to the
Multiple Choice Vocabulary Test (MWT-B, [29]) were includ-
ed. Exclusion criteria were comorbid psychiatric disorders ac-
cording to DSM-IV (except dysthymia), neurological disease,
or past traumatic brain injury. MRI examinations were per-
formed prior to cognitive remediation training. MRI examina-
tions were carried out in 37 patients with remitted MDD and
persistent cognitive dysfunction (rMDD with c.d.), in 12 pa-
tients with remitted MDD and without cognitive deficits
(rMDD without c.d.), and in 36 healthy volunteers (HC), see
Table 1. The median estimated duration of current remission—
according to the patient’s assessment—was 7.6 months in pa-
tients with persistent cognitive deficits and 8.6 months in pa-
tients without cognitive deficits (p = 0.56). At the time of study
enrollment, 47 patients were treated as outpatients, and 2 pa-
tients were treated at a psychiatric day hospital. Any psycho-
tropic medication established in patients’ regular treatment
remained unchanged. Of all patients with persistent cognitive
deficits, 20 received psychotropic medication (venlafaxine = 5,
escitalopram = 3, citalopram = 3, vortioxetine = 2,
agomelatine = 1, amitriptyline = 1, bupropion = 1, duloxetine =
1, fluvoxamine = 1, quetiapine = 1, sertraline = 1). Of all pa-
tients without cognitive deficits, 5 received psychotropic med-
ication (sertraline = 2, citalopram = 1, fluoxetine = 1,
venlafaxine = 1). Of all patients receiving psychotropic medi-
cation, all but two patients were on a monotherapy. No patient
had ever received electroconvulsive therapy. All control sub-
jects were medication-free (except for contraceptives). All sub-
jects were right-handed. The study was approved by the local
ethics committee (Heidelberg University) and carried out in
accordance with the Helsinki Declaration. Written informed
consent was obtained from all participants.
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Neuropsychological Evaluation

Four cognitive domains were tested: (1) Attention was assessed
using the Perception and Attention Functions Battery (WAF).
Three different attention domains were tested, i.e., alertness
(WAFA, performance measure [PM]: response time), selective
attention (WAFS, PM: number of errors), and divided attention
(WAFG, PM: number of omissions). (2) Processing speed was
assessed using the Trail Making Test-A (TMT-A, PM: comple-
tion time) and the Digit Symbol Substitution Test (DSST, PM:
number of correct assignments). (3) Assessment of executive
functions included tests to evaluate working memory (N-Back
verbal, PM: number of errors), inhibition (Go-Nogo, PM: re-
sponse time, number of errors), cognitive flexibility (Trail
Making Test-B, PM: completion time), and planning (Tower
of London (ToL), PM: number of correctly solved tasks). (4)
Assessment of learning and memory included tests for verbal
memory (California Verbal Learning Test (CVLT), PM: num-
ber of words recalled, immediate and delayed recall accuracy)
and figural memory (Figural Memory Test, PM: number of
figures recalled, immediate and delayed recall accuracy). The
neuropsychological tests were included in the computerized
“Vienna Test System” (Schuhfried GmbH, 2012, http://www.
schuhfried.at). Raw test values were z-transformed and
polarized into one direction with higher z-values indicating
better cognitive performance. Individual test scores were
averaged to form four domain scores (attention, processing
speed, executive functions, learning, and memory), see
Table 2. Domain scores were additionally averaged to form a
general cognitive composite score, see Table 2.

MRI Data Acquisition

MRI scans were acquired using a 3 Tesla Siemens Magnetom
TIM Trio scanner, located at the Department of
Neuroradiology, University Hospital Heidelberg. T1-

MPRAGE sequences were acquired with the following pa-
rameters: TE = 2.52 ms; TR = 1900 ms; TI = 900 ms;
FOV = 256 mm; slice thickness = 1 mm; resolution = 1.0 ×
1.0 × 1.0 mm; number of slices = 256.

MRI Data Analysis

The Statistical Parametric Mapping Software, Version 12
(SPM 12, http://www.fil.ion.ucl.ac.uk/spm), implemented in
MATLAB R2019a, was used to analyze MRI data. The
Spatially Unbiased Infratentorial Toolbox (SUIT, http://
www.diedrichsenlab.org/ima-ging/suit.htm) was used for
cerebellum-optimized VBM. Individual T1-weighted se-
quences were controlled for scanner artifacts and the image
origin was set at the anterior commissure. The infratentorial
structures, i.e., cerebellum and brain stem, were isolated from
the surrounding tissue. Using the unified segmentation ap-
proach [30], the infratentorial structures were segmented into
gray matter (GM), white matter, and cerebrospinal fluid.
Using the Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL) algorithm [31], the
individual GM segments were registered onto the SUIT atlas
template. In order to preserve individual anatomical differ-
ences, the GM probability maps were modulated using the
deformation fields that resulted from the registration proce-
dure, providing GMV maps [32]. The GMV maps were
smoothed with a Gaussian kernel of 4-mm full width at half-
maximum (FWHM) [33].

Voxel-wise statistical analyses were applied to assess the
effect of cognitive impairment on regional cerebellar GMV.
We used the general linear model (GLM) approach, as imple-
mented in SPM 12, to investigate the effect of group (remitted
MDD with cognitive deficits, remitted MDD without cogni-
tive deficits, HC) upon voxel-wise GMV, resulting in voxel-
wise parameter estimates. Age, gender, years of education,
and depression severity (i.e., HAMD score [34]) were

Table 1 Demographics and
clinical variables for patients with
remitted major depression
(rMDD) with or without persis-
tent cognitive deficits (c.d.), as
well as for healthy controls (HC).
HAMD, Hamilton Depression
Rating Scale; sd, standard devia-
tion; n.a., not applicable

rMDD with c.d.
(n = 37)

rMDD without c.d.
(n = 12)

HC (n = 36)

Mean sd Mean sd Mean sd p value

Age (years) 45.0 12.7 40.6 12.8 40.5 12.2 0.276a

Gender (m/f) 15/22 n.a. 1/11 n.a. 12/24 n.a. 0.121b

Education (years) 11.9 1.7 12.3 0.9 11.7 1.5 0.464a

Duration of illness (years) 14.5 12.9 15.6 11.9 n.a. n.a. 0.803c

Number of episodes 4.2 7.1 3.5 3.2 n.a. n.a. 0.752c

HAMD 4.9 3.6 5.8 4.1 0.4 0.8 < 0.001a

a ANOVA
bChi-square test
c t test
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included as nuisance variables. For completeness, an addition-
al GLM was calculated, where depression severity was not
included as a nuisance variable. To investigate between-
group differences, voxel-wise t tests were calculated. As in
previous studies [35, 36], given a strong a priori hypothesis,
we chose a significance threshold of p < 0.005 (uncorrected at
the voxel level) to assess between-group differences. Based on
random field theory [37], an empirically determined extent
threshold according to the expected number of voxels per
cluster within the respective contrast was applied.
Anatomical localizations were determined using a probabilis-
tic MRI atlas of the cerebellum [38], as implemented in the
SPM Anatomy Toolbox [39]. For a graphical summary of
results, color-coded statistical maps were created, see Fig. 1.

Correlations with Clinical and Neuropsychological
Scores

Within the patient group, explorative correlation analyses
were calculated between regional morphometric effects and
clinical variables (duration of illness and number of depres-
sive episodes), as well as cognitive parameters (four cognitive
domain scores and general cognitive composite score). To this
end, the first eigenvariate of the parameter estimates was ex-
tracted from cerebellar clusters showing between-group dif-
ferences. Correlations were calculated using the Prism 6 soft-
ware (http://www.graphpad.com/scientific-software/prism).
A nominal threshold of p < 0.05 was defined (uncorrected
for multiple comparisons).

Results

Compared with HC, patients with remitted MDD and persis-
tent cognitive deficits (rMDD with c.d.) showed a GMV re-
duction within left area VIIA, crus II, and vermal area VIIB
(see Fig. 1 and Table 3). Patients with remitted MDD and

without cognitive deficits (rMDD without c.d.) showed a
GMV increase within bilateral area VIIIB compared with
HC (see Fig. 1 and Table 3). No significant GMV differences
were detected between the two patient groups.

In MDD patients, significant correlations were found be-
tween GMV of the cluster in left area VIIA, crus II, and atten-
tion functioning (r = 0.50, p < 0.001), executive performance
(r = 0.38, p = 0.007), and general cognitive functioning, i.e.,
the cognitive composite score (r = 0.36, p = 0.012).
Additionally, significant correlations were found between
GMV of the cluster in vermal area VIIB and attention function-
ing (r = 0.44, p = 0.001), executive performance (r = 0.42, p =
0.003), and general cognitive functioning (r = 0.36, p = 0.012).
There were no significant correlations between GMV and clin-
ical variables, i.e., duration of illness or number of depressive
episodes. When correcting the correlation analyses for multiple
comparisons using the Bonferroni method (p < 0.0071), corre-
lations between GMV in both clusters and attention and exec-
utive performance, respectively, remained significant, while
correlations between GMV in both clusters and general cogni-
tive functioning showed a trend towards significance.

To test for potential effects of depression severity, we ex-
cluded the HAMD score as a nuisance variable in the first-
level analysis and recalculated all second-level analyses. This
approach did not change our main findings, except for the
cluster in vermal area VIIB in patients with cognitive deficits
(see Supplementary Material, Table 1).

Discussion

This study investigated cerebellar GMV in patients with re-
mittedMDDwith or without cognitive deficits compared with
healthy controls. Two main findings emerged: First, patients
with remitted MDD and cognitive deficits showed reduced
GMV within area VIIA, crus II, and vermal area VIIB, which
was associated with attention deficits and impaired executive

Table 2 Cognitive performance in patients with remitted major
depression (rMDD) with or without persistent cognitive deficits (c.d).
Raw values from single neuropsychological tests were z-transformed
and averaged to form composite scores for four cognitive domains, see

the “Material and Methods” section for details. In addition, a general
composite score was formed; see the “Material and Methods” section
for details. The table shows z-values. sd, standard deviation

rMDD with c.d. (n = 37) rMDD without c.d. (n = 12)

Mean sd Mean sd p value

Attention − 0.24 0.54 0.46 0.52 < 0.001a

Processing speed − 0.25 0.94 0.38 0.64 0.036a

Learning and memory − 0.12 0.73 0.07 0.82 0.445a

Executive function − 0.25 0.61 0.27 0.36 0.008a

General composite score − 0.22 0.55 0.30 0.49 0.006a

a t test
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performance. Second, patients with remitted MDD without
cognitive deficits showed increased GMV in area VIIIB.

So far, cognitive deficits in depression have mainly been
associated with structural and functional changes of cerebral
regions [10–13]. In line with our hypothesis, this study re-
vealed abnormal structure of cerebellar area VII in patients
with remitted depression, which was linked to cognitive dys-
function. This adds to a recent body of research that consis-
tently demonstrated contributions of area VII to cognitive
functioning in MDD [16]. Indeed, cerebellar contributions to
cognitive dysfunction in MDD are now better documented
than potential cerebellar correlates of abnormal affective and
self-referential processing [16].

Our data are in agreement with the notion that recurrence
risk in depression may be related to state-independent abnor-
malities of brain structure and function [40]. Such neural ab-
normalities may accumulate with increasing number of de-
pression relapses and they may in turn convey an increased
risk for relapse [41–43]. Cognitive dysfunction is considered
to be one of the clinical mediators of depression relapse [5–7].
In line with this, this study shows cerebellar GMV changes in
remitted depression and an association of abnormal cerebellar
GMV with cognitive dysfunction. Future longitudinal studies
should specifically address whether cerebellar abnormalities
persisting into remission may be associated with risk of MDD
relapse.

It is important to emphasize that performance deficits that
can be assessed in neuropsychological tests represent only one
facet of cognitive dysfunction in depression. At the core of
cognitive depression theories, cognitive dysfunction is being
related to preferential processing of negative emotional infor-
mation and dysfunctional emotion regulation, e.g. rumination
[44, 45]. Future studies should investigate potential cerebellar
contributions to these depression-specific cognitive processes.
Schmahmann and colleagues have suggested that cerebellar
dysfunction may lead to “cognitive-affective dysmetria”, i.e.,
to specific abnormalities of cognitive and affective processes,
in analogy to the well-defined “motor dysmetria” in cerebellar
disorders [46]. This is a highly attractive model, but empirical
support in patients with MDD is lacking at present. So far, no
studies have investigated the mechanisms by which cerebellar
abnormalities in MDD may be related to negative cognitive
styles or impaired cognitive control. At this point, such cog-
nitive abnormalities have only been associated with dysfunc-
tion of the cerebral components of the so-called cognitive
control network [47, 48]. In future studies, potential associa-
tions between depressive cognition and abnormal cerebellar
function or abnormal cerebro-cerebellar functional connectiv-
ity should be of particular interest [22]. Such investigations
will help to validate and refine the model of “cognitive-affec-
tive dysmetria” as a result of cerebellar dysfunction.

In MDD treatment, non-invasive regional brain stimula-
tion, e.g., transcranial magnetic stimulation (TMS), promises
to reduce depressive symptoms by modulating neural activity
in brain regions associated with cognitive processes [49].

rMDD with c.D. < HC

rMDD without c.D. > HC

Fig. 1 Cerebellar regions showing aberrant gray matter volume in
patients with remitted MDD (rMDD) with or without cognitive deficits
(c.d.), each compared with healthy controls (HC). Sagittal, coronal, and
horizontal views (clockwise, starting from top left). Results of second-
level between-group analyses (two-sample t tests; nuisance variables:
age, gender, years of education, and depression severity, i.e., HAMD-
Score), p < 0.005 uncorrected for height, corrected for spatial extent using
an empirically determined threshold of k > 259 voxels, see the “Material
and Methods” section for details. The color bar represents t values
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TMS is typically applied over the lateral frontal cortex [50]. In
light of our findings, cerebellar area VII should receive further
attention as a possible target for TMS. In fact, pilot studies that
applied TMS to the cerebellum are available [51–53].

In this study, patients with remitted MDD that showed
intact cognitive functioning displayed increased volume of
cerebellar area VIIIB compared with controls. Area VIIIB is
associated with sensorimotor functions [54]. Psychomotor re-
tardation is a major feature of MDD [55], but its neural corre-
lates have been addressed by only a few studies [56, 57]. We
have previously detected abnormal resting state perfusion in
area VIIIB in acutely depressed patients [21]. We did not
systematically assess psychomotor symptoms in this study
(nor in our previous study), so we cannot make inferences
about a potential psychomotor impact of abnormal area
VIIIB structure (or function) in MDD. Interestingly, in pa-
tients with acute major depression, we previously found in-
creased GMV in different cerebellar subregions [19, 20]. The
causes of increased cerebellar GMV in MDD are unknown at
this point of research. However, given that cerebellar plasticity
is well recognized, it may be speculated that increased cere-
bellar GMV in depression may reflect compensation efforts,
i.e., the so-called cerebellar reserve [58].

We acknowledge potential limitations of our study.
Psychopharmacological treatment in patients was heteroge-
neous. Medication effects on cerebellar structure cannot be
excluded. Also, more female than male subjects participated
in this study. The disproportion was greatest in the subgroup
of MDD patients without cognitive deficits. To correct for
possible gender effects, gender was included as a nuisance
variable in the statistical analysis of morphometric effects.
Neuropsychological evaluation was not performed in healthy
controls, preventing cerebellar structure—cognition analyses

in those subjects. No patients with treatment-resistant depres-
sion were investigated in this study; thus, no claims can be
made about abnormal cerebellar structure in such an MDD
subgroup. Also, this study did not include patients with geri-
atric depression, where depressive symptoms and cognitive
dysfunction may arise from accelerated brain aging. Thus,
age-related cerebellar abnormalities in MDD cannot be ad-
dressed. Eventually, due to the cross-sectional study design,
no conclusions can be made about the temporal stability of the
cerebellar GMV findings.

Conclusion

Keeping potential shortcomings in mind, this study demon-
strated that MDD patients with current depressive symptom
remission had abnormal GMV in both hemispheric and
vermal portions of cerebellar area VII, which was associated
with deficits of attention and executive function. The data
support relevant contributions of the cerebellum to the cogni-
tive dimension ofMDD. Future studies should address wheth-
er abnormal area VII structure is associated with increased risk
of depression relapse, whether abnormal area VII structure is
linked to abnormal cognitive processes in depression (such as
preferential processing of negative information or dysfunc-
tional explicit emotion regulation), and whether abnormal area
VII structure is associated with abnormal cerebellar activity or
with abnormal cerebro-cerebellar functional connectivity.
Future studies will particularly benefit from investigating
MDD patients along a spectrum of cognitive functioning, as
promoted by the Research Domain Criteria Initiative (RDoC)
[27]. InMDD research, there has been an increasing interest in
neural abnormalities at the functional network level [59]. In

Table 3 Cerebellar regions showing aberrant gray matter volume in
patients with remitted major depression (rMDD) with or without cogni-
tive deficits (c.d.), each compared with healthy controls (HC). The table
shows t values and stereotaxic coordinates (x, y, z) for peak voxels emerg-
ing from second-level between-group comparisons, see the “Material and

Methods” section for details. Peak voxel coordinates were assigned to
probabilistic cytoarchitectonic maps, providing the probability and the
95% confidence range of belonging to a specific cerebellar area. SUIT,
Spatially Unbiased Infratentorial Toolbox

SUIT analysis

Cerebellar region x y z t-value No. of voxels

rMDD with c.d. < HC Left area VIIA, crus II
(69%, 12–69%)
Left area VIIA, crus I
(31%, 31–84%)

− 17 − 83 − 34 3.62 1128

Vermal area VIIB
(56%, 11–56%)

1 − 74 − 34 3.40 451

rMDD without c.d. > HC Left area VIIIb
(92%, 83–95%)

− 21 − 51 − 60 3.76 444

Right area VIIIb
(96%, 76–96%)

22 − 52 − 60 3.75 282

The cerebellar region printed in italics belongs to the voxel coordinates provided in the row above, i.e. there is a 69% probability that x=-17, y= -83, z= -
24 belongs to left area VIIA, crus II (top row), and a 31% probability that x= -17, y= -83, z= -24 belongs to left area VIIA, crus I (lower row)
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this context, computational approaches hold promise for iden-
tification of clinically useful biomarkers [60, 61]. Our results
suggest that the cerebellum should be included in future anal-
yses of neural networks in MDD, particularly when the cog-
nitive dimension of depression is investigated. Finally, our
results indicate that cerebellar area VII should be evaluated
as a target for brain stimulation to treat cognitive deficits re-
lated to MDD.
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