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might play a role in experiencing and/or controlling
emphatic emotions, but it remains to be determined whether
there is a distinction between positive and negative
emotions, and, if so, which specific parts of the cerebellum
are involved in these types of emotions. Here, we
visualized activations of the cerebellum and extracerebellar
regions using high-field fMRI, while we asked participants
to observe and imitate images with pictures of human faces
expressing different emotional states or with moving
geometric shapes as control. The state of the emotions
could be positive (happiness and surprise), negative (anger
and disgust), or neutral. The positive emotional faces only

whereas the negative emotional faces evoked prominent
activations in lobules VI and VIIa in its hemispheres and
lobules VIII and IX in the vermis. The cerebellar
activations associated with negative emotions occurred
concomitantly with activations of mirror neuron domains
such as the insula and amygdala. These data suggest that
the potential role of the cerebellum in control of emotions
may be particularly relevant for goal-directed behavior that
is required for observing and reacting to another person’s
(negative) expressions.

Keywords Positive and negative valence . Facial
expressions . Observation-execution .Mirror neuron
system . Cerebellum

Introduction

Emotions can be subdivided into categories according to
the effects they evoke [1, 2]. Positive emotions such as
happiness or surprise may have broadening effects in that
they may encourage novel, varied, and explanatory
thoughts and actions [3, 4], while negative emotions such
as anger or disgust might be more primitive and evoke fear-
related responses such as defensive behavior or autonomic
arousal [5]. When confronted with confederates’ expres-
sions of emotions, people empathize with these people’s
feelings. One acts as if one experiences the same feelings as
his ally through an appreciation of similarity [6–8]. Possible
explanations are either the perception–action model of
empathy or the perceptual symbol systems framework [9,
10]. The first model implies that perception of an
individual’s state automatically activates the observer’s
representation of that state [9], while the second implies
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that feelings are represented in simulators—distributed
networks of conjunctive neurons that activate in response
to confrontation with another person’s emotion, enabling
the observer to re-enact the emotion of the observed person
in the form of simulations [10]. Concretely experiencing
one’s own emotions or empathizing with another’s emo-
tions involves an activation of a mirror neuron network
(insular cortex, medial areas of prefrontal cortex and
amygdala) [11–14]. The representations of an emotion
(whether the emotion is one’s own or another’s) also
automatically prime or generate associated autonomic and
somatic responses unless inhibited [9]. Controlling such
responses might require involvement of the cerebellum; for
example, the cerebellum might help to convert the initial
emotional responses into goal-oriented behaviors or con-
textually appropriate social behaviors [15]. Evidence
obtained with positron emission tomography (PET) sug-
gests that the cerebellum indeed plays a role in controlling
emotions, but it is still unclear whether and to what extent
the cerebellum is involved in both positive and negative
emotions, during different experimental (observation and
imitation) tasks [16, 17]. Evidence obtained with low-
resolution and low-field functional imaging techniques
(PET, 1.5T MRI scanner) also supports the possibility that
the cerebellum contributes to the control of emotions, but in
these studies, precise localization at the cerebellar sub-
regional level remains to be established [16, 18–20]
(Table 1).

Here, we tackled these questions by presenting short
video clips of emotion-laden faces to human subjects,
while examining the activities of their cerebellum and
cortical brain regions using high-field functional magnet-
ic resonance imaging (fMRI) (a 3T MRI scanner). Such
stimuli are known to evoke activities in several different
neural networks involved in emotion, such as the mirror
neuron system and the limbic system [11–14]. Since the
mirror neuron system can be considered one of the main
systems for controlling goal-directed behavior [15], it
provides further impetus to question whether the cerebellum
shows preferences for responding to positive or negative
emotions, whether these responses occur concomitantly with
those in the mirror neuron system, and, if so, which parts of
the cerebellum are involved during these concomitant
activations.

Materials and Methods

Subjects Written informed consent was obtained from
each participant prior to the study, which was approved
by the Institutional Review Board. Twenty healthy
volunteers (11 men, 9 women) participated in the mirror
neurons (MN) experiment. Since there is convincing

evidence that the mirror mechanism is involved in
imitation as an immediate replica from the observed
motor act [21, 22], a control experiment—the imitation
task (IT)—was also performed.

Stimuli, Experimental Design, and Procedures The MN
experimental stimuli consisted of full-face, full-color, 3-s
video clips of five males and five females displaying various
emotional states (anger, disgust, happiness, surprise, and
neutrality) [20]. The control stimuli were clips of moving
geometric shapes. Thus the four experimental conditions
included specific clips of a single category: (1) positive
emotional faces: happy and surprised, (2) negative emotional
faces: angry and disgust, (3) neutral faces, and (4) moving
geometric shapes. Each condition was presented 12 times in
pseudo-randomized (counterbalanced between subjects)
blocks lasting 12 s and comprising three clips. Clips were
separated by a 1-s inter-stimulus interval (ISI), and con-
ditions were separated by a 2 s ISI. The design allowed us to
investigate three impacts: (a) that of positive faces versus
moving geometric shapes; (b) that of negative faces versus
moving geometric shapes; and (c) that of neutral faces versus
moving geometric shapes. This design is similar to that
employed frequently [23, 24]. A scheme is presented in the
Appendix section to make the procedure more clear.

The IT experimental stimuli consisted of a mixture of
happy, surprised, angry, and disgust emotional faces. The
two main conditions that were tested are “observation” and
“observation-execution” (i.e., imitation). In the observation
condition, subjects were shown with a red cross for 1 s and
then followed by one of the four emotional faces for 3 s and
this pattern repeated six times with every time randomly
with another emotional faces. Subjects were instructed to
observe only. In the imitation condition, subjects were
shownwith a green cross instead and followed by again one of
the emotional faces for 3 s and this pattern repeated six times
with every time randomly with another emotional faces.
However, subjects were instructed to imitate the observed
emotional faces. All emotional faces were having the same
amount of occurrence. The observation task and the imitation
task were alternated five times each. A scheme is presented in
the Appendix section to make the procedure more clear.

The imitation task experiment is considered as the
control experiment and was performed in pseudo-
randomly during the same scanning session with the mirror
neuron experiment. Thus half of the study subject group
participated first with the IT experiment and half of the
study subject group participated first with the MN
experiment. The control experiment (IT) is needed to
double check that the MN system from our tested subjects
do “exist”, and they allow us to show that the activation
areas in both experimental tasks are in line with the current
literature [25].
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fMRI Acquisition All imaging was performed on a 3T
MRI scanner (General Electric, Milwaukee, USA) using
a dedicated eight-channel head coil. For the anatomical
image, a 3D high-resolution inversion recovery fast
spoiled gradient recalled echo sequence (echo time
(TE)/repetition time (TR)/inversion time=2.1/10.4/
300 ms, flip angle=18°, matrix=416×256, field of view
(FOV)=25 cm, slice thickness 1.6 mm with 50%
overlap) was required. For functional imaging, a single-
shot gradient-echo echo-planar imaging (EPI) sequence
in transverse orientation was used, allowing sufficient
blood oxygenation level dependent contrast. The imaging
volume covered the entire brain (TR/TE 3,000/30 ms;
64×96 matrix with a rectangular field-of-view of 22 cm,
2.5-mm slice thickness, 39 contiguous slices; voxel size
of 3.5×3.0×2.5 mm3). Acquisition time was 10:45 min
with a time series of 210 imaging volumes (including 15 s
of dummy scans that were discarded) for the MN
experiment. Acquisition time was 4:00 min with a time
series of 80 imaging volumes (including 15 s of dummy
scans that were discarded) for the IT experiment. The
experiment was performed in near darkness with all lights
turned off except the video projector light. Visual stimuli
were shown by means of back projection with a video
projector onto a translucent screen in front of the scanner.
Participants viewed this screen with a mirror system on
top of the head coil. The total field-of-view extended 21°
horizontally and 17° vertically. Stimuli were presented by
the stimulation software package, Presentation (Neuro-
behavioral Systems).

Functional Image Analysis The functional imaging data
were analyzed using statistical parametric mapping soft-
ware (SPM 5, distributed by the Wellcome Department of
Cognitive Neurology, University College London, UK)
implemented in MATLAB (Version 6.5, Mathworks, Sher-
born, MA, USA). Motion correction and co-registration
were done according to the methodology provided by
SPM5. Brain volumes were normalized to the standard
space defined by the Montreal Neurological Institute (MNI)
template. The normalized data had a resolution of 2×2×
2 mm and were spatially smoothed with a 3D isotropic
Gaussian kernel, with a full width half maximum of 8 mm.
Statistical parametric maps were calculated for each subject.
Movement parameters resulting from the realignment pre-
processing were included as regressors of no interest in
order to further reduce motion artifacts. The model was
estimated with a high-pass filter with a cut-off period of
128 s. For each participant, contrast maps were calculated
between each condition. The individual contrast maps were
used for second-level random effects (group) analysis in the
regression analyses. One sample t tests were performed for
each comparison (e.g., negative faces versus moving

geometric shapes for the MN experiment, and imitation
versus observation for the IT experiment). All tests were
thresholded at p<0.05 with false discovery rate (FDR)
correction for multiple comparisons and with a minimum
cluster size of 5 voxels. Anatomic labeling of the observed
areas of activation in SPM was done using the macroscopic
anatomic parcellation procedure of the MNI MRI single-
subject brain [26].

Results

The quantitative results of the random effects group
analyses comparing the impacts of the emotionally laden
(positive and negative) faces with that of the moving
geometric shapes are shown in Tables 2 and 3,
respectively.

1. Positive faces versus moving geometric shapes:
When positive faces were contrasted with moving
geometric shapes, the analysis revealed only one
cerebellar area in which the activity was significantly
increased, i.e., the left crus 2 area. The activation
size of that region was restricted to 6 voxels only,
which is not significantly different (one sample t test
with p=0.5 corrected for multiple comparison with
false discovery rate, FDR) from that observed in the
same region following the presentation of neutral
stimuli (see below). In contrast, the cerebral cortex
showed a much more widespread distribution of
prominently elevated activations (Table 2): These
included bilateral activations in the superior and
middle temporal gyri as well as in the middle
temporal pole and the inferior occipital gyri; a
unilateral activation in the left superior and middle
temporal pole as well as in the left middle occipital
gyrus; and a unilateral activation in the right
precentral gyrus. These data suggest that involvement
of the cerebellum in processing positive emotionally
laden facial stimuli is very limited.

2. Negative faces versus moving geometric shapes: The
analysis of the results obtained with the negative faces
revealed a much more prominent role for the cerebel-
lum (Fig. 1 and Table 3). Following these stimuli, we
found significantly elevated, bilateral activations in
lobules VI and IX as well as crus 1 and crus 2 in the
hemispheres, and in lobules VIII and IX in the vermis.
In hemispheric lobule VIII, we only observed unilateral
activation on the left side. With regard to concomitant
activations in the cerebral cortex, we observed that
many of the areas that were involved in processing
positive stimuli were also involved in processing

236 Cerebellum (2012) 11:233–245



negative stimuli (Tables 2 and 3); these included
bilateral activations of the precentral gyri; the inferior,
middle, and superior temporal gyri; the middle and
superior temporal poles; the inferior, middle, and
superior occipital gyri; and the fusiform gyri. In
addition, the negative stimuli induced cerebral activa-
tions of areas that were not activated by the positive
stimuli. Most prominently, these included bilateral
activations of the amygdala, insula, and inferior and
middle frontal gyri. Since these three latter regions are
all involved in the so-called mirror neuron system [27],
it is interesting to note that areas adjacent to this
putative mirror neuron system in the temporal and
parietal gyri were also activated (for more details see
Table 3). Thus, the cerebral cortex in general responded
with prominent activations to both positive and
negative stimuli, whereas both the cerebellum and the
presumptive mirror neuron system showed a preference
for negative stimuli.

3. Neutral faces versus moving geometric shapes: Con-
trasting neutral faces with moving geometric shapes
revealed limited cerebellar activity. Like the activity
following stimulation with positively emotionally

laden faces, only the left crus 2 area was activated;
and the size of this activation was also very minimal,
covering 4 voxels only. The cerebral cortex and the
subcortical regions including the mirror neuron
system were also hardly activated by neutral stimuli;
we observed only bilateral activation of the occipital
gyri (Table 4).

The restricted involvement of the cerebellum during
the viewing of positive and neutral faces and the
relatively elaborate activations of the cerebellum in
response to negative emotions suggest that the cerebel-
lum plays a salient role during the processing of negative
emotions.

The quantitative results of the random effects group
analyses comparing the impacts of the emotionally laden
(positive, negative, and neutral) faces with that of the
natural faces are supplied in the appendix section for
reference only (Appendix Tables 5 and 6).

1. Imitation versus Observation: The quantitative results
of the random effects group analyses comparing the
impacts of the imitation task with the observation task
from the imitation experiment (the control experiment)

Table 2 Positive emotional faces vs moving geometric shapes: areas
of activation in the mirror neurons experiment with cluster size, T
values of the local maximum, Montreal Neurological Institute (MNI)

coordinates, the anatomical areas within a cluster, the percentage of
the cluster size, and the functional area

Positive emotional faces vs moving geometric objects

Cluster size T value MNI coordinate (mm) Anatomic area Side Functional area

x y z

6 4.8 −16 −82 −42 Cerebellum crus 2 L Cerebellum

23 6.09 −56 −8 −8 Superior temporal gyrus L MN system

65 6.57 52 −8 −8 Superior temporal gyrus R MN system

8 4.39 −42 24 −2 Inferior orbital frontal gyrus L MN system

12 4.39 −50 28 8 Inferior triangular frontal gyrus L MN system

14 5.43 32 10 56 Middle frontal gyrus R MN system

265 6.09 −58 −8 −20 Middle temporal gyrus L

338 6.57 54 −10 −20 Middle temporal gyrus R

7 5.52 −34 8 −32 Superior temporal pole L

13 5.52 −40 6 −16 Middle temporal pole L

7 4.39 46 12 −36 Middle temporal pole R

51 9.89 −6 −80 8 Calcarine L

42 7.65 8 −80 8 Calcarine R

11 9.89 −8 −84 −6 Lingual L

67 12.87 −46 −70 4 Inferior occipital gyrus L

25 7.65 38 −72 4 Inferior occipital gyrus R

50 9.89 −39 −100 42 Middle occipital gyrus L

All areas were thresholded at p<0.05 with FDR correction for multiple comparisons and with a minimum cluster size of 5 voxels

L left hemisphere, R right hemisphere
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Table 3 Negative emotional faces vs moving geometric shapes: areas
of activation in the mirror neurons experiment with cluster size, T
values of the local maximum, Montreal Neurological Institute (MNI)

coordinates, the anatomical areas within a cluster, the percentage of
the cluster size and the functional area

Negative emotional faces vs moving geometric shapes

Cluster size T value MNI coordinate (mm) Anatomic area Side Functional area

x y z

135 5.49 −42 −66 −34 Cerebellum crus 1 L Cerebellum

147 6.71 42 −66 −32 Cerebellum crus 1 R Cerebellum

257 12.87 −16 −82 −42 Cerebellum crus 2 L Cerebellum

84 4.13 18 −82 −40 Cerebellum crus 2 R Cerebellum

15 5.49 −14 −70 −22 Cerebellum VI L Cerebellum

53 6.71 18 −68 −24 Cerebellum VI R Cerebellum

14 5.02 −24 −60 −56 Cerebellum VIII L Cerebellum

92 5.02 −6 −54 −50 Cerebellum IX L Cerebellum

31 5.02 8 −56 −48 Cerebellum IX R Cerebellum

80 5.02 2 −58 −38 Vermis IX Cerebellum

11 5.02 2 −64 −42 Vermis VIII Cerebellum

60 5.6 −24 −2 −22 Amygdala L MN system

76 6.24 26 0 −22 Amygdala R MN system

280 6.64 −40 −22 −2 Insula L MN system

85 6.24 42 −20 −6 Insula R MN system

41 4.11 −4 −24 62 Precentral gyrus L MN system

265 6.24 4 −24 62 Precentral gyrus R MN system

548 5.24 −12 −14 66 Supplementary motor area L MN system

402 5.24 14 −16 70 Supplementary motor area R MN system

104 7.79 −56 −8 −8 Superior temporal gyrus L MN system

393 7.91 52 −8 −8 Superior temporal gyrus R MN system

971 6.64 −50 28 8 Inferior triangular frontal gyrus L MN system

571 6.24 −8 −24 64 Inferior triangular frontal gyrus R MN system

31 4.11 −44 8 56 Middle frontal gyrus L MN system

250 6.24 32 10 56 Middle frontal gyrus R MN system

27 7.79 −56 −56 38 Angular L

9 3.85 48 −52 38 Angular R

12 7.91 28 −14 −20 Hippocampus R

67 6.24 −26 −16 −20 Hippocampus L

23 4.38 18 −2 −4 Pallidum R

20 5.6 −26 −36 −16 Parahippocampal L

65 6.24 22 −36 −14 Parahippocampal R

72 3.79 −22 8 −4 Putamen L

185 4.38 22 10 −4 Putamen R

15 7.91 62 −46 30 Supramarginal R

1,346 7.79 −58 −8 −20 Middle temporal gyrus L

885 7.91 54 −10 −20 Middle temporal gyrus R

12 5.49 −44 −4 −28 Inferior temporal gyrus L

23 6.71 42 4 −38 Inferior temporal gyrus R

128 6.64 −34 8 −32 Superior temporal pole L

7 6.24 36 −4 −32 Superior temporal pole R

19 6.64 −40 6 −16 Middle temporal pole L

53 4.35 46 12 −36 Middle temporal pole R

124 12.87 −6 −80 8 Calcarine L
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are supplied in the appendix section (Appendix Table 7).
The results of the control experiment show that similar
activations are observed under the observation task
(described under 1, 2, 3 above), however one can
observe more significant, bilateral activation when
imitating the emotional (either positive or negative)
stimuli. Furthermore, bilateral activations in the crus 1,
cerebellum IV-I and VI are shown comparing imitation
and observation.

Discussion

Our main findings are that the cerebellum may be more
prominently involved in control of negative emotions than
positive emotions, and that this activity may be related to
that of the mirror neuron system (Tables 2 and 3). As will
be discussed below, these data are in line with the
possibility that the cerebellum is involved in predictive
and pro-active control of cognitive functions.

The cerebellum of subjects showed prominent activa-
tions in lobules VI and VII in the hemispheres and in
lobules VIII and IX in the vermis following exposure to
pictures with negative emotions. Several regions of the
mirror neuron system including the amygdala, insula, and
frontal cortex were concomitantly activated. These
regions have been associated with a negative bodily
state or arousal that may trigger actions aimed at
overcoming this negative state [20]. As negative emo-
tional facial expressions signal threat, activation of the
cerebellum may be related to activation of motor plans
associated with action preparedness such as during fight–
flight behavior, [28] and hence promote processing of the
confederate emotion.

As emotions activate a representation [9] or a
simulation network [10], negative emotions in particular
activate an adaptive network allowing people to develop
quick and flexible responses involving an efficient
synchronization of a large network of brain regions [17].
Negative emotions are known to be processed more
quickly than positive emotions [29]. At an abstract level
the observations in this study show that people more

Fig. 1 Negative emotional faces vs moving geometric shapes: four
axial slices showing areas of activation of the negative faces vs
moving geometric shapes in the mirror neurons experiment (Lob

lobule, Ver vermis, R right hemisphere). All areas were thresholded at
p<0.05 corrected for multiple comparisons at cluster level and a
minimum cluster size of 5 voxels

Table 3 (continued)

Negative emotional faces vs moving geometric shapes

Cluster size T value MNI coordinate (mm) Anatomic area Side Functional area

110 6.45 8 −80 8 Calcarine R

41 5.49 −18 −80 −12 Fusiform L

106 6.71 24 −80 −12 Fusiform R

82 12.87 −8 −84 −6 Lingual L

25 6.45 8 −82 −6 Lingual R

11 12.87 −30 −70 42 Superior occipital gyrus L

14 6.45 30 −70 38 Superior occipital gyrus R

191 12.87 −38 −100 −23 Middle occipital gyrus L

10 6.45 20 −104 0 Middle occipital gyrus R

146 12.87 −46 −70 4 Inferior occipital gyrus L

98 6.45 38 −72 4 Inferior occipital gyrus R

All areas were thresholded at p<0.05 with FDR correction for multiple comparisons and with a minimum cluster size of 5 voxels

L left hemisphere, R right hemisphere
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vigorously activate a large network of brain regions to a
confederate who is in need than to one who experiences
welfare [30]. As mirror neurons are involved in managing
goal-directed behavior, [15] which may require cerebellum
involvement, we can further speculate that negative
emotions trigger behaviors which urge people to evoke
compassionate behaviors such as altruism [30].

The control experiment performed in this study showed
that imitating the emotional stimuli, more areas were
significantly activated compared to the observation exper-
iment. However, similar areas in the cerebellum and other
cortical areas are significantly activated under both exper-
imental tasks (observation and imitation). These result
support current literature concerning activations of the
MN system [24]. Among others, Fogassi et al. [31] showed
that it is not only the imitation of actions that triggers the
MN system, but also the observation that leads to activation
in these areas (for more recent study see [25 and or 24]).

Our data are in line with those of Schmahmann and
Sherman [2, 32, 33], who identified the Cerebellar
Cognitive Affective syndrome in patients with lesions in
cerebellar lobules VI and VII crus 1 and crus 2. They
observed that patients with either congenital or acquired
damage in these regions suffer from a wide spectrum of
emotional and behavioral deficits [32, 33]. These included
for example flattening of affect or disinhibition character-
ized by over-familiarity or impulsive actions. Such
impairments may well affect the ability to communicate
and empathize with perspectives of other persons [7].
Interestingly, Schmahmann and colleagues also found
specific correlations in patients with damage in lobule
IX [32, 34], one of the other regions that was prominently
activated following exposure to pictures with negative
emotions in our study. These patients often have problems

to form bonds similar to patients with obsessive-
compulsive disorders and panic disorders [34].

Several other studies also found similar results. Leslie and
colleagues have reported significant cerebellar activation
during both positive and negative subjective experiences with
fMRI [35]. However, their studies combined both positive
and negative emotions together for analysis and only found
activation bilaterally in crus 1. Damasio performed a similar
whole brain study using PET and reported activation
bilaterally at the mesial cerebellum for negative emotions
and unilaterally left at the mesial cerebellum for positive
emotions [36]. In our study, we were probably able to report
activation in the cerebellum at higher spatial resolution than
those by Leslie [35] and Damasio [36], because we
employed high-field (3T) MRI. Moreover, different from
their studies, in our study we used dynamically moving
objects instead of the neutral faces as the baseline condition.
We did so to circumvent the potential bias induced by the
motion that can be induced during exposure to faces with
emotions (positive and negative).

Taken together, the current data show that the posterior
cerebellum and the mirror neuron system are conceitedly
activated when negative emotions laden faces are pre-
sented, which raises the possibility that this part of the
cerebellum is particularly relevant for empathic responses
towards confederates.
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Table 4 Neutral faces vs moving geometric shapes: areas of
activation in the mirror neurons experiment with cluster size, T values
of the local maximum, Montreal Neurological Institute (MNI)

coordinates, the anatomical areas within a cluster, the percentage of
the cluster size and the functional area

Neutral faces vs moving geometric shapes

Cluster size T value MNI coordinate (mm) Anatomic area Side Functional area

x y z

4 5.81 −16 −82 −42 Cerebellum crus 2 L Cerebellum

15 8.34 −6 −80 8 Calcarine L

23 6.64 8 −80 8 Calcarine R

29 8.34 −46 −70 4 Inferior occipital gyrus L

6 6.64 38 −72 4 Inferior occipital gyrus R

All areas were thresholded at p<0.05 with FDR correction for multiple comparisons and with a minimum cluster size of 5 voxels

L left hemisphere, R right hemisphere
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Appendix

Table 5 Positive emotional faces vs neutral faces: areas of activation
in the mirror neurons experiment with cluster size, T values of the
local maximum, Montreal Neurological Institute (MNI) coordinates,

the anatomical areas within a cluster, the percentage of the cluster size
and the functional area

Positive emotional faces vs neutral faces

Cluster size T value MNI
coordinate (mm)

Anatomic area Side Functional
area

x y z

47 6.6 −42 −66 −34 Cerebellum crus 1 L Cerebellum

46 7.84 42 −72 −32 Cerebellum crus 1 R Cerebellum

89 6.6 −14 −70 −22 Cerebellum VI L Cerebellum

145 7.84 18 −68 −24 Cerebellum VI R Cerebellum

9 3.77 −24 −2 −22 Amygdala L MN system

55 4.17 26 0 −22 Amygdala R MN system

39 4.28 −40 −22 −2 Insula L MN system

158 5.67 4 −24 62 Precentral gyrus R MN system

9 5.67 −14 −42 66 Postcentral gyrus R MN system

31 3.88 14 −16 70 Supplementary motor
area

R MN system

160 6.6 −56 −8 −8 Superior temporal gyrus L MN system

613 7.84 52 −8 −8 Superior temporal gyrus R MN system

48 5.67 32 10 56 Middle frontal gyrus R MN system

18 4.72 −26 −16 −20 Hippocampus L

88 4.17 28 −14 −20 Hippocampus R

45 4.72 −26 −36 −16 Parahippocampal gyrus L

19 4.17 22 −36 −14 Parahippocampal gyrus R

25 6.6 −54 −48 30 Supramarginal L

1,077 6.6 −58 −8 −20 Middle temporal gyrus L

54 4.92 54 −10 −20 Middle temporal gyrus R

46 6.6 −44 −4 −28 Inferior temporal gyrus L

444 7.84 42 4 −38 Inferior temporal gyrus R

23 3.77 −34 8 −32 Superior temporal pole L

7 4.17 36 −4 −32 Superior temporal pole R

28 4.28 −40 6 −16 Middle temporal pole L

125 4.92 46 12 −36 Middle temporal pole R

35 7.84 8 −80 8 Calcarine R

13 7.84 0 −80 26 Cuneus R

304 6.6 −18 −80 −12 Fusiform L

377 7.84 24 −80 −12 Fusiform R

13 7.84 8 −82 −6 Lingual R

65 7.84 30 −70 38 Superior Occipital gyrus R

743 6.6 −38 −100 −23 Middle occipital gyrus L

388 7.84 20 −104 0 Middle occipital gyrus R

275 6.6 −46 −70 4 Inferior occipital gyrus L

441 7.84 38 −72 4 Inferior occipital gyrus R

10 3.89 −12 60 34 Superior frontal gyrus L
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Table 6 Negative emotional faces vs neutral faces: areas of activation
in the mirror neurons experiment with cluster size, T values of the
local maximum, Montreal Neurological Institute (MNI) coordinates,

the anatomical areas within a cluster, the percentage of the cluster size
and the functional area

Negative emotional faces vs neutral faces

Cluster size T value MNI coordinate (mm) Anatomic area Side Functional area

x y z

706 16.74 42 −66 −32 Cerebellum crus 1 R Cerebellum

362 16.74 18 −82 −40 Cerebellum crus 2 R Cerebellum

267 16.74 −16 −82 −42 Cerebellum crus 2 L Cerebellum

643 16.74 −42 −66 −34 Cerebellum crus 1 L Cerebellum

18 16.74 −6 −46 −18 Cerebellum IV-I L Cerebellum

86 16.74 8 −46 −18 Cerebellum IV-I R Cerebellum

72 16.74 −6 −54 −50 Cerebellum IX L Cerebellum

27 16.74 8 −56 −48 Cerebellum IX R Cerebellum

820 16.74 −14 −70 −22 Cerebellum VI L Cerebellum

792 16.74 18 −68 −24 Cerebellum VI R Cerebellum

63 16.74 −34 −64 −54 Cerebellum VIIb L Cerebellum

45 16.74 20 −54 −56 Cerebellum VIIb R Cerebellum

95 16.74 −24 −60 −56 Cerebellum VIII L Cerebellum

9 16.74 28 −60 −56 Cerebellum VIII R Cerebellum

41 16.74 −24 −38 −46 Cerebellum X L Cerebellum

68 16.74 2 −58 −38 Vermis IX Cerebellum

6 2.97 2 −70 −22 Vermis VI Cerebellum

32 16.74 2 −64 −42 Vermis VIII Cerebellum

127 16.74 −24 −2 −22 Amygdala L MN system

122 16.74 26 0 −22 Amygdala R MN system

394 16.74 −40 −22 −2 Insula L MN system

63 16.74 42 −20 −6 Insula R MN system

539 16.74 4 −24 62 Precentral gyrus L MN system

538 4.67 −12 −14 66 Supplementary motor area L MN system

1,530 16.74 52 −8 −8 Superior temporal gyrus R MN system

684 16.74 −56 −8 −8 Superior temporal gyrus L MN system

625 16.74 −42 22 2 Inferior opercular frontal gyrus L MN system

657 16.74 −52 16 22 Inferior opercular frontal gyrus R MN system

910 16.74 −42 24 −2 Inferior orbital frontal gyrus L MN system

530 16.74 36 26 −2 Inferior orbital frontal gyrus R MN system

1,300 16.74 −50 28 8 Inferior triangular frontal gyrus L MN system

643 16.74 −8 −24 64 Inferior triangular frontal gyrus R MN system

36 16.74 −44 8 56 Middle frontal gyrus L MN system

226 16.74 32 10 56 Middle frontal gyrus R MN system

All areas were thresholded at p<0.05 with FDR correction for multiple comparisons and with a minimum cluster size of 5 voxels

L left hemisphere, R right hemisphere

Table 7 Imitation task vs observation task: areas of activation in the imitation task experiment with cluster size, T values of the local maximum,
Montreal Neurological Institute (MNI) coordinates, the anatomical areas within a cluster, the percentage of the cluster size and the functional area

Imitation Task vs Observation Task

Cluster Size T value MNI coordinate (mm) Anatomic Area Side Functional area

x y z

163 10.00 −42 −66 −34 Cerebellum crus 1 L Cerebellum

255 10.00 42 −66 −32 Cerebellum crus 1 R Cerebellum

5 5.21 18 −82 −40 Cerebellum crus 2 R Cerebellum
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Table 7 (continued)

Imitation Task vs Observation Task

Cluster Size T value MNI coordinate (mm) Anatomic Area Side Functional area

16 10.00 −6 −46 −18 Cerebellum IV-I L Cerebellum/motor system

90 10.00 8 −46 −18 Cerebellum IV-I R Cerebellum/motor system

225 10.00 −14 −70 −22 Cerebellum VI L Cerebellum/motor system

122 10.00 18 −68 −24 Cerebellum VI R Cerebellum/motor system

19 5.21 20 −54 −56 Cerebellum VIIb R Cerebellum

50 5.21 28 −60 −56 Cerebellum VIII R Cerebellum

15 10.00 2 −70 −22 Vermis VI Cerebellum

116 10.00 −40 −22 −2 Insula L MN system

26 4.45 42 −20 −6 Insula R MN system

687 10.00 −4 −24 62 Precentral gyrus L MN system

47 10.67 4 −24 62 Precentral gyrus R MN system

327 10.00 −12 −14 66 Supplementary motor area L Motor system

847 10.00 −14 −42 68 Postcentral gyrus L MN system

123 10.67 −14 −42 66 Postcentral gyrus R MN system

19 10.00 12 4 74 Paracentral lobule L MN system

7 10.00 −54 −8 36 Paracentral lobule R MN system

163 10.00 −56 −8 −8 Superior temporal gyrus L MN system

11 4.57 52 −8 −8 Superior temporal gyrus R MN system

49 10.00 −42 22 2 Inferior operculus frontal gyrus L MN system/imitation

74 10.00 −52 16 22 Inferior operculus frontal gyrus R MN system/Imitation

15 10.00 −50 28 8 Inferior triangular frontal gyrus L MN system/Imitation

9 3.53 −44 8 56 Middle frontal gyrus L MN system

13 10.00 32 10 56 Middle frontal gyrus R MN system

99 10.00 −12 60 34 Superior frontal gyrus L MN system

46 5.56 −24 −2 −2 Pallidum L

44 5.26 18 −2 −4 Pallidum R

6 4.03 −26 −16 −20 Hippocampus L

6 3.72 28 −14 −20 Hippocampus R

9 5.07 22 −36 −14 Parahippocampal R

176 10.00 −10 −58 38 Precuneus L

134 10.00 8 −52 38 Precuneus R

16 5.56 −22 8 −4 Putamen L

32 5.05 22 10 −4 Putamen R

282 10.00 −54 −48 30 Supramarginal L

8 4.81 14 −24 6 Thalamus R

17 5.97 −44 −4 −28 Inferior temporal gyrus L

44 10.00 42 4 −38 Inferior temporal gyrus R

11 10.00 −56 −8 −20 Middle temporal gyrus L

32 10.00 54 −10 −20 Middle temporal gyrus R

9 4.23 −40 6 −16 Middle temporal pole L

37 5.07 46 12 −36 Middle temporal pole R

56 10.00 36 −4 −32 Superior temporal pole R

100 10.00 −8 −84 −6 Lingual L

36 10.00 −18 −80 −12 Fusiform gyrus L

47 10.00 24 −80 −12 Fusiform gyrus R

38 5.97 −46 −70 4 Inferior occipital gyrus L

24 10.00 38 −72 4 Inferior occipital gyrus R
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Table 7 (continued)

Imitation Task vs Observation Task

Cluster Size T value MNI coordinate (mm) Anatomic Area Side Functional area

126 10.00 −38 −100 −23 Middle occipital gyrus L

274 10.00 20 −104 0 Middle occipital gyrus R

229 10.00 −30 −70 42 Superior occipital gyrus L

200 10.00 30 −70 38 Superior occipital gyrus R

All areas were thresholded at p<0.05 with FDR correction for multiple comparisons and with a minimum cluster size of 5 voxels

L left hemisphere, R right hemisphere

Table 8 Scheme for the mirror neuron experiment

Experimental
condition

Positive
emotion

inter-stimulus
interval (ISI)

Positive
emotion

ISI Positive
emotion

ISI Moving
geometric
shape

ISI Moving
geometric
shape

ISI Moving
geometric
shape

ISI

Time (s) 3 1 3 1 3 1 3 1 3 1 3 1

Experimental
condition

Negative
emotion

inter-stimulus
interval (ISI)

Negative
emotion

ISI Negative
emotion

ISI Neutral
face

ISI Neutral
face

ISI Neutral
face

ISI

Time (s) 3 1 3 1 3 1 3 1 3 1 3 1

12 times

The MN experimental stimuli consisted of full-face, full-color, 3-s video clips of five males and five females displaying various emotional states
(anger, disgust, happiness, surprise, and neutrality). The control stimuli were clips of moving geometric shapes. Thus the four experimental
conditions included specific clips of a single category: (1) positive emotional faces: happy and surprised, (2) negative emotional faces: angry and
disgust, (3) neutral faces, and (4) moving geometric shapes. Each condition was presented 12 times in pseudo-randomized (counterbalanced
between subjects) blocks lasting 12 s and comprising three clips. Clips were separated by a 1-s inter-stimulus interval (ISI), and conditions were
separated by a 2-s ISI.

Table 9 Scheme for the imitation task experiment

Experimental
condition

Observation
task (show
with a red
cross)

Emotion Observation
task (show
with a red
cross)

Emotion Observation
task (show
with a red
cross)

Emotion Observation
task (show
with a red
cross)

Emotion Observation
task (show
with a red
cross)

Emotion

Time (s) 1 3 1 3 1 3 1 3 1 3

Experimental
condition

Observation
task (show
with a red
cross)

Emotion Imitation task
(show with
a green
cross)

Emotion Imitation task
(show with
a green
cross)

Emotion Imitation task
(show with
a green
cross)

Emotion Imitation task
(show with
a green
cross)

Emotion

Time (s) 1 3 1 3 1 3 1 3 1 3

Experimental
condition

Imitation task
(show with
a green
cross)

Emotion Imitation task
(show with
a green
cross)

Emotion ….. X5
times

Time (s) 1 3 1 3

The IT experimental stimuli consisted of a mixture of happy, surprised, angry, and disgust emotional faces. The two main conditions that were
tested are “observation” and “observation-execution” (i.e., imitation). In the observation condition, subjects were shown with a red cross for 1 s
and then followed by one of the four emotional faces for 3 s and this pattern repeated six times with every time randomly with another emotional
faces. Subjects were instructed to observe only. In the imitation condition, subjects were shown with a green cross instead and followed by again
one of the emotional faces for 3 s and this pattern repeated six times with every time randomly with another emotional faces. However, subjects
were instructed to imitate the observed emotional faces. All emotional faces were having the same amount of occurrence. The observation task
and the imitation task were alternated five times each.
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