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Abstract Marek’s disease (MD) of chickens is a unique
natural model of Hodgkin’s and Non Hodgkin’s lymphomas
in which the neoplastically-transformed cells over-express
CD30 (CD30hi) antigen. All chicken genotypes can be
infected with MD virus and develop microscopic lympho-
mas. From 21 days post infection (dpi) microscopic
lymphomas regress in resistant chickens but, in contrast,
they progress to gross lymphomas in susceptible chickens.
Here we test our hypothesis that in resistant chickens at
21 dpi the tissue microenvironment is pro T-helper (Th)-1
and compatible with cytotoxic T lymphocyte (CTL) immu-
nity but in susceptible lines it is pro Th-2 or pro T-regulatory
(T-reg) and antagonistic to CTL immunity. We used the B2,
non-MHC-associated, MD resistance/susceptibility system
(line [L]61/line [L]72) and quantified the levels of key
mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18,
IFNγ), Th-2 (IL-4, IL-10) and T-reg (TGFβ, GPR-83,
CTLA-4, SMAD-7) lymphocyte phenotypes. We measured
gene expression in both whole tissues (represents tissue

microenvironment and tumor microenvironment) and in the
lymphoma lesions (tumor microenvironment) themselves.
Gene ontology-based modeling of our results shows that the
dominant phenotype in whole tissue as well as in micro-
scopic lymphoma lesions, is pro T-reg in both L61 and L72
but a minor pro Th-1 and anti Th-2 tissue microenvironment
exists in L61 whereas there is an anti Th-1 and pro Th-2 tissue
microenvironment in L72. The tumor microenvironment per
se is pro T-reg, anti Th-1 and pro Th-2 in both L61 and L72.
Together our data suggests that the neoplastic transformation
is essentially the same in both L61 and L72 and that
resistance/susceptibility is mediated at the level of tumor
immunity in the tissues.
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Introduction

Lymphomas are the 6th leading cause of death due to
cancer, 4th greatest in economic impact and they account
for 53% of the new cases of hematological malignancies in
the USA [1]. It is imperative to understand the complex
dynamics of host-tumor interactions within the tumor
microenvironment for designing any anti-tumor strategy.
To do so requires animal models, which fully mimic human
tumor microenvironment and where both tumor and stromal
cells can be studied within the natural tumor environment
[2]. Marek’s Disease (MD) is a lymphomatous disease of
chickens caused by the MD α-herpesvirus (MDV) and is a
unique natural model for human Hodgkin’s (HL) and non-
Hodgkin’s lymphomas (NHL) which overexpress CD30
(CD30hi; a.k.a. tumor necrosis receptor superfamily mem-
ber [TNSFR-8] or the “Hodgkin’s disease antigen”) [3].
MD is a general model for CD30hi T cell lymphomas which
includes anaplastic large cell lymphoma, primary cutaneous
anaplastic large cell lymphoma, adult T-cell leukemia/
lymphoma, peripheral T-cell lymphoma, natural killer
(NK)/T-cell lymphoma, nasal and enteropathy type T cell
lymphoma [3, 4]. Like its human homologs, MD lympho-
mas are heterogeneous mixture of minority population of
transformed cells (CD30hi) surrounded by majority popu-
lation of non transformed normal immune cells [5, 6].
However, MD transformed cells are not inherently immor-
tal; they depend upon the local lymphoma environment for
their survival and growth [5, 6].

MD has advantage over murine models of lymphoma as
it provides an opportunity to study the phenomenon of
genotype dependent tumor regression as a model of
spontaneous human lymphoma regression [7]. All chicken
genotypes are susceptible to MDV infection, neoplastic
transformation and microscopic lymphoma development.
However, from 21 days post infection (dpi) these micro-

scopic lesions regress in MD resistant genotypes but
progress to gross lymphomas in MD susceptible genotypes
[6, 8]. The fundamental genetic basis for the difference in
lymphoma-regressing and progressing genotypes is poorly
understood, though a very large body of work over almost
40 years has implicated several host immune factors,
including innate cell-mediated immunity (CMI; including
NK cells, monocytes); humoral, antigen-specific MHC
class I-restricted cytotoxic T lymphocyte (CTL) immunity
and cytokines (reviewed in [9]). At 21 dpi progressing
lymphomas are CD4+ and CD4+ CD30hi predominant
with few CD8α+ T cells, whereas regressing lymphomas
have many CD8α+ T cells, fewer CD4+ CD30hi cells and
the CD30 expression—though still above physiological
levels in activated T cells [6]—is lower than in progress-
ing lymphomas [8]. The neoplastically transformed MD
lymphoma cells also have cytokine and other gene
expression most similar to regulatory CD4+ T lympho-
cytes (T-reg) [5].

Here we test our hypothesis that, at the pivotal 21 dpi
time point MD-resistant chicken genotypes have a tissue
microenvironment congruent with CTL, where-as the tissue
microenvironment in MD-susceptible genotypes is antago-
nistic to CTL. We tested this by quantifying the mRNAs for
cytokines and other genes that determine T-helper (Th)-1;
Th-2 and T-regulatory (T-reg) phenotypes: CD4+ Th-1
lymphocytes secrete high levels of interleukin (IL)-2 and
interferon-gamma (IFNγ); CD4+ Th-2 lymphocytes secrete
high levels of IL-4, IL-10 and IL-13 [10] and CD4+ T-reg
lymphocytes express MHC II, transcription factor forkhead
box protein (FOX) P3, G protein-coupled receptor (GPR)-
83 [11], IL-2 receptor α chain (CD25), high levels of
cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) [12–
15] and decreased small mothers against decapentaplegic-7
(SMAD-7) [16, 17].

We used the B2; non-MHC-associated MD resistance/
susceptibility (line [L]61/line [L]72) system [8]. We
analyzed the gene expression profiles at whole tissue level
(which represents both tissue microenvironment and
tumor microenvironment) and subsequently at the level
of microscopic lesions (tumor microenvironment) using
Laser Capture Microdissection (LCM). Our Gene Ontol-
ogy (GO)-based hypothesis testing demonstrates that: 1. a
T-reg phenotype exists in both the tissue and tumor
microenvironments in both resistant and susceptible
genotypes; 2. a pro-inflammatory tissue microenvironment
is present in both L61 and L72 tissues; 3. an anti-
inflammatory and anti-CTL tumor microenvironment
exists in microscopic lesions of both genotypes; 4. the
susceptible genotype has an anti-CTL tissue microenvi-
ronment, whereas the resistant genotype has a pro-CTL
tissue microenvironment. The fundamental differences
between the genotypes exist at the level of the tissue
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immune response and not at the level of the transformed
cells.

Materials and Methods

Chickens, MDV and Tissue Sampling

Day old, specific pathogen free (SPF), MDV maternal
antibody negative, L61 and L72 chickens were obtained
from United States Department of Agriculture-Avian
Disease Oncology Laboratory (USDA-ADOL, East Lans-
ing, Michigan). These chickens were double wing-banded,
housed in small groups in separate cages in an isolation
facility at College of Veterinary Medicine-Mississippi State
University, (CVM-MSU). Food and water was provided ad
libitum. All chickens were infected on day 14 with MDV
(GA/22 strain; passage 18; 500 pfu; intra-abdominally)
obtained from USDA-ADOL (East Lansing, MI). On
21 dpi, five L61 and five L72 chickens were selected
using the random number function in Microsoft excel
using the list of wing band numbers, killed, kidney
lymphomas harvested (kidney had the most visible gross
lymphomas), snap frozen in liquid nitrogen, vacuum
sealed in plastic bags and stored at −80°C until needed.
All L72 birds that were not used for sampling developed
gross lymphomas at later period and were euthanized. We
confirmed that all chickens were MDV-infected by doing
PCR on DNA isolated from the samples, using primers
that amplify a fragment of the MDV Meq gene, exactly as
described [8]. All animal practices and experiments were
approved by the MSU-Institutional animal critical care
and use committee.

Cryosectioning and Laser Capture Microdissection (LCM)

Tissue samples were transferred from −80°C to a cryostat
(Leica Microsystems Inc., Bannockburn, IL) on dry ice,
and warmed to −20°C before sectioning; 8 μm cryosec-
tions were cut and placed directly into 1 ml of TRI
reagent (Molecular Research Center, Cincinnati, OH) or
onto Histogene LCM slides (Molecular Devices Sunny-
vale, CA). Cryosections were stored (for no more than a
week) at −80°C until LCM. Cryosections were stained
with Histogene Frozen Section Staining solution (Molec-
ular Devices Sunnyvale, CA) following the manufac-
turer’s protocol. Briefly, cryosections were ethanol fixed
(75%) for 30 s, rehydrated in nuclease free water for
30 s, stained with Histogene Staining solution (100 µL
per slide for 20 s), washed in nuclease free water for
30 s and dehydrated in 75%, 95% and 100% ethanol for
30 s each followed by final dehydration step in xylene
for 5 min and allowed to air dry for 5 min. Air dried

stained slides were placed in slide box with fresh
desiccant and were used for LCM the same day. LCM
was done using the PixCell IIe Laser Capture Microdissection
system (Molecular Devices Sunnyvale, CA) and CapSure
Macro LCM caps (Molecular Devices Sunnyvale, CA). MD
microscopic lesions (Fig. 1a, b) were located and excised
(laser power: 45–55 mw for 3–5 ms). A new cap was used
for each sample.

RNA Isolation and Real-Time PCR

Total RNA was isolated from ~100 µg of tissue sections
using TRI reagent (Molecular Research Center, Cincin-
nati, OH) exactly following manufacturer’s protocol. Total
RNA from each microdissected sample was isolated using
the Pico Pure RNA isolation kit (Molecular Devices
Sunnyvale, CA) exactly following the manufacturer’s
protocol. RNA concentrations were quantified (ND-1000

5mm

5mm

a

b

Fig. 1 Photomicrographs of kidneys at 21 dpi with MDV (see
M&M), stained with “Histogene LCM frozen section staining kit”
showing similarity in size of microscopic lymphoma lesions (circled)
between L61 (a) and L72 (b)
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spectrophotometer; NanoDrop Technologies, Wilmington,
DE) and adjusted to within 10-fold concentration of each
other using RNAase free water. For comparing mRNA
expression, we used a duplex reverse transcriptase real-
time PCR (QPCR), with 28S rRNA as a positive control
for each PCR exactly as described [5]; iCycler iQ Real-
Time PCR Detection System [Bio-Rad Laboratories Inc.,
Hercules, CA]; Platinum Quantitative RT-PCR Thermo-
Script One-Step System [Invitrogen, Carlsbad, CA];
100 pM of each primer [except 28S which was 1 pM];
1 pM of all probes; 2.5 µl template RNA and RNAse free
water; cycle conditions: 50°C, 30 min; 95°C, 5 min+45×
[95°C, 15 s; 60°C, 60 s]). All primer and probe sequences
(Table 1) are previously published and all amplicons
(except 28S) cross intron-exon boundaries [5, 18–21];
although 28S has no introns in it, it is routinely used as an
internal control and its RNA template far exceeds its DNA

template. Each QPCR experiment was done in triplicate
and included no-template controls. Differences in the
mean QPCR results were compared using one way
analysis of variance.

Gene Ontology (GO) Based Quantitative Modeling

We tested our hypotheses using GO-based modeling of
our QPCR data exactly as described [5]. Briefly, we used
the computational tool GOmodeler [22], which scores the
effects of each gene product on a process as either
“pro” (+1), “anti” (−1), “no effect” (0) or “no data”
(blank cell), then multiplies these score by the QPCR
data for each gene. The net effect of each phenotype is
the sum of scores of each gene for that phenotype and
the net overall phenotype is the sum of scores of each
phenotype.

Table 1 PCR probes and primers (fluorophore)

RNA target Probe/Primer Sequence Accession

28S Probe 5′-(HEX)-AGGACCGCTACGGACCTCCACCA-(TAMRA)-3′ X59733
F 5′-GGCGAAGCCAGAGGAAACT-3′
R 5′-GACGACCGATTTGCACGTC-3′

IL-2 Probe 5′-(FAM)-ACTGAGACCCAGGAGTGCACCCAGC-(TAMRA)-3′ AF221080
F 5′-TTGGAAAATATCAAGAACAAGATTCATC-3′
R 5′-TCCCAGGTAACACTGCAGAGTTT-3′

IL-4 Probe 5′-(FAM)-AGCAGCACCTCCCTCAAGGCACC-(TAMRA)-3′ NM_001007079
F 5′-AACATGCGTCAGCTCCTGAAT-3′
R 5′-TCTGCTAGGAACTTCTCCATTGAA-3′

IL-10 Probe 5′-(FAM)-CGACGATGCGGCGCTGTCA-(TAMRA)-3′ AJ621614
F 5′-CATGCTGCTGGGCCTGAA-3′
R 5′-CGTCTCCTTGATCTGCTTGATG-3′

IL-12β Probe 5′-(FAM)-CTGAAAAGCTATAAAGAGCCAAGCAAGACGTTCT-(TAMRA)-3′ AJ564201
5′-TGGGCAAATGATACGGTCAA-3′

F 5′-CAGAGTAGTTCTTTGCCTCACATTTT-3′
IL-18 R 5′-(FAM)-CCGCGCCTTCAGCAGGGATG-(TAMRA)-3′ AJ276026

F 5′-AGGTGAAATCTGGCAGTGGAAT-3′
R 5′-ACCTGGACGCTGAATGCAA-3′

CTLA-4 Probe 5′-(FAM)-TTGTCTTCTCTGAATCGCTTTGCCCACG-(TAMRA)-3 AM236874
F 5′-CAGCATCATCATCTCAGCCATTG-3′
R 5′-GCATTTTCACATAGACCCCAGTAG-3′

GPR-83 Probe 5′-(FAM)-TCCGCCACCAGCCTGTTCATCGTCA-(TAMRA)-3′ XM_425651
F 5′-CGTCATCATCAAGAGCAAACGC-3′
R 5′-ACAAAACGAGCCAGTGTAAAAGG-3′

IFNγ Probe 5′-(FAM)-TGGCCAAGCTCCCGATGAACGA-(TAMRA)-3′ Y07922
F 5′- GTGAAGAAGGTGAAAGATATCATGGA-3′
R 5′-GCTTTGCGCTGGATTCTCA-3′

SMAD-7 Probe 5′-(FAM)-TCCCAGTAAGCCACCACGCACCAGT-(TAMRA)-3′ XM_427238
F 5′-GCTCTCAGATTCTCAAGTTATTCAGG-3′
R 5′-CCGACCCACACGCATCTTC-3′

TGFβ Probe 5′-(FAM)-ACCCAAAGGTTATATGGCCAACTTCTGCAT-(TAMRA)-3′ M31160
F 5′-AGGATCTGCAGTGGAAGTGGAT-3′M31160
R 5′-CCCCGGGTTGTGTGTTGGT-3′

F: forward; R: reverse.
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Results

MD Lesions at 21 dpi

The developing MD lymphoma lesions at 21 dpi from
resistant and susceptible genotypes are indistinguishable
(Fig. 1a, b).

QPCR Based Gene Expression in Whole Tissue
and Microscopic Lymphoma Lesions

mRNA expression is presented as 40-mean cycle threshold
(Ct) values (± standard error of mean [SEM]) (Fig. 2a, b).
In whole tissues L61 expressed significantly more IL-18,
IFNγ, and GPR-83, but less IL-10 and SMAD-7 mRNA

than L72 (Fig. 2a). In microscopic lesions L61 produced
more IL-4 and less TGF β, GPR 83, SMAD-7 and CTLA-4
mRNA (Fig. 2b). IL-2 was below the detectable level of the
assay in both whole tissues and in microscopic lesions, and
IL-10 and IFNγ mRNA were below detectable limits in
microscopic lesions of L61 and L72.

GO-Based Modeling

In the whole tissue samples, our GO-based modelling
showed that the tissue microenvironment in both L61 and
L72 is similarly pro T-reg and pro-inflammatory (Fig. 3a).
However, L61 is also pro Th-1 and anti Th-2, whereas L72
is anti Th-1 and pro Th-2. At the level of developing
microscopic MD-lesions (tumor microenvironment), both
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Fig. 2 mRNA expression pro-
files from kidney from MDV-
infected chickens (see M&M) at
21 dpi for line 61 (resistant to
gross lymphomas) and 72
(susceptible to gross lympho-
mas) presented as 40-mean Ct
(±SEM, *=P<0.05) at the level
whole tissue (a) and microscop-
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L61 and L72 are similarly high pro T-reg and in contrast to
the whole tissues, both L61 and L72 are anti-Th-1, pro Th-2
and anti-inflammatory (Fig. 3b).

Discussion

Here we have identified the micro-environments of MD
tumors at both the whole tissue and microscopic lesion
level at the seminal time-point of lymphoma regression
and progression in a natural animal model of CD30-
overexpressing lymphoma. We used mRNA expression
data from a panel of defining genes, to perform GO based
quantitative hypothesis testing to validate our hypothesis
that the tissue micro-environment is compatible with the
genotype in which lymphoma regression occurs and not in
the genotype with lymphoma progression.

In the MD system the role of cytokines has previously
been focused on the virological (rather than neoplastic
transformational) stages [20, 23–28]. Xing and Schat [25]

proposed that IFNγ and nitric oxide (NO) may affect MDV
pathogenesis. Kaiser et al. [20], like us, leveraged the
power of MD-resistant and -susceptible chicken genotypes
to compare cytokine expression in splenocytes and pro-
posed that IL-6 and IL-18 may play an important role in
immune the response that could lead to lymphoma
progression in susceptible genotypes and what they referred
to as the maintenance of latency in resistant genotypes.
More recently, Heidari et al. [28] suggested a Th-2 cytokine
profile (upregulated IL-4, IL-10, IL-13) in chicken spleno-
cytes in the cytolytic phase of MD. Though splenocytes are
one model for studying the immunity and MDV pathogen-
esis, they may not mimic the MD tissue and tumor
microenvironment in non-lymphoid tissues. Regardless,
none of the preceding work took the descriptive quantita-
tive genetics to functional modeling.

The increase in IL-18 mRNA in L61 that we measured
contrasts with Kaiser’s data [20] in which there was no
increase in IL-18 mRNA in resistant genotypes when
compared to age matched uninfected controls. We did not
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Fig. 3 Gene ontology (GO)-
based quantitative modeling
shows that at the whole tissue
level both the resistant L61and
the susceptible L72 genotype
have a pro T-reg microenviron-
ment but also L61 has a pro Th-1
and anti Th-2 microenvironment
while susceptible genotypes have
the opposite (a). Microscopic
lesions in both L61 and L72 have
a common phenotype which is
pro T-reg, pro Th-2 and anti Th-1
which is antagonistic to cytotoxic
T cell mediated immunity (b)
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detect IL-2 mRNA in either whole tissue or microscopic
lesions in both L61 and L72. IL-2 is a crucial immune-
modulator cytokine for T cell proliferation and is required
for maintenance of T-reg cells in vivo [29]. However, the
MDV “Meq” oncogene binds the IL-2 promoter and
represses IL-2 transcription [30] and there are high levels
of Meq in MD lymphoma cells [6]; furthermore our
previous work has demonstrated less IL-2 mRNA from ex
vivo-derived purified CD30hi MD lymphoma cells com-
pared to CD30lo cells [5]. Our IL-2 data again contrasts
with that of Kaiser et al. [20] who identified more IL-2
mRNA in L7 splenocytes at 21 dpi compared to uninfected
controls, but the IL-2 mRNA in the spleen is probably
derived from activated, rather than transformed, T cells.
Also, the high levels of IL-4 in both L61and L72 would be
predicted to directly suppress IL-2 transcription [28].GPR-
83 is selectively upregulated in T-reg cells of both humans
and mice and is critically involved in mediating T-reg
functions as well as in development of induced T-reg cells
[11]. However, recently Lu et al. [31] suggested that GPR-
83 is dispensable for T-reg functions. Though the role of
GPR-83 in T-reg biology is questioned in one publication, it
is still generally accepted to be a selective marker for T-reg
cells and so we included it our work here. SMAD 7 is the
member of the inhibitory type of SMADs which acts in a
negative feedback for TGFβ signaling. Since the expres-
sion of inhibitory SMADs is induced by TGFβ [32]
increased SMAD 7 expression suggests an increase in the
TGFβ expression which triggers this negative feedback
loop [33]. This is in accordance with our data, which show
an increase in TGFβ and SMAD 7 mRNA expression in
L72 tumor microenvironment.

Our GO-based modeling demonstrates that a T-reg
phenotype predominates in both L61 and L72 at both whole
tissue and microscopic lesion levels (Fig. 3a and b). The
whole tissue consists of a heterogeneous mixture of large
numbers of transformed cells which are transcriptionally
very active and normal immune and non immune kidney
cells. We propose that the T-reg phenotype is contributed by
the transformed cells and the relatively weaker Th-1
phenotype in L61 and Th-2 phenotype in L72 are indicative
of host immune responses from non transformed cells in the
tissues. When the mRNA from the surrounding tissue
(tissue microenvironment) is removed both, L61 and L72
have a similar phenotype (i.e. pro-T-reg, anti Th-1, pro-
Th-2 and anti-inflammatory) i.e. antagonistic to CTL. Our
result is consistent with the cellular profiles previously
identified in MD lymphomas by immunohistochemistry [8]
and flow cytometry [6], as well as evidence of specific
CTL anti-tumor immunity [3, 9], and together; support our
hypothesis that in L61 the tissue microenvironment is
congruent with CTL mediated immunity leading to
lymphoma regression while a T-reg/Th-2 phenotype is

dominant in L72 which is consistent with continued
lymphomagenesis.

Both L61 and L72 have a pro inflammatory phenotype in
whole tissues, inflammation is causative factor in carcino-
genesis in general [34] and inflammation is linked to
various types of lymphomas [34, 35]. The inducible
transcription factor NF-kappaB is a pivotal regulator of
genes involved in immune-inflammatory pathways, cell
cycle progression and inhibition of apoptosis promoting
carcinogenesis in mice and humans [36]. The MDV Meq
protein binds the CD30 promoter and enhances CD30
transcription [3], which in turn can activate the NF-kappaB
transcription factor via the CD30-tumor necrosis factor
receptor associated factor (TRAF) (1,2,3)-NF-kappaB sig-
naling pathway [37]. The high amounts of Meq protein,
over-expression of CD30 in transformed cells in all
genotypes (regardless of MD-susceptibility or -resistance)
in the first week after MDV infection [6] and the pro-
inflammatory profile in both L61 and L72 in our current
work together suggest that the genetic pathways of
inflammation are also common to MD.

The tumor microenvironment is critical in development
and maintenance of lymphoma generally [38] and this is
also true for MD [6]. A complex network of cytokines and
cell-to-cell contact mediated interactions between the trans-
formed cells and surrounding reactive infiltrate can lead to
further proliferation of neoplastic cells [38]. In classical
Hodgkin’s lymphoma (cHL), cytokine production by the
transformed cells and the surrounding reactive infiltrating
cells acts in autocrine and paracrine ways to result in the
survival and proliferation of transformed cells and the
maintenance of immunosuppressive microenvironment
[39]. Aberrant activation of the STAT pathway is a
postulated mechanism employed by neoplastic cells in HL
derived cell lines to escape cell death [40] and the reactive
infiltrate in HL is primarily comprised of Th-2 type of cells
enriched in T-reg cells, though not always with a classical
Th-2 type cytokine profile [38, 41]. These reactive cells
express CTLA-4 and are anergic (which may be due to
increased TGFβ and IL-10 expression). In human Epstein-
Barr virus (EBV) positive tumors, genetically engineered
TGFβ resistant CTLs had better antitumor activity than
unmodified CTLs, suggesting the inhibitory role of TGFβ
[42]. Also, EBV-infected HL transformed cells express the
Epstein-Barr nuclear antigen-1 (EBNA-1) gene which upre-
gulates the expression of chemokine (C-C motif) ligand
(CCL20) binding, which is a strong chemoattractant of T-regs
to the tumor microenvironment [43]. Alvaro et al. [44, 45]
used the cellular composition of HL tumor microenviron-
ment as a prognostic marker and suggested that a low
number of cytotoxic T cells in reactive infiltrate correlate
with increase in anti-apoptotic mechanisms in neoplastic
cells. Wahlin et al. [46] proposed that the presence of more
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of CD8+ T cells is a positive prognostic marker in human
follicular lymphoma. Overall our results here and previously
[5] suggest that the initial latently transformed minority cells
which are CD4+CD30hi are of T-reg phenotype and these
cells induce the infiltrating CD4+T cells to the T-reg
phenotype in both L61 and L72. In L61 a Th-1 tissue
microenvironment would support CD8+ T cell-mediated
immunity and CD8+ T cells have been observed in these
lesions previously (8). Furthermore, IFNγ-secreting CD4+ T
cells could recruit macrophages (also previously described in
resistant MD lines [8]), induce MHC class I up regulation on
the target transformed T-cells and promote restricted CD8+
CTL cells [47]. The mechanisms by which such a Th-1 could
“over-ride” the T-reg type response within the neoplastic
lesions themselves is unclear, but the Th-1 bias we observed is
a clear distinction between the resistant and the susceptible
MHC congenic lines. The strength of the MD system for
understanding how the tissue and tumor microenvironment
effects genetically-determined lymphoma regression or pro-
gression, and which we took advantage of, is that it is a natural
system in the context of a non-manipulated immune environ-
ment with predictable pathogenesis.
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