Skip to main content
Log in

Application of single-well push-drift-pull tests using dual tracers (SF6 and salt) for designing CO2 leakage monitoring network at the environmental impact test site in Korea

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

A single-well push-drift-pull tracer test using two different tracers (SF6 and salt) was performed at the Environmental Impact Test (EIT) site to determine suitable locations for monitoring wells and arrange them prior to artificial CO2 injection and leak tests. Local-scale estimates of hydraulic properties (linear groundwater velocity and effective porosity) were obtained at the study site by the tracer test with two tracers. The mass recovery percentage of the volatile tracer (SF6) was lower than that of the non-volatile tracer (salt) and increased drift time may make degassing of SF6 intensified. The CO2 leakage monitoring results for both unsaturated and saturated zones suggest that the CO2 monitoring points should be located near points at which a high concentration gradient is expected. Based on the estimated hydraulic properties and tracer mass recovery rates, an optimal CO2 monitoring network including boreholes for monitoring the unsaturated zone was constructed at the study site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addy, K., Kellogg, D.Q., Gold, A.J., Groffman, P.M., Ferendo, G., and Sawyer, C., 2002, In situ push-pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 31, 1017–1024.

    Article  Google Scholar 

  • Blackford, J., Stahl, H., Bull, J.M., Berges, B.J.P., Cevatoglu, M., Lichtschlag, A., Connelly, D., James, R.H., Kita, J., Long, D., Naylor, M., Shitashima, K., Smith, D., Taylor, P., Wright, I., Akhurst, M., Chen, B., Gernon, T.M., Hauton, C., Hayashi, M., Kaieda, H., Leighton, T.G., Sato, T., Sayer, M.D.J., Suzumura, M., Tait, K., Vardy, M.E., White, P.R., and Widdicombe, S. 2014, Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change, 4, 1011–1016.

    Article  Google Scholar 

  • Cahill, A.G., Marker, P., and Jakobsen, R. 2014, Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: a field-scale controlled release experiment. Water Resources Research, 50, 1735–1755.

    Article  Google Scholar 

  • Cappa, F. and Rutqvist, J. 2011, Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38, L17313. https://doi.org/10.1029/2011GL048487

    Article  Google Scholar 

  • Clark, J.F., Hudson, G.B., and Avisar, D. 2005, Gas transport below artificial recharge ponds: Insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment. Environmental Science & Technology, 39, 3939–3945.

    Article  Google Scholar 

  • Dewar, M., Wei, W., McNeil, D., and Chen, B. 2013, Small-scale modelling of the physiochemical impacts of CO2 leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters. Marine Pollution Bulletin, 73, 504–515.

    Article  Google Scholar 

  • Ha, S.W., Park, B.H., Lee, S.H., and Lee, K.K. 2017, Experimental and numerical study on gaseous CO2 leakage through shallow-depth layered porous medium: implication for leakage detection monitoring. Energy Procedia, 114, 3033–3039.

    Article  Google Scholar 

  • Hall, S.H., Luttrell, S.P., and Cronin, W.E. 1991, A method for estimating effective porosity and ground-water velocity. Groundwater, 29, 171–174.

    Article  Google Scholar 

  • Harvey, O.R., Qafoku, N.P., Cantrell, K.J., Lee, G., Amonette, J.E., and Brown, C.F. 2012, Geochemical implications of gas leakage associated with geologic CO2 storage —a qualitative review. Environmental Science & Technology, 47, 23–36.

    Article  Google Scholar 

  • Hebig, K.H., Zeilfelder, S., Ito, N., Machida, I., Marui, A., and Scheytt, T.J. 2015, Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis. Geothermics, 54, 43–53.

    Article  Google Scholar 

  • Hibbs, D.E., Parkhill, K.L., and Gulliver, J.S. 1998, Sulfur hexafluoride gas tracer studies in streams. Journal of Environmental Engineering, 124, 752–760.

    Article  Google Scholar 

  • Humez, P., Audigane, P., Lions, J., Chiaberge, C., and Bellenfant, G. 2011, Modeling of CO2 leakage up through an abandoned well from deep saline aquifer to shallow fresh groundwaters. Transport in Porous Media, 90, 153–181.

    Article  Google Scholar 

  • Humez, P., Lagneau, V., Lions, J., and Negrel, P. 2013, Assessing the potential consequences of CO2 leakage to freshwater resources: a batch-reaction experiment towards an isotopic tracing tool. Applied Geochemistry, 30, 178–190.

    Article  Google Scholar 

  • Hvidevold, H.K., Alendal, G., Johannessen, T., Ali, A., Mannseth, T., and Avesen, H. 2015, Layout of CCS monitoring infrastructure with highest probability of detecting a footprint of a CO2 leak in a varying marine environment. International Journal of Greenhouse Gas Control, 37, 274–279.

    Article  Google Scholar 

  • Hwang, H.T. 2004, Experimental and numerical sensitivity analyses on push-drift-pull tracer tests. Master’s Thesis, Seoul National University, Seoul, 108 p.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2005, Special report on carbon dioxide capture and storage. https://doi.org/www.ipcc.ch

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007, Climate change 2007: the physical basis, the fourth assessment report of the intergovernmental panel on climate, summary for policymakers. https://doi.org/www.ipcc.ch

    Book  Google Scholar 

  • Istok, J.D. 2012, Push-Pull Tests for Site Characterization. Springer, Berlin, 83 p.

    Google Scholar 

  • Jenkins, C.R., Cook, P.J., Ennis-King, J., Undershultz, J., Boreham, C., Dance, T., de Caritat, P., Etheridge, D.M., Freifeld, B.M., Hortle, A., and Kirste, D. 2012, Safe storage and effective monitoring of CO2 in depleted gas fields. Proceedings of the National Academy of Sciences, 109, E35–E41.

    Article  Google Scholar 

  • Jun, S.C., Cheon, J.Y., Yi, J.H., and Yun, S.T. 2017, Controlled release test facility to develop environmental monitoring techniques for geologically stored CO2 in Korea. Energy Procedia, 114, 3040–3051.

    Article  Google Scholar 

  • Kang, P.J., Kim, W.Y., and Lee, J.H. 1980, Manual of geologic map of Jincheon. Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea (in Korean).

    Google Scholar 

  • Kharaka, Y.K., Cole, D.R., Hovorka, S.D., Gunter, W.D., Knauss, K.G., and Freifeld, B.M. 2006, Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology, 34, 577–580.

    Article  Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J., Kakouros, E., Ambats, G., Herkelrath, W.N., Beers, S.R., Birkholzer, J.T., Apps, J.A., Spycher, N.F., and Zheng, L. 2010, Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environmental Earth Sciences, 60, 273–284.

    Article  Google Scholar 

  • Kilgallon, R., Gilfillan, S.M.V., Edlmann, K., McDermott, C.I., Naylor, M., and Haszeldine, R.S. 2017, Experimental determination of noble gases and SF6, as tracers of CO2 flow through porous sandstone. Chemical Geology, 480, 93–104.

    Article  Google Scholar 

  • Koo, C.M., Lee, K., Kim, M., and Kim, D.O. 2005, Automated system for fast and accurate analysis of SF6 injected in the surface ocean. Environmental Science & Technology, 39, 8427–8433.

    Article  Google Scholar 

  • Leap, D.I. and Kaplan, P.G. 1988, A single-well tracing method for estimating regional advective velocity in a confined aquifer: theory and preliminary laboratory verification. Water Resources Research, 24, 993–998.

    Article  Google Scholar 

  • Lee, K.K., Lee, S.H., Yun, S.T., and Jeen, S.W. 2016, Shallow groundwater system monitoring on controlled CO2 release sites: a review on field experimental methods and efforts for CO2 leakage detection. Geosciences Journal, 20, 569–583.

    Article  Google Scholar 

  • Lee, S.S., Kim, H.H., Joun, W.T., and Lee, K.K. 2017, Design and construction of groundwater monitoring network at shallow-depth CO2 injection and leak site, Korea. Energy Procedia, 114, 3060–3069.

    Article  Google Scholar 

  • Lemieux, J.M. 2011, The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeology Journal, 19, 757–778.

    Article  Google Scholar 

  • Lessoff, S.C. and Konikow, L.F. 1997, Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests. Groundwater, 35, 166–176.

    Article  Google Scholar 

  • Lions, J.G.I., May, F., Nygaard, E., Ruetters, H., Beaubien, S., Sohrabi, M., and Hatzignatiou, D.G. 2011, Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects. AGU Fall Meeting Abstracts, San Francisco, Dec. 5–9, H32B–08.

    Google Scholar 

  • Lu, J., Cook, P.J., Hosseini, S.A., Yang, C., Romanak, K.D., Zhang, T., Freifeld, B.M., Smyth, R.C., Zeng, H., and Hovorka, S.D. 2012, Complex fluid flow revealed by monitoring CO2 injection in a fluvial formation. Journal of Geophysical Research: Solid Earth, 117. https://doi.org/10.1029/2011JB008939

    Google Scholar 

  • Ma, J., Wang, X., Gao, R., Zhang, X., Wei, Y., Wang, Z., Ma, J., Huang, C., Liu, L., Jiang, S., and Li, L. 2013, Monitoring the safety of CO2 sequestration in Jingbian Field. Energy Procedia, 37, 3469–3478.

    Article  Google Scholar 

  • Myer, L.R. and Daley, T. 2011, Elements of a best practices approach to induced seismicity in geologic storage. Energy Procedia, 4, 3707–3713.

    Article  Google Scholar 

  • Myers, M., Stalker, L., Pejcic, B., and Ross, A. 2013, Tracers —past, present and future applications in CO2 geosequestration. Applied Geochemistry, 30, 125–135.

    Article  Google Scholar 

  • Nicol, A., Come, R., Gerstenberger, M., and Christophersen, A. 2011, Induced seismicity and its implications for CO2 storage risk. Energy Procedia, 4, 3699–3706.

    Article  Google Scholar 

  • Payne, F.C., Quinnan, J.A., and Potter, S.T. 2008, Remediation Hydraulics. CRC Press, New York, 432 p.

    Book  Google Scholar 

  • Peter, A., Hornbruch, G., and Dahmke, A. 2011, CO2 leakage test in a shallow aquifer for investigating the geochemical impact of CO2 on groundwater and for developing monitoring methods and concepts. Energy Procedia, 4, 4148–4153.

    Article  Google Scholar 

  • Peter, A., Lamert, H., Beyer, M., Hornbruch, G., Heinrich, B., Schulz, A., Geistlinger, H., Schreiber, B., Dietrich, P., and Werban, U. 2012, Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environmental Earth Sciences, 67, 335–349.

    Article  Google Scholar 

  • Rinaldi, A.P., Rutqvist, J., and Cappa, F. 2014, Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. International Journal of Greenhouse Gas Control, 20, 117–131.

    Article  Google Scholar 

  • Salhani, N. and Stengel, E. 2001, A comparative study of the gas exchange potential between three wetland species using sulfur hexafluoride as a tracer. Ecological Engineering, 18, 15–22.

    Article  Google Scholar 

  • Smith, M., Campbell, D., Mackay, E., and Polson, D. 2012, CO2 aquifer storage site evaluation and monitoring: Understanding the challenges of CO2 storage: results of the CASSEM project. Scottish Carbon Capture and Storage, Edinburgh. Available from https://doi.org/www.sccs.org.uk/expertise/reports

    Google Scholar 

  • Trautz, R.C., Pugh, J.D., Varadharajan, C., Zheng, L., Bianchi, M., Nico, P.S., Spycher, N.F., Newell, D.L., Esposito, R.A., and Wu, Y. 2013, Effect of dissolved CO2 on a shallow groundwater system: a controlled release field experiment. Environmental Science & Technology, 47, 298–305.

    Article  Google Scholar 

  • Zheng, L., Apps, J.A., Zhang, Y., Xu, T., and Birkholzer, J.T. 2009, Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia, 1, 1887–1894.

    Article  Google Scholar 

  • Zhou, R., Huang, L., and Rutledge, J. 2010, Microseismic event location for monitoring CO2 injection using double-difference tomography. The Leading Edge, 29, 208–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Kun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HH., Lee, SS., Ha, SW. et al. Application of single-well push-drift-pull tests using dual tracers (SF6 and salt) for designing CO2 leakage monitoring network at the environmental impact test site in Korea. Geosci J 22, 1041–1052 (2018). https://doi.org/10.1007/s12303-018-0045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0045-9

Key words

Navigation