Skip to main content
Log in

Heat shock proteins gene expression and physiological responses in durum wheat (Triticum durum) under salt stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Salt stress is a major abiotic stress causing adverse effects on plant growth and development. The aim of this study was to investigate the effect of NaCl stress on growth, stress indicator parameters (lipid peroxidation, chlorophyll content and proline content), yield, and the expression of heat shock proteins genes (Hsp17.8, Hsp26.3, Hsp70 and Hsp101) of five Jordanian durum wheat (Triticum durum) landraces. Plants were irrigated with tap water as control or 200 mM NaCl. Significant differences among the 5 Triticum durum landraces in terms of growth parameters, stress indicator parameters, and expression of heat shock proteins genes were observed. Salt stressed landraces demonstrated decreased growth, increased levels of stress indicator parameters, and upregulation in Hsp17.8, Hsp26.3, Hsp70 and Hsp101 expression. Landraces T11 and M23 showed the highest growth, lowest levels of stress indicator parameters, and high expression of heat shock protein genes under NaCl stress. Whereas, J2 and A8 landraces showed the lowest growth, highest levels of stress indicator parameters and low expression of heat shock protein genes under NaCl stress. In conclusion, NaCl stress caused significant reduction in growth parameters, increased level of lipid peroxidation and proline content and upregulation in heat shock proteins gene expression levels. Growth, stress indicator parameters and gene expression results suggest that T11 and M23 landraces are the most NaCl stress tolerant landraces and could be used to enhance the gene pool in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghani AH (2009) Response of wheat varieties from semi-arid regions of Jordan to salt stress. J Agron Crop Sci 195(1):55–65

    Google Scholar 

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al Khateeb W, Al Shalabi A, Schroeder D, Musallam I (2017) Phenotypic and molecular variation in drought tolerance of Jordanian durum wheat (Triticum durum Desf) landraces. Physiol Mol Biol Plants 23(2):311–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23(2):139–150

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Bharti K, Nover L (2002) Heat stress-induced signalling. In: Scheel D, Wasternack C (eds) Plant signal transduction: frontiers in molecular biology. Oxford University Press, Oxford, pp 74–115

    Google Scholar 

  • Black E (2009) The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos Sci Lett 10(3):192–200

    Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32(1–2):191–222

    CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    CAS  Google Scholar 

  • Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang G, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34(2):150–162

    CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci J 156(1):1–9

    CAS  Google Scholar 

  • Cicerali IN (2004) Effect of salt stress on antioxidant defence systems of sensitive and resistant cultivars of lentil (Lens culinaris M.). M.Sc. thesis, submitted to the Graduate School ofNatural and Applied Science of Middle EastTechnical University, Turkey

  • de Azevedo Neto AD, Prisco JT, Filho JE, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94

    Google Scholar 

  • Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23(2):243–250

    CAS  PubMed  Google Scholar 

  • Distelfed A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:3783–3798

    Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181(4):331–341

    CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Google Scholar 

  • Grigorova B, Vaseva II, Demirevska K, Feller U (2011) Expression of selected heat shock proteins after individually applied and combined drought and heat stress. Acta Physiol Plant 33(5):2041–2049

    CAS  Google Scholar 

  • Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628

    PubMed  PubMed Central  Google Scholar 

  • Hüttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67

    PubMed  PubMed Central  Google Scholar 

  • Jones HD (2015) Wheat Biotechnology: current status and future prospects. In: Davey MR, Azhakanandam K, Daniell H, Silverstone A (ed) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York. pp 263–290

    Google Scholar 

  • Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS (2014) Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol Part C J Toxicol Pharmacol 166:65–74

    CAS  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22(1):631–677

    CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    CAS  PubMed  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80(6):758–763

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 208(3):668–673

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Muthusamy S, Dalal M, Chinnusamy V, Bansal K (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    CAS  PubMed  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31(4):323–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Mol Breed 28(3):281–301

    CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. J Plant Physiol 130:1143–1151

    CAS  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5(3):291–317

    Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968):891

    CAS  PubMed  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changesin the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom 8(1):125

    Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67(1):2–9

    Google Scholar 

  • Vasil IK (2007) Molecular genetics improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26(8):1133–1154

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42(1):579–620

    CAS  Google Scholar 

  • Wallender WW, Tanji KK (2012) Nature and extent of agricultural salinity and sodicity. In: Wallender WW, Tanji KK (eds) Agricultural salinity assessment and management, 2nd edn. American Society of Civil Engineers, Reston, pp 1–25

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    CAS  PubMed  Google Scholar 

  • Wang J, Gao X, Dong J, Tian X, Wang J, Palta JA, Xu S, Fang Y, Wang Z (2020) Overexpression of the Heat-Responsive Wheat Gene TaHSP23.9 in transgenic Arabidopsis conferred tolerance to heat and salt stress. Front Plant Sci 11:243. https://doi.org/10.3389/fpls.2020.00243

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32(5):667

    PubMed  Google Scholar 

  • Yi H, Qiong W, Jian Z, Tao S, Guang-xiao Y, Guang-yuan H (2015) Current status and trends of wheat genetic transformation studies in China. J Integr Agr 14(3):438–452

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the deanship of research at Yarmouk University/Jordan for funding this Project (31/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesam Al Khateeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Khateeb, W., Muhaidat, R., Alahmed, S. et al. Heat shock proteins gene expression and physiological responses in durum wheat (Triticum durum) under salt stress. Physiol Mol Biol Plants 26, 1599–1608 (2020). https://doi.org/10.1007/s12298-020-00850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00850-x

Keywords

Navigation