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Abstract
Inferring dynamic systemmodels from observed time course data is very challenging compared to static system identification
tasks. Dynamic system models are complicated to infer due to the underlying large search space and high computational
cost for simulation and verification. In this research we aim to infer both the structure and parameters of a dynamic system
simultaneously by particle swarm optimization (PSO) improved by efficient stratified sampling approaches. More specifically,
we enhance PSO with two modern stratified sampling techniques, i.e., Latin hyper cube sampling (LHS) and Latin hyper
cube multi dimensional uniformity (LHSMDU). We propose and evaluate two novel swarm-inspired algorithms, LHS-PSO
and LHSMDU-PSO, which can be used particularly to learn the model structure and parameters of complex dynamic systems
efficiently. The performance of LHS-PSOandLHSMDU-PSO is further comparedwith the original PSOand genetic algorithm
(GA). We chose real-world cancer biological model called Kinetochores to asses the learning performance of LHSMDU-PSO
and LHS-PSO in comparison with GA and the original PSO. The experimental results show that LHSMDU-PSO can find
promising models with reasonable parameters and structure, and it outperforms LHS-PSO, PSO, and GA in our experiments.

Keywords Learning structure and parameters · Swarm Intelligence · Particle swarm optimization · Latin hypercube sampling ·
Genetic algorithm · Latin hypercube sampling multidimensional uniformity · Dynamic systems

1 Introduction

Dynamic system models have been applied to a broad scope
of areas, including physics [1], biology [2], chemistry [3],
engineering, economics, and medicine [4]. Inferring mod-
els of dynamic systems has always been a challenging task.
Modelling of dynamic systems are commonly achieved by
Ordinary Differential Equations (ODEs), which can capture
the overtime evolution of a dynamic system. For an ODE
model, a parameter describes the influence rate between
variables and a structure describes the interrelation between
variables. A set of parameters associated with its structure is
considered as the strength of an ODE model [5].
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The task of identifying an ODEmodel from its time series
data includes the behaviour modelling of a dynamic system
and contrast the simulation outputs with the targeted data.
In traditional system identification tasks, normally a model
structure is assumed to be given. Therefore, the main aim
in these tasks is to identify suitable model parameters that
can explain the observed data. However, in many real-world
problems, it is very common that the model structure is only
partially known or even completely unknown. In such situa-
tions, inferring the model, i.e., its structure and parameters,
is becoming a more challenging task [6]. This motivates us
to explore computational approaches which can automati-
cally learn both the structure and parameters of ODEmodels
simultaneously, as this will be more applicable in many real-
world situations when only partial or incomplete knowledge
and data are available.

The general form of an ODE can be described by Eq. (1),
where fi is the relationship among variables, n is the number
of observable elements, n and Xi is the state variable.

dXi

dt
= fi (X1, X2, . . . , Xn)(i = 1, 2, . . . , n) (1)
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For inferring the ODE model of a dynamic system, even
the task for simple model with a small number of parameters
has been more challenging than expected. This is because
practically such models are computationally demanding to
simulate. On the other hand, inferring models of complex
dynamic systems has even higher computational require-
ment and needs a feasible point to start with [7]. To achieve
our goal, we are using particle swarm optimization (PSO)
[8] to infer the structure and parameters of an ODE model.
This is because PSO is competent to scaling variables, and it
can avoid the premature convergence by effective balancing
exploration and exploitation.

PSO has gained much attention in recent years. It is a
swarm inspired algorithm first developed by Kennedy and
Eberhart [8]. It is a well established meta-heuristic algorithm
which provides an adequate solutions to optimize incomplete
or imperfect information. In PSO, each particle defines a
potential solution and conserves the trajectory of its coor-
dinates in the search space. The trajectory coordinates is
related to the solution accomplished known as personal best
(pbest). Each particle moves in the search space by updat-
ing their coordinates and velocity towards the overall best
value known as global best (gbest). Each particle updates
its particle coordinates or position after every iteration con-
sidering its previous pbest and gbest values as well as
its current position and velocity. The particles in a search
space are represented by the vector Xi = (xi1, xi2, . . . , xiD),
where D is the number of dimensions in the search space.
The velocity of a particle in a search space is denoted by
Vi = (vi1, vi2, . . . , vi D), as shown in Eq. 2, where rand1 and
rand2 are randomnumbers uniformly distributed in the range
of [0,1], c1 and c2 are positive constants called acceleration,
and w is the inertia weight [9].

Vi(t) = ω ∗ Vi (t − 1) + c1 ∗ rand1 ∗ (pbesti − xi(t)

+c2 ∗ rand2 ∗ (gbest − xi(t)) (2)

xi(t) = xi(t−1) + Vi(t) (3)

PSO does not need to adjust too many parameters and in
general, it has fast convergence rate, low time, space and
design complexity. Moreover, the original version of PSO is
for solving continuous problems, but it has been adapted to
dealwith both discrete and continuous problem search spaces
[10,11].

In this research, we adopt a real biological model and
propose to infer both the structure and parameters of its ODE
model.We point out that whatever ODEmodel is under study
(biological, chemical or physics), some of its variables may
not be realized, which becomes challenging in computation
and estimation tasks. We thus suggest the use of a general
methodology based on swarm intelligence algorithms that
accounts for dynamic systems in a wide range of fields of

study. This broadens our ability to cover a large variety of
ODE inference problems across different fields.

To our knowledge, the search space of PSO for our
problem ( i.e, simultaneously inferring model structure and
parameters) is immense even if the number of the variables
involved in the search space is small. To overcome this prob-
lem, it drove us to search for the best sampling method
along with PSO. Therefore, we examine the use of efficient
sampling approaches, including Latin Hypercube Sampling
(LHS) [12] and Latin Hypercube Sampling Multi Dimen-
sional Uniformity (LHSMDU) [13], as they demonstrates to
be effective in many problems with complex search spaces.

To preview other sections of the paper, our study is
organised as follows: we discuss the limitations of inferring
dynamic system problems along with related work in Sect. 2.
In Sect. 3, we discuss the general methodology to address
how the model is rifted into structure and parameters, which
is fallowed by two main fitness functions to evaluate our
model in Sect. 3.1. In Sect. 3.2, we introduce our real can-
cer biological model. In Sect. 3.3 we presented the proposed
algorithms framework. Moreover, In Sect. 3.4, we combine
PSOwithLHS to showhowwe can learn or perform the infer-
ence of parameters and structure simultaneously.Afterwards,
we advanced the original LHS to LHSMDU in Sect. 3.5,
to compare the performance difference of LHS-PSO and
LHSMDU-PSO. This is followed by using GA in Sect. 3.6,
to infer the structure and parameters of the same model for
report comparison between proposed algorithms and GA.
In Sect. 4, we assess the results and demonstrate the best
approach capable of inferring the structure and parameters
simultaneously. Finally, we conclude the paper and explore
future work in Sect. 5.

2 Literature review

A large number of existing studies in the broader literature
have examined the structure and parameters of dynamic sys-
tems. First, wewill review existingGAapproaches as applied
to parameters and structure, and this is followed by a review
of optimization of ODE. Finally, we will review PSO used
for optimizing general function parameters and structure.

Recent research shows that evolutionary algorithms were
effective when applied to identify dynamic system mod-
els [14–16]. In [17], the authors presented an idea to set
GA within Genetic Programming (GP). They used GP to
optimize the structure of an ODE and GA to optimize its
parameters. They have succeeded in inferring an ODE based
on observed time series data. However, their experiments
were performed by assuming simple equation models ( and
thus smaller search space) using the E-Cell Simulation Envi-
ronment and they wanted to apply the proposed method on
real world problems. They claimed the successful inference
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of structure and parameters but both structure and parameters
were inferred separately with different methods of a simple
model within small search space. A method of evolutionary
approach employed by Yang et al. [18], to concede a gene
regulatory network from its time series data. They assumed
a simple model and wanted to apply the proposed method-
ology for inferring a large-scale real model. Previous study
points out the problem of assumed simpler model. Mateescu
et al. [19] proposed GA for evaluating Cauchy problem and
proposed it for real time problems.

Seminal contributions have been made by Darania et al.
[20] to carry out a study to estimate the output of differ-
ential equations using swarm intelligence. The study falls
short of addressing the implementation of methodology on
real problems. Lee et al. [21] approximated the outcome
of non-linear differential equations by Method of Bilater-
ally Bounded (MBB). Tan et al. [22] proposed a combined
approach to learn a string of solved non-linear differential
equations. Mastorakis et al. [23] performed finite element
model to assist the fitness functions in search space for iden-
tifying an ODE as an optimization problem.

In [24] the author employed PSO and Multi Expres-
sion Programming (MEP) to evaluate structural optimization
problems. They optimized ODE parameters by PSO and
inferred its right-hand side by MEP from a small popu-
lation in order to retrieve the optimum structure of ODE.
Theyminimized themodel complexity by dividing the search
space in equal coordinates and proposed the same methodol-
ogy for real large-scale biochemical network problems. Xu
et al. [25] used PSO to track various changes in dynamic
functions. They chose Parabolic and Rosenbrock benchmark
functions as testing functions because it was easy to control
their dynamic change with time. They compared the results
of PSO by fixing or changing the global best gbest value
for a fixed number of iterations. They suggested that fur-
ther investigations were needed to assess the performance of
PSOwithmore realworld complexmodels. Similarworkwas
done by Eberhart et al. [26]. They improved the optimization
of parabolic function using PSO and kept population size
20 to get speedy results because the system execution was
responsive to the number of population and iteration, which
describes the optimization of simple functions using PSO
with smaller search space is not enough to support the infer-
ence of real-world complexmodels. Previouslywe have done
some work on inferring the model structure and parameters
simultaneously for simple models and traditional algorithms
[27,28]. To overcome complex problem and larger search
space, we build our work in in Sect. 3 in a way which can
infer model structure and parameters of real-world complex
models simultaneously.

3 Methodology

For this study, it was of an interest to investigate the applica-
tion PSO, LHS-PSO, LHSMDU-PSO and GA, to infer both
the structure and parameters of an ODE model in parallel.
To solve our problem using PSO, the encoding of the search
space is the first step. In PSO, each individual location in the
search space links one possible solution to its problem. In
order to identify the best solution(s), all particles will update
their velocity and positions at each iteration. We express the
structure as an operation relation between variables. Each
particle adjustment point is calculated by a fitness function.

Aswementioned in Sect. 1, the structure of anODEmodel
outlines the interrelations among variables and the influence
rate betweenvariables are representedby theparameters of an
ODE model. In general, an ODE model structure comprises
Addition, Multiplication, Subtraction and Division
(more operations could be added, but this will be explored in
future work). The parameters in a model are the coefficients
of the variables. A more detailed representation of an ODE
is given in Eq. (4), where f1 ∼ fi are the state variables, and
k1 ∼ ki are the parameters. Our general model for inferring
the structure and parameters of dynamic systems is given in
Eq. (4).

d fi
dt

=
n∑

i=1

ki ∗ fi

fi =

⎧
⎪⎨

⎪⎩

1

x1
x1 ∗ x2

(4)

To begin with, we are assuming a general model with three
different structure item combinations. It includes single vari-
able items i.e. k1 ∗ x1, two-variable item i.e. k1 ∗ x2 ∗ x3
and the item without variable i.e. k1. We can also go fur-
ther from the scope we set for learning the structure and
parameters by assuming more potential terms, but it will be
challenging to maintain because the more variable interac-
tions in an ODE, the more complex the design of the solution
space. We also argue that many systems may not be very
complicated in terms of the number of interactions and vari-
ables involved. This is due to the fact that a system needs to
maintain robustness while being efficient, and complicated
interactions means less robustness and more expensive to
function.

We use the addition and subtraction operators to define
the interrelation between two items within an equation. Fur-
thermore, we used division or multiplication to define the
interrelation between the parameters and variables of an item.
Together both parts represent one ODE.

Now, coming towards our objective, we consider a generic
setup to define the structure and parameters of an ODE by a
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Table 1 The structure of the ODE model

Si ki xi

1 (+,+,+,+,+,+,+,+, x1, x2, x3, x4, x5, x6, x7, x8)

2 (+,+,+,+,+,+,+,+, x2, x2, x3, x4, x5, x6, x7, x8)

3 (+,+,+,+,+,+,+,+, x3, x2, x3, x4, x5, x6, x7, x8)

4 (+,+,+,+,+,+,+,+, x4, x2, x3, x4, x5, x6, x7, x8)

5 (+,+,+,+,+,+,+,+, x5, x2, x3, x4, x5, x6, x7, x8)

particle’s position in the search space. This proceeds in two
stages i.e, firstly, the particle dimensions are used to demon-
strate each parameter of an ODE in search space. Secondly,
we compute all possible structures of anODEmodel by a pre-
defined assumption. All assumed structures are then passed
into a list Si and we use the index value of the list to define
the structure. In this way all elements in the list represent the
possible structures of a single ODE.

For instance in Table 1, we assume the first five possible
structures, each of which is composed of sixteen possible
structure item combination, acquired from Eq. 4. In Table 1,
each Si index value is composed of different combinations
of structures. All ki (i = 1 to 8) are combined in sequence
with structure index Si values. The first eight items of the
structure Si represent the operators i.e, (+,+,+,+,+,+,+,+)
a the last eight items of the structure Si represents the variable
combinations xi (where i= 1 to 8) i.e, (x1, x2, x3, x4, x5, x6,
x7, x8 ).

The main practical problem that confronts us is the sam-
pling distribution of particles in the search space and due to
the fact that very little information is know regarding dis-
tributing samples in every new iteration. One approach to
better normalize the distribution of samples in the search
space involves the use of LHS and LHSMDU along with
PSO. One of the objectives is to improve the use of LHS and
LHSMDU and to relocate the initial particle positions in the
search space uniformly. In addition, LHS and LHSMDUpro-
vide extra precision and equal coverage for each distribution
because they supervise the sampling of each distribution sep-
arately. Comparing LHS with Monte Carlo Method, one can
say that LHS is outlined accurately to reform the input dis-
tribution over sampling in less iterations. LHS stratifies the
input probability distributions and stratification partitions the
cumulative curve into equal space on the cumulative proba-
bility scale. Moreover, LHS can ensure that all particles are
distributed in the input search spacemore evenly, which leads
tominor incidents of a sample that is not present in the output
distribution of search space.

3.1 The fitness function

The fitness function for each value is expressed as the sum
of the squared errors (SSE) as illustrated in Eq. (5), where

xi (t0 + kt) is the given target time course data, t is the step
size, n is the number of state variables, T is the number
of the data points, t0 is the starting time, xi (t0 + kt) and
(k = 0, 1, . . . , T − 1) is the time course data attained by
measuring the system of ODEs performed by a particle from
LHS-PSO.

f i tness =
n∑

i=1

T−1∑

k=0

(xi (t0 + kt) − xi (t0 + kt))2 (5)

Model selection turns out to be computationally important
for selecting the best fittedmodel among PSO, LHS-PSO and
LHSMDU-PSO. The method of the model selection essen-
tially supports the link between the observations or data and
themathematical model. Some extensive popular methods of
rigorous statistical methods have been practiced to analyse
model selection criteria. Akaike information criterion (AIC)
[29] is one suchmethodwhich explicitly evaluates the quality
of each model. Thus, AIC provides a means for model selec-
tion in comparison with other models. In this research, we
use the AIC statistical model for comparing the best inferred
models and to select the best model. Equation 6 is used to
estimate the AIC of a model.

AIC = n ∗ ln(SSE/n) + 2 ∗ k (6)

In the above Eq. (6), k is the number of parameters, n is the
number of observations in the model and SSE is the Sum of
Square Errors. If the number of samples is approximated to
be small, i.e, when n/k is less than 40 then a revised model
of AIC i.e, AICc is proposed. The best estimation models
ranked by AIC is the one with the lowest (most negative)
AIC value [29].

3.2 ODEmodel for biological application

One of the major aim of this study is that we are simulating
a real biological cancer tumour model called Kinetochore.
Kinetochore is a specific multi-protein set of buildings that
performs a vital role in upholding genome consistency [30].
It bridges the gap between micro-tubules and chromosomes
during mitosis and operates the spindle meeting checkpoint.
A broken kinetochore signifies one possible source for chro-
mosome instability (CIN) and in general CIN plays a role in
cancer tumour growth [31]. The obtained model consists of
five ODEs. These equations express the rates of change of
components d/dt described by Eqs. (7)–(11). Our model is
obtained through a collaborative project1 with Dr A. Suarin
from University of Dundee and Dr F.Gross from Humboldt
University of Berlin, based on their biological experiments

1 https://sites.google.com/view/airsyb.
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Table 2 Structure and
parameter of the ODE model

S.No Structures Parameters

1 +, −, *, I, T pp1,sd_factor_b,kb_kln1_pp1,kd_kln1_pp1

2 −, +, *, U, V, T kdp_pp2a,kinase,kp_pp2a

3 −, +, −, *, V, U, V, T kinase,kp_pp2a,kd_kln1_pp2a, kdp_pp2a

4 −, +, −, +, W, V, W, U kd_kln1_pp1a,melt,mpa1,kp_melt

5 −, +, +, *, I, T, V, U kd_kln1_pp1,rvsf_p,kdp_rvsf, darka_factor

aurb, kp_rvsf, sd_factor_p

and related findings [30]. The model has the following struc-
ture as detailed in Eqs. (7)–(11).

dT

dt
= pp1 ∗ I ∗ sd_factor_b ∗ kb_kln1_pp1

−T ∗ kd_kln1_pp1 (7)
dU

dt
= V ∗ T ∗ kdp_pp2a −U ∗ kinase ∗ kp_pp2a (8)

dV

dt
= U ∗ kinase ∗ kp_pp2a − V ∗ kd_kln1_pp2a

−V ∗ T ∗ kdp_pp2a (9)
dW

dt
= V ∗ kd_kln1_pp2a + melt ∗ mps1 ∗ kp_melt

−W ∗ pp2a_p

∗ kb _kln1_pp2a − W ∗U ∗ kdp_melt ∗
darka_factor (10)

d I

dt
= T ∗ kd_kln1_pp1

+ rvsf_p ∗U ∗ V ∗ kdp_rvsf

∗ darka_factor − I ∗ aurb ∗ kp_rvsf

∗ sd_factor_p (11)

In the above Eqs. (7)–(11), the observed variables are
melt_p, kln1_pp1, kln1_pp2a, rvs f and kln1_pp2a_p.
To simplify, we have replaced the variables kln1_pp1,
kln1_pp2a, kln1_pp2a_p, melt_p and rvs f with letters
T ,U , V ,W and I respectively. The model variables are pre-
sented in a single or combined form of proteins, which are the
promoters in human cancer development. In the above men-
tioned model proteins pp1, pp2a, and p are combined with
other main cancer tumour proteins and conjointly they are
considered as one variable in our model [32]. Furthermore,
variables kln1_pp1/pp2a/p are the number of kinetochore
proteins localized in a human cancer cell line [33]. melt is
the number of proteins which are strongly associated with
cancer and at the same time they serve as the potential tar-
gets for drug development against cancer [34]. rvs f is the
number of active cancer cells. It is active due to its intensive
division that includes replication, transcription, and chromo-
somal separation [35]. On the other hand, parameter pp1 and

pp2a are the numbers of cancer cells to boost cancer in vari-
ous organs [33], sd_ f actor_b, kinase, and darka_ f actor
are the reduced numbers of kln1 and pp2a; kd_kln1_pp1
and kd_kln1_pp2a are dissociation constants; kp_melt is
the phosphorylation constant of protein melt; kb_kln1_pp1
and kb_kln1_pp2a are binding constants of pp1 and pp2a
respectively and kdp_rvs f is the dephosphorylating con-
stant of rvs f .

+(*) I︷ ︸︸ ︷
pp1 ∗ I ∗ sd_factor_b ∗ kb_kln1_pp1︸ ︷︷ ︸

pp1 sd_factor_b kb_kln1_pp1

- (*)T︷ ︸︸ ︷
−T ∗ kd_kln1_pp1︸ ︷︷ ︸

kd_kln1_pp1

(12)

For instance, in Eq. (12), the values above the over braces
describe the structure and the values below the down braces
describe the parameters of Eq. (12). Here the “+′′ sign is
representing the structure of variable I and “∗′′ is repre-
senting the interrelation of variable I with parameters pp1,
sd_ f actor_b, kb_kln1_pp1. Additionally, the sign “−′′ is
representing the structure of variable T and the sign “∗′′
represents the interrelation of variable T with parameters
kd_kln1_pp1. We are taking “*” as a common sign for all
variables and parameters presented in an equation. Similarly,
we separated all the structures and parameters of our testing
model stated in Eqs. (7)–(11), as shown in Table 2.

The time series data form a matrix containing the times-
tamps and variable values which represent different time
steps. In our model the initial concentrations of proteins are
as fallows: pp1 = 0.9, sd_ f actor_b = 1, kb_kln1_pp1 =
10.24, kd_kln1_pp1 = 0.0012, kdp_pp2a = 0.015,
kinase = 1, kp_pp2a = 0.81, kd_kln1_pp2a = 1.64,
melt = 0.7, mps1 = 1, kp_melt = 0.47, pp2a_p = 0.1,
kb_kln1_pp2a = 0.12, kdp_melt = 1591.5,
darka_ f actor = 1, rvs f_p = 0.8, kdp_rvs f = 1410.79,
aurb = 1 and kp_rvs f = 1934.77. The above mentioned
parameter values are initially estimated by the biological
modeller (our collaborator) based on experimental data and
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Fig. 1 Time course data of
variables kln1_pp1(T),
kln1_pp1_2a(U),
kln1_pp2a_p(V),
melt_p(W) and
rvsf(I), respectively

domain knowledge. Our target model system with parameter
values and variables is finally outlined in Eqs. (13)–(17).

dT

dt
= I ∗ 0.9 ∗ 10.24 ∗ 1 − T ∗ 0.0012 (13)

dU

dt
= −U ∗ 0.81 ∗ 1T ∗ V ∗ 0.0154 (14)

dV

dt
= U ∗ 0.81 ∗ 1 +W ∗ 0.12 ∗ 0.1 − V ∗ 1.64

−T ∗ V ∗ 0.015 (15)
dW

dt
= 0.47 ∗ 0.7 + 1.64 ∗ V − W ∗ 0.12 ∗ 0.1

−U ∗ W ∗ 1591.5 (16)

d I

dt
= 0.8 ∗ 1410.79 ∗U ∗ ∗1 + T ∗ 0.0012

−0.9 ∗ 1 ∗ 10.24I ∗
−I ∗ 1 ∗ 1 ∗ 1934.77 (17)

For this study, it was of interest to investigate the structure
and parameters of the model by considering its performance.
As we mentioned earlier, the identified information in an
ODE is the given time series data, corresponding parame-
ters and variables. For each ODE the time course data is
obtained bymeans of a function odeint2 in Python. It numer-
ically integrates a system of ODEs. The time series data

2 scipy.integrate.odeint.
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Fig. 2 Framework of PSO, LHS-PSO, and LHSMDU-PSO

for variables kln1_pp2a_p(V), kln1_pp1(T ),melt_p (W),
kln1_pp2a (U),and rvs f (I) are shown in Fig. 1.

3.3 Proposed algorithms framework

Before we proceed to present the proposed algorithms, we
first present thewhole framework in Fig. 2 in order to provide
a global picture of our research. The whole framework of
the proposed algorithms i.e, PSO, LHS-PSO and LHSMDU-
PSO is given in Fig. 2.

3.4 The LHS-PSO algorithm

LHS is a commonly used stratified sampling approach due
to its effectiveness in initialization of input probability dis-
tributions. LHS is designed to achieve a better space-filling
performance based on raw samples. It allows the samples to
be evenly distributed across the search space.

The basic idea of LHS includes L as an n-dimensional
hypercube and LU

i and LL
i are the upper bound and lower

bound of the i th variable Li , where i = 1, 2 . . . , n. Firstly, to
get H samples (solutions), we equally split Li range into

Table 3 Corresponding matrix
M10∗2

S.No N1 N2

H0 4 4

H1 7 2

H2 6 6

H3 1 2

H4 3 1

H5 7 5

H6 8 8

H7 10 6

H8 3 7

H9 2 9

H10 9 10

Fig. 3 LHS SubHyperCube

LU
i and LL

i into H sub-hypercubes. This way each sub-
hypercube will have the same number of dimensions for
which the hypercube is initialized. Secondly, it will gen-
erate a matrix MH∗n with column and row of n elements.
Thirdly, n elements is used as an index value for the selec-
tion of sub-hypercubes, and finally we will get one random
sampled solution within each sub-hypercubes. For instance,
when n = 2 and H = 10, one potential approach of matrix
M10∗2 is shown in Table 3.

The outline of M10∗2 shows that every dimension in the
search space is further divided into 10 sub spaces. Each sub-
space is indexed by value [1, 2, 3, 4, . . . , 10]. Each sub space
is further divided into H2 sub squares. This way, the possible
samples (solutions) (4,4), (2,6), (6,5), (1,2), (3,1), (5,7), (8,8),
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(6,10), (7,3), (9,2), (10,9) are produced by the LHS method.
The number of sub-squares for every single hypercube will
be 100 which means that the search space is splited into 100
equal sub-squares.

Figure 3 represents the first three sub-hypercubes, i.e, h0,
h1 and h2 of the matrix M10∗2 (Table 3). Our proposed LHS-
PSO algorithm is shown below.

3.5 The LHSMDU-PSO algorithm

The LHSMDU algorithm enhances the basic idea of LHS.
It increases the multidimensional consistency of samples by
increasing the distance between realizations. This is accom-
plished by generating a considerable number of random
samples and successively excluding the realizations which
are close to each other in the multidimensional space. We
assume that a model needs V variables which can be real-
ized W times. The input matrix of this model is composed
of V columns and W rows and can be presented by V ∗ W .
The sampling matrix composed the range values between x L

(Lower bound) and xU (Upper bound) of the model. Equa-
tion 18 describes the sampling matrix of LHSMDU-PSO.

Matri x =

⎡

⎢⎣
F(x)11 . . . F(x)1V

...
. . .

...
F(x)W1 . . . F(x)VW

⎤

⎥⎦ , F(x)i j = [U, L] (18)

To enhance the multidimensional uniformity, LHSMDU
eliminates some realizations thatwork for any dimension.We
used Euclidean distance to eliminate some realization and to
calculate the similarity of each realization. The distance Di j

is the dimension of repetition or closeness of realization i
and j , which is given by:

Di j =

√√√√
V∑

n=1

(F(xn)i − F(xn) j )2 (19)

In Eq. 19, V is the number of variables with known correla-
tion matrix. We take the two smallest distance values of two
nearest neighbours and average them. The average distance
is saved for the corresponding realization i and to increment
i . The same step is repeated to calculate the average dis-
tance of all realizations. The aim of practicing LHSMDU is
to validate a larger multivariate space by removing extra real-
izations from the initial pool and to ease the PSO search for
better structures and parameters in the search space. Algo-
rithm.2 defines the LHSMDU-PSO.
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3.6 Genetic algorithms

In line with the ideas of inferring the structures and parame-
ters using PSO, LHS-PSO, and LHSMDU-PSO, we also use
genetic algorithm to solve the same problem and to make a
fair comparison between different algorithms. The execution
process of Genetic Algorithm (GA) is not the same as PSO,
but its comparison can be discussed. The termination of GA
occurs when the fitness level or the given number of gener-
ations has been attained. Notably, we exemplify the model
in terms of Genome, Chromosome and Gene in Eq. (20).
To make one complete genome, firstly we consider a sin-
gle parameter T ∗ 0.0012 as a gene. Secondly we merge all
genes to shape a single chromosome and finally we merge
all chromosomes to shape one complete genome. Algorithm.
(3) outlines GA.

Genome =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = I ∗ 0.9 ∗ 10.24 ∗ 1 − T ∗ 0.0012

dU
dt = −U ∗ 0.81 ∗ 1T ∗ V ∗ 0.0154

dV
dt = U ∗ 0.81 ∗ 1 +W ∗ 0.12 ∗ 0.1

−V ∗ 1.64 − T ∗ V ∗ 0.015

dW
dt = 0.47 ∗ 0.7 + 1.64 ∗ V

−W ∗ 0.12 ∗ 0.1 −U ∗ W ∗ 1591.5

d I
dt = 0.8 ∗ 1410.79 ∗U ∗ ∗1 + T ∗ 0.0012

−0.9 ∗ 1 ∗ 10.24I∗
−I ∗ 1 ∗ 1 ∗ 1934.77

Chromosome =

⎧
⎨

⎩

dT
dt = 0.9 ∗ I ∗ 1 ∗ 10.24 − T ∗ 0.0012

Gene =
{
T ∗ 0.0012

(20)
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4 Experimental results

We applied PSO, LHS-PSO, LHSMDU-PSO and GA to
assess the effectiveness of these algorithms. We performed
the experiments of the proposed algorithms on the ODEs
of the kinetochore model. We developed the elemental PSO
first and then enhanced it with LHS and LHSMDU, later
we compared the best algorithm among PSO, LHS-PSO and
LHSMDU-PSO with GA for better comparison. All experi-
ments were conducted on a computer with an Intel Core i5
processor (3.20 GHz), 8 GB of RAM.

Considerable attention was given to tuning the parameters
of PSO and GA.We selected the best performing parameters
for both algorithms during the optimization process. We ran
a number of trials based experiments beforehand in order to
tune the best performing parameters for solving the ODEs
of dynamic systems. In addition, as we discussed, dynamic

systems are very complex and it is very challenging to learn
the structure and parameter simultaneously. One way to help
overcome this challenge is to keep the population size and
iteration high. It will help to enhance the exploration capabil-
ity in the search space to discover better particles. Parameters
set for the GA and PSO algorithms are the same in all exper-
iments. In PSO, the number of iterations is 1,000, the size of
population 1,000, ω is 0.6, c1 and c2 are 0.8. In GA, the pop-
ulation size is 1000, crossover probability is 0.85, mutation
probability is 0.3 and the number of generations is 500. We
will further compare the best algorithm among PSO, LHS-
PSO and LHSMDU-PSO with GA.

The following observations were made by applying PSO,
LHS-PSO and LHSMDU-PSO: we acquired the best fitness
values by means of sum of square errors. The corresponding
ODE models for PSO, LHS-PSO and LHSMDU-PSO are
described in Eqs. (21)–(25), (26)–(30) and (31)–(35) respec-
tively.
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1. The Resultant ODE Model found by PSO

dT

dt
= −0.010 ∗ T + 8.916 ∗U + 0.007 (21)

dU

dt
= U ∗ W ∗ 0.435 −U ∗ 1.745 + 0.7002 ∗U (22)

dV

dt
= −V ∗ 0.010 +U ∗ 0.41 +W ∗ 0.012 − 2.390 ∗ V

(23)
dW

dt
= V ∗ 0.0074 + 0.306

−W ∗ 0.0945 − W ∗U ∗ 1471.7 (24)
d I

dt
= −223.54 ∗ I − 0.190 ∗U

+ 0.0120 + 228 ∗U (25)

2. The Resultant ODE Model found by LHS-PSO

dT

dt
= 0.00690 − 0.0089 ∗ T + 4.65 ∗ I + 1.966 ∗ I (26)

dU

dt
= U ∗ T ∗ 0.29 −U ∗ 2.99 + 1.90 ∗U (27)

dV

dt
= W ∗ 0.1 ∗ 0.12 +U ∗ 1 ∗ 0.81

− V ∗ 1.64 − V ∗ T ∗
0.015 − V ∗ 0.009 +U ∗ 0.39

+W ∗ 0.022 − 1.69 ∗ V (28)
dW

dt
= V ∗ 0.005 + 0.306 − W ∗ 0.19

−W ∗U ∗ 1303.2 (29)
d I

dt
= −105.0 ∗ I − 73.54 ∗ I − 0.17 ∗U

+ 0.009 + 104.0012 ∗U (30)

3. TheResultantODEModel foundbyLHSMDU-PSO

dT

dt
= 11.307 ∗ T +U ∗ 3.979 − T ∗ 11.3 + 0.0012 (31)

dU

dt
= −U ∗ 0.599 + V ∗ 0.021 + 2.2 (32)

dV

dt
= −V ∗ 2.202 +U ∗ 0.59 −U ∗ 0.2 +W ∗ 0.013

(33)
dW

dt
= 0.392 + V ∗ 0.721 − W ∗U ∗ 850.80 (34)

d I

dt
= −I ∗ 7.216 − I ∗ 1211.7 +U ∗ 598.6 + 1.011 (35)

For each algorithm we conducted 20 trials of experiments.
This allowed us to compare LHSMDU-PSO with LHS-PSO
and PSO. The fitness values shown in Table 4 and Fig. 4
indicate a clear significant difference. They demonstrate that
LHSMDU-PSO algorithm has a better ability to search for

Table 4 Corresponding matrix

Average fitness Max fitness Standard deviation

PSO 8.460 12.748 2.369

LHS-PSO 3.281 7.092 1.694

LHSMDU-PSO 0.853 1.992 0.5173

Fig. 4 Box plot of fitness values

the parameters and structure of the system of ODEs by using
known time course data. Furthermore, if none of the algo-
rithms found the right structure, this is still valuable as the
problem is complicated in nature. In addition, the alternative
models found by our algorithms provide additional insight
and guidance. Finally, we noticed that LHSMDU-PSO can
find models which are closer to the measured data than other
algorithms, and this indicates the performance of LHSMDU-
PSO.

The time course data generated for PSO, LHS-PSO and
LHSMDU-PSO in Fig. 5 shows that the corresponding ODE
model we constructed through LHSMDU-PSO matches the
initial time course data more closely.

Furthermore, to assess the significant result group among
PSO, LHS-PSO and LHSMDU-PSO, we used Kruskal–
Wallis H statistical test [36], which shows the significant
group between two or more independent groups. We carried
out an experiment to see if PSO, LHS-PSO or LHSMDU-
PSO are better on the basis of their fitness functions. Table 5
shows the Kruskal–Wallis Hypothesis test summary for the
given PSO, LHS-PSO and LHSMDU-PSO.

In the above Table 5, the p value is: p < 0.001, which
shows a very strong evidence of a difference between at least
one pair of groups. Since the p value is less than .001, we did
post hoc analysis to see which group was significantly differ-
ent from the other. Table 6, shows the groupwise comparison
of PSO, LHS-PSO and LHSMDU-PSO.
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Fig. 5 Time course data of variable kln1_pp1(T),kln1_pp1_2a(U), kln1_pp2a_p(V), melt_p(W) and rvsf(I)
respectively

Table 5 Hypothesis test summary

Null hypothesis Test Sig. Decision

The distribution
of Values is the
same across
categories of
GROUP

Independent
Samples
Kruskall–Wallis
Test

.000 Reject the null
hypothesis

Table 6 Post hoc analysis

Samples Test Statistics Std. Test Statistics Adj.Sig.

LHSMDU-PSO–
LHS-PSO

−18.45 −3.341 .003

LHSMDU-PSO–
PSO

−38.250 −6.926 .000

LHS-PSO–PSO −19.800 −3.585 .001
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Table 7 AIC model calculation

Candidate Model AIC i

LHSMDU-PSO −158644 0

LHS-PSO −149014 −9630

PSO −17325 −141319

From post hoc analysis in Table 6, we can say that
LHSMDU-PSO is significantly different from PSO among
other comparisons. The mean rank of PSO, LHS-PSO and

LHSMDU-PSO is 49.85, 30.05 and 11.60 respectivelywhich
indicates that LHSMDU-PSO performs the best in compari-
son with PSO and LHS-PSO.

We earlier mentioned and discussed the importance of
AIC in model selection. Since n/k is greater than 40, so we
calculated AIC instead of AICc for every possible combina-
tion of variables. One of the key factors of calculating AIC
is to show AIC scores and their models. The result of AIC is
shown in Table 7.

Fig. 6 Time course data of variable kln1_pp1(T) ,kln1_pp1_2a(U) kln1_pp2a_p(V), melt_p(W) and rvsf(I)
respectively
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Table 8 Time taken in sec

Average time Max time Standard deviation

PSO 19465.5 20686 1192.882

LHS-PSO 20279.55 20884 475.6482

LHSMDU-PSO 20476.8 22012 965.2557

GA 26780.5 30887 3377.411

Bycomparing the scores ofPSO,LHS-PSOandLHSMDU-
PSO, we can see that LHSMDU-PSO is the best approxima-
tion model in comparison with the best models of PSO and
LHS-PSO. Furthermore, we can also find the best approx-
imation model by calculating the difference i between the
best model of AIC with each other model.

All the above statistical and practical results indicate that
LHSMDU-PSO is promising in order to find a better structure
and parameters of target ODEmodel. Therefore, we will fur-
ther compare it with GA in more details. The corresponding
ODE models for GA is described in Equations. (36)-(40).

1. The Resultant ODE Model of GA

dT

dt
= 0.138 − 0.246 ∗ T ∗ V

+ 0.095 ∗ T ∗ I + 0.042 ∗U ∗ W (36)
dU

dt
= −0.79 ∗U + 0.121 ∗ V ∗ V (37)

dV

dt
= −1.02 ∗ V + 0.101 ∗ T ∗ V + 0.026 ∗U ∗ V

+ 0.153 ∗ V ∗ w − 0.157 ∗ V ∗ I (38)
dW

dt
= −1.01 ∗ V + 0.088 ∗ W + 0.142 ∗ T ∗ T

− 0.087 ∗ W ∗ I − 0.037 ∗ W (39)
d I

dt
= 0.315 ∗ T − 745806931.081 ∗ I

+ 0.175 ∗ T ∗ T − 0.027 ∗U ∗U (40)

GA provides a considerable insight in inferring param-
eters and structure of an ODE. This investigations so far
are too small for a fair comparison, so we tried to analyse
which algorithm quickly infer the better structure and param-
eters by giving them the same amount of time. A time frame
of 600 s were given to GA and LHSMDU and they were
started at the same time. Eight trials were executed, neither
GA or LHSMDU-PSO infer the structure and parameters in
the given time frame. Furthermore, we did 10 more trials and
calculated the time in which GA and LHSMDU-PSO trials
are ended upon the completion of its evolution and iteration
number respectively. The time taken to infer both the struc-
ture and parameters from both GA and LHSMDU-PSO are
presented in Fig. 6 and Table 8.

We calculated the Average Time, Maximum Time and
Standard Deviation of PSO, LHS-PSO, LHSMDU-PSO and
GA. Among GA and LHSMDU-PSO, it highlights that GA
requires 30.78%more time on average than LHSMDU-PSO.
In the first step, the time course data generated by GA in
Figs. 5 and 6, underlines that the corresponding ODE model
constructed by GA is not closely matching the initial time
course data as compared to LHSMDU-PSO. This result has
further strengthened our confidence in LHSMDU-PSO and
demonstrates its clear advantage over GA.

The results of the experiment found clear support for
the LHSMDU-PSO. We have verified that using the sam-
pling technique of LHSMDUcan produce significantly better
results. The key leverage of LHSMDU-PSO among other
sampling technique is that it spreads all the particles in the
search space evenly, and by calculating the Euclidean dis-
tance among each other, the smallest average distance to its
two nearest neighbors is eliminated. The data points corre-
sponding to the uniformly sampled points are picked up.

5 Conclusions and future work

This is an important finding in understanding the inference
of the structure and parameters of dynamic systems. To
the best of our knowledge, this is the first report that pro-
posed the identification of system of ODEs from observed
time course data by means of swarm-inspired approaches
enhanced by stratified sampling techniques. The use of LHS
and LHSMDU along with PSO improves the original PSO. It
assigns the particles initial positions rather than initializing
them randomly. The findings provide a potential mechanism
to achieve a system of ODEs which is closely matching
to the observed time series data. We have shown that the
proposed algorithm performs better than standard PSO and
GA. The evidence from this study implies that LHSMDU-
PSO infers the structure and parameters of ODE models
more efficiently. This is ascribed to the effectiveness of PSO,
which is further enhanced by effective sampling techniques
(LHSMDU). This also shows the promising application
potential of LHSMDU-PSO in solving other problems with
hybrid discrete and continuous search spaces in a broader
range of fields.

In our future research, we would like to further investi-
gate the proposed algorithm and to extended it to infer more
complex models with more mathematical operators, such as
the exponential operator. Furthermore, apart from i more
complex models and exponential operators, future research
should look to extend our work to infer semi-quantitative
models [37].
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