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Abstract
The study is concerned with the Baldwin effect and Lamarckian evolution in a memetic algorithm for Euclidean Steiner tree
problem (ESTP). The main aim is to examine the importance of the proposed local search procedures for the ability of the
algorithm to find solutions to ESTP. Two local search procedures are proposed as a part of an evolutionary algorithm for
ESTP, and the effect of their use is carefully analyzed. The correction procedure modifies the given chromosome so that
it satisfies the degree and angle conditions in ESTP. The improvement procedure actively adds new Steiner points to the
evaluated solution. The modified solutions are accepted with varying probability, leading to a spectrum of algorithms with a
Baldwin effect on one end and Lamarckian evolution on the other. The results are carefully analyzed using proper statistical
procedures (Friedman test and post-hoc procedures). To further check the ability of the proposed algorithm to find the optimal
or near optimal solutions, results for problems from OR-Lib are provided.

Keywords Baldwin effect · Euclidean Steiner tree problem · Evolutionary algorithm · Genetic algorithm · Lamarckian
evolution · Memetic algorithm

1 Introduction

Let p be the number of points in n-dimensional Euclidean
space. The goal in the Euclidean Steiner tree problem (ESTP)
is to minimize the sum of lengths of edges spanning these
points.However, unlike in theminimumspanning tree (MST)
problem, additional points, called Steiner points, are allowed
to be added to the original set of points, called terminals. The
number and locations of these additional points are difficult
to find, and the problem is known to be np-complete. As an
example, Fig. 1 presents a set of points in two-dimensional
space which are given as terminals. In (a) they are connected
to form the minimum spanning tree. Also presented (b) is
an example Steiner tree which includes additional points
(Steiner points). It can be observed that the addition of new
points made the total sum of edges’ lengths to decrease.

The Euclidean Steiner tree problem (ESTP) originated
from the question formulated by Fermat (in “Treatise on
Minima and Maxima”): how to find a point with a mini-
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mum distance from other three points that are given? Later
the problem has been generalized into a problem of inter-
connecting a given set of points on a plane with a minimum
length.

From the practical point of view, ESTP on a plane and
other versions of Steiner tree problem are of wide interest.
The application areas include such problems as VLSI chips
layout design, distribution network planning, wireless net-
works, sensor networks or modeling of molecular structures.
For a review of application areas of ESTP, the Reader is
referred to the most up to date [1].

1.1 Related work

Exact and heuristic algorithms exist for solving ESTP. Exam-
ples of exact algorithms for ESTP are the algorithms of
Melzak [2,3], Trietsch and Hwang [4] or the well known
Smith algorithm [5]. Smith also suggested a generalization
of his algorithm to higher dimensions. There is still a need
for new heuristics. Exact algorithms for ESTP are com-
putationally demanding, which limits their use for bigger
problems, i.e., for problems with a bigger number of termi-
nals. Although a huge breakthrough has been made in the
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Fig. 1 a Minimum spanning tree for a set o terminals marked as circles; b Steiner tree constructed as the minimum spanning tree after adding
additional points (Steiner points marked as +)

field [1], heuristic algorithms have also been proposed to
solve ESTP.

A wide class of heuristic algorithms, which can also be
applied to ESTP, are evolutionary algorithms. The general
approach is to maintain a population of potential solutions,
which are gradually improved by promoting more promising
ones and applying differentiation operators to them (such
as crossover or mutation) to create a new generation of
potentially better solutions. Depending on the problem to be
solved, the solutions are encoded using a proper data struc-
ture.

Several evolutionary approaches have already been pro-
posed to address various types of Steiner problem, not only
on Euclidean plane. Genetic algorithms (GA) have been the
most popular among them; example approaches are [6,7].
There were also some other approaches such as particle
swarm optimization, ant colony optimization, an artificial
immune algorithm or more recently physarum optimization
[8,9]. However, to the best of Author’s knowledge, this work
is the first attempt to analyze the importance of the Baldwin
effect andLamarckian evolution in an evolutionary algorithm
applied to ESTP. From all of the citedworks, themost similar
approach was presented in [7]. The algorithm for relocating
Steiner points proposed in [7] is somehow akin to the correc-
tion procedure proposed in this work. However, the whole
new design of the evolutionary algorithm with improvement
procedure proposed here and the main goal of testing the
Baldwin effect and Lamarckian evolution make this study
unique.

1.2 Memetic algorithms

There are several design decisions when an evolutionary
algorithm is to be applied to the given problem. Two prob-

lems are particularly important in this work. The first one
is that in some problems it is hard to generate even a feasi-
ble solution. Usually, an evolutionary algorithm starts with a
population of randomly generated individuals. In case they
are not feasible solutions, an additional repair procedure can
be applied. It is possible in some problems to calculate the
fitness function for such infeasible solutions in the hope that
after several generations of evolutionary algorithm they will
become not only feasible but also optimal. The second prob-
lem is that evolutionary algorithms are known to be good at
estimating the promising areas in the search space relatively
fast. However, the fine-tuning process of these solutions may
take a long time. In the case of ESTP, when applying an evo-
lutionary algorithm to solve it, both of the aforementioned
problems are present and seem to be crucial. It is a straightfor-
ward procedure to generate a set of randompoints and encode
it as an individual in an evolutionary algorithm. However, the
probability that these points satisfy the conditions necessary
to be a proper solution for the ESTP is slight.

In general, even if the solutions in the evolutionary algo-
rithm are feasible, an additional procedure can be applied to
each individual from the population to increase the conver-
gence speed. This procedure can be in the form of a greedy
optimization heuristic (local search procedure), and its intro-
duction into the evolutionary framework brings the idea of a
memetic algorithm (MA) and more general, memetic com-
putation.

MAs [10] originate from pairing evolutionary framework
and a set of local improvement procedures, often called
local search, lifetime learning or individual learning. Local
improvementmethod, considered on its own, often represents
a greedy optimization which is usually not sufficient to find
satisfactory solutions on its own. More generally, memes are
essential units of knowledge about the problem being solved.
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When incorporated into the evolutionary algorithm they can
speed up its convergence especially in the case of complex
optimization problems.

The successful application of the concept of combin-
ing evolutionary search with memes representing problem
specific knowledge brought enormous research in the area
known as memetic computing. That led to algorithmic con-
structs far beyond the idea of simple improvement step as a
part of the evolutionary algorithm. According to [10] current
research in the field of memetic computing can be catego-
rized into simple hybrids (with a MA as a representative),
adaptive hybrids and a memetic automaton. Another, gener-
ational description of MA has been presented in [11]. The
first generation of memetic computing include algorithms
resulting from the mere pairing of global search algorithm
(potentially evolutionary) with local search. MAs from the
second and third generations include algorithms based on
pairing global searchwith several local optimizers. Themod-
els become more and more complicated, and the ideas used
to build new memetic computing paradigms include passing
to offspring the choice of local optimizer (second generation)
or self-organization and coevolution (third generation).

A detailed description of all the problems concerning the
design of an algorithm based on memetic computation ideas
is far beyond the scope of this introduction. Memetic compu-
tation is strongly connected with the problem being solved.
The results depend primarily on the strategic choices con-
cerning the level of hybridization (such as preprocessing
schemes, solution representation, problem specific search
operators), population diversity management, frequency and
intensity of refinement and modes of inheritance (Baldwin
effect and Lamarckian learning). In the case of adaptive
memetic computation, the number of factors is even bigger.

Several works describe successful applications of MA to
different hard optimization problems concerned with path
planning or graph structures optimizations. Examples are
path planning for mobile robots with bacterialMA [12], trav-
eling car renter problem [13] or vertex coloring problem [14].
Other combinatorial optimization problems, such as job-shop
scheduling problem [15] or knapsack problem [16], have also
been successfully approached byMA. These examples show
a great potential of memetic computing when dealing with
hard optimization problems similar to ESTP.

1.3 Baldwin effect and Lamarckian evolution

In the case of theMAwith a local search procedure, there are
several approaches to how the corrected solutions should be
used. One approach is to use the fitness function of the cor-
rected solution to evaluate the original solution. However, the
original solution is not replaced by the corrected one. This
approach is described as Baldwin effect in the evolution-
ary process [17]. On the other hand, the corrected solution

can replace the original one in the population. This approach
constitutes what is called a Lamarckian evolution [17]. Both
methods have their advantages but are also potentially prob-
lematic, and it is hard to assess which one is better for a given
problem. For example, Lamarckian evolution can limit the
population diversity very quickly, which is not desired in
general. An intermediate approach is possible, in which only
some percentage of the corrected solutions is accepted as the
replacement of the original solutions. This method opens up
many possibilities to fine tune the evolutionary algorithm.

Both,Baldwin effect andLamarckian evolution, havebeen
used in memetic computations. Lamarckian learning [18,19]
has been reported as a better approach to unimodal optimiza-
tion problems and in problems in which the environment is
static. On the other hand, Baldwin effect has been reported as
the preferred method for problems in dynamic environments
[20,21]. There have also been some studies suggesting that
a mixed Lamarckian–Baldwinian approach could be benefi-
cial [22]. Thus, it is not possible to assess which approach is
universally better, and the comparison between the Baldwin
effect and Lamarckian evolution has to be performed in the
context of the given problem. One of the goals of this paper
is to study the usefulness of Baldwin effect and Lamarckian
evolution in the context of the ESTP.

1.4 Contribution of this work

The algorithm proposed in this work can be classified as a
simple hybrid type of MA. It is based on a GA framework
with crossover operator and three mutation operators. It is
observed that the GA on its own is not efficient in provid-
ing not only optimal but even feasible solutions of ESTP.
For that reason, ESTP specific knowledge is introduced. The
memes are represented as two local search procedures specif-
ically designed for the ESTP. The main contribution of this
study is to verify the usefulness of the proposed memes to
improve the performance of theGA. The second contribution
is the comparison of a spectrum of different modes of inher-
itance ranging from Baldwin effect to Lamarckian learning
for the ESTP. As stated in the previous section, such com-
parisons strongly depend on the problem being solved. It
is expected that the results presented in this study will be
helpful in designing MA for ESTP especially concerning the
choice between Baldwin effect and Lamarckian evolution.
The straightforward application of the greedy heuristic is
also included in the comparison.

The paper is organized as follows. In Sect. 2, the most
important facts about ESTP are provided, which allow defin-
ing a correction procedure and a simple greedy heuristic to
improve an existing candidate solution to ESTP. In Sect. 3, a
MA for 2D ESTP including the repair and local search pro-
cedures is derived. In Sect. 4, the results of empirical studies
on 2DESTP problems of various sizes are presented together
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with a proper statistical analysis. Conclusions are drawn in
Sect. 5.

2 Euclidean Steiner tree problem

Properties of Steiner trees on the 2D plane have been studied
extensively [1]. The most important properties used in this
work are as follows.

• Degree property. In a Steiner tree, each Steiner point is
incident with exactly three edges thus having the degree
of three.

• Angle property. The three edges incident with a Steiner
point make exactly 120◦ with each other.

• Steiner minimal tree (SMT) for a set of p terminals has
at most p−2 Steiner points.

• Each terminal in SMT has at most two edges incident
with it.

2.1 Fermat point

The Fermat point of the triangle on the Euclidean plane is a
point minimizing the total sum of distances of triangle ver-
tices to that point. Thus, for any other point F’ on the plane,
the condition (1) is satisfied.

|F ′A| + |F ′B| + F ′C | > |FA| + |FB| + |FC | (1)

where F is a Fermat point, and A, B, and C are triangle’s
vertices.

For a simple case of three points on the Euclidean plane,
the SMT can be found easily with the help of the Fermat
point. Two situations are possible. If the three points form a
triangle in which all angles have less than 120◦, then the only
Steiner point is located at the Fermat point of the triangle.
The SMT is equivalent to the minimum spanning tree (MST)
including three triangle points and the Fermat point. In the
second case, if there is an angle equal to or greater than 120◦,
the Steiner point is incident with the triangle vertex in which
the two sides of the triangle meet at 120 or more degrees.
The SMT is the MST spanned on the three triangle points.

The procedure to findFermat point for three points is given
as follows (Fig. 2).

Procedure 1 FindFermatPoint

Input:: Three points A, B and C on the Euclidean plane

Output: Fermat point

1. If �ABC ≥ 120◦ or �BAC ≥ 120◦ or �ACB ≥ 120◦,
return B, A or C, respectively.

2. Select any two sides of the triangle.

Fig. 2 Construction of the Fermat point F of the triangle ABC

3. Construct an equilateral triangle on each of the chosen
sides.

4. Find two lines, going through each new vertex and its
opposite vertex of the original triangle.

5. The Fermat point is the point of intersection of the two
lines.

End of Procedure 1
In the subsequent part of this work only Fermat points

which are not incident with the triangle point are useful in
the proposed heuristic. For that reason, for the purpose of
this work, such not useful Fermat points will be called not
valid Fermat points.

2.2 Measure for the quality of the solutions

A standard measure to compare solutions for ESTP is called
Steiner ratio. It is given by (2):

ρ = L (ST )

L (MST )
, (2)

where L(.) is the total length of the edges of a given tree,
MST is the minimum spanning tree for the terminals and ST
is the Steiner tree calculated as the minimum spanning tree
for the set of points consisting of the union of the terminals
and a given set of Steiner points. It is worth to mention that
although Steiner points have to satisfy the degree and angle
conditions mentioned earlier in this section, the Steiner ratio
measure can be used to compare solutions obtained for any
given set of points used as Steiner points. This interpretation
allows using the Steiner ratio as a fitness function in the
proposed evolutionary algorithm.
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2.3 Simple heuristic for generation of candidate
solutions

Finding the Fermat point for a set of three terminals is a
straightforward way to find an SMT for these three points.
For a bigger number of terminals, the situation is not as sim-
ple. However, based on the simple procedure of finding the
Fermat point, a simple heuristic can be formulatedwhich iter-
atively generates candidate Steiner points as Fermat points
for groups of selected three points from a given problem.
If the addition of such candidate point improves the Steiner
ratio, the Fermat point is accepted as a new Steiner point.
This step can be repeated until a stopping criterion is satis-
fied. Procedures 2 and 3 describe the idea more in detail.

Procedure 2 FindSteinerPoint

Input: Z = T ∪ S—set of points (T—terminals; S - already
added Steiner points), MST Z –minimum spanning tree for
Z , nn—number of nearest neighbors to look for.

Output: true if a new Steiner point f has been found and S
was modified, false otherwise.

1. Find a random point s = (
sx , sy

)
on a plane, where

min
i

zi x ≤ sx ≤ max
i

zi x , and min
i

ziy ≤ sy ≤ max
i

ziy ,

where i = 1..N and N is a number of points in Z , zi ∈ Z .
2. Find nn nearest neighbors of the point s from among the

points in Z .
3. Randomly select three points from among the nn nearest

neighbors.
4. Find the Fermat point f for the three selected points.
5. If f is a valid Steiner point, let Z ′ = ZU { f } and MSTZ ′

be the minimum spanning tree for Z ′; otherwise return
false.

6. If necessary, correct Z ′.
7. If L(MST Z ′) < L(MST Z ) let Z = Z ′ return true, oth-

erwise return false.

End of Procedure 2
The meaning of step 6 in Procedure 2 will be explained in

the later part of this section.

Procedure 3 Improve Solution

Input: T—set of terminals, S—set of Steiner points, max
_iters – maximum number of iterations, max_tries – max-
imum number of iterations without improvement, nn—the
number of nearest neighbors to look for in procedure Find-
SteinerPoint.

Output: S—set of Steiner points.

1. Let i = 0.
2. Let Z = T ∪ S and MST Z be the minimum spanning

tree for Z.

3. i = i + 1.
4. Call procedure FindSteinerPoint(Z , MST Z , nn).
5. If procedure FindSteinerPoint returned false for the last

max_tries iterations, return.
6. If i < max_i ters repeat from step 2.

End of Procedure 3
In the second (or any further) iteration of procedure

ImproveSolution, it is possible that after the addition of point
f and calculating the new minimum spanning tree MST Z ′
in step 5 of FindSteinerPoint, some of the other Steiner
points may no longer satisfy the angle and/or degree condi-
tion. This is especially possible when f is connected with
already existing Steiner points in MST Z ′ . In such cases, a
correction procedure CorrectSolution can be applied.

The correction procedure is also simple and straightfor-
ward. Its main idea is first to identify Steiner points which
do not satisfy the degree condition and remove them. If the
degree condition is satisfied for all remaining Steiner points,
the Steiner point which violates the angle condition the most
is identified and recalculated as a Fermat point of the triangle
formed by the three points connected to it. These two steps
are repeated until no change is necessary. The Procedure 4
CorrectSolution shows the idea in more detail.

Procedure 4 CorrectSolution

Input: T—set of terminals, S—set of Steiner points (some
of them potentially invalid), ε—maximum allowed violation
of angle condition for Steiner points.

Output: S—set of valid Steiner points

1. Let Z = T ∪ S and MST Z be the minimum spanning
tree for Z .

2. Identify Steiner points in S which have degrees not equal
3 inMST Z and remove them from S; recalculateMST Z .

3. If any Steiner point has been eliminated in step 2, go to
step 2.

4. Identify Steiner point s in S which violates the angle
condition the most. If this violation is more than ε, recal-
culate this point as a Fermat point of the triangle formed
by the three points connected to s (if the Fermat point is
not valid, remove s); recalculate MST Z .

5. If S has been modified in step 4, go to step 4.
6. If S has been modified in step 2 or step 4, go to step 2.
7. Return S.

End of procedure correctsolution
As an example, in Fig. 3 two steps of the improvement pro-

cedure are presented. The first Steiner point has been added in
(b) to the set of terminals from (a). This Steiner point satisfies
the degree and angle conditions and the correction procedure
introduces no changes. After adding the second Steiner point
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Fig. 3 Two steps of the improvement procedure: a MST on a set of
terminals, b the first Steiner point is added, c the second Steiner point
is added making the first Steiner point no longer satisfy the angle con-

dition, d the correction procedure shifts both Steiner points into the
correct locations (both Steiner points satisfy the angle condition)

and recalculating the MST, the first one no longer satisfies
the angle condition, but it is still a point of 3 degrees (c).
In (d) the situation after the correction procedure is shown,
where both Steiner points have been shifted into the correct
locations and satisfy the degree and angle conditions.

It should be stressed out that procedure FindSteinerPoint
can modify the set S by adding a new Steiner point but also
by removing some of the already existing ones using the cor-
rection procedure. However, it is done only if it is beneficial,
i.e., the overall Steiner ratio decreases, which means that a
better solution is found.

The proposed heuristic can be seen as a greedy optimiza-
tion algorithm. Due to the randomness in step 1 of procedure
FindSteinerPoint, it can be started several times in the hope
that a better solution will be found. In fact, in the section

describing numerical experiments, this algorithm was com-
pared to the GA proposed in this work.

The main purpose of introducing these simple heuristics
for correcting and improving ESTP solutions is to use them
as local search procedures in the MA described in Sect. 3.
The proposed algorithm will be tested on the effects of the
usage of these correction and improvement heuristics.

The drawback of the proposed heuristic is the necessity
of recalculating MST after any change is introduced to set
S, by adding, removing or recalculating any of the elements
of S. However, there exist efficient algorithms for calculat-
ing MST. In this work, the Prim algorithm has been used.
Additionally, properly designed data structures can limit the
calculations needed to find closest points in the Prim algo-
rithm.
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Fig. 4 The data structure used to encode a set of candidate Steiner points as a chromosome in the GA

3 Memetic algorithm for Euclidean Steiner
tree problem on a plane

The MA proposed in this work is based on the most basic
GA which includes selection, crossover and mutation steps.
However, it is adapted to the ESTP. Themost important char-
acteristics of the proposed algorithm are as follows. (1) The
properly designed data structure which allows encoding a set
of two-dimensional points evolving into the Steiner points.
(2) Managing the population of solutions, each encoded by
the data structure. (3) Tournament selection step. (4) One-
point crossover operator. (5) Three mutation operators. (6)
Local search procedure (the correction procedure or the
improvement procedure described in Sect. 2). (7) The bal-
ance between the Baldwin effect and Lamarckian evolution
is achieved using a probability of acceptance of the modified
solution into the population. (8) Usage of Steiner ratio as the
fitness function (ESTP is treated as aminimization problem).

3.1 Chromosome structure

For a given set T of p terminals, the solution to ESTP is a
set of Steiner points. Not only location of these points is not
known but also the number of them. As described in Sect. 2,
for ESTP with p points, at most p-2 Steiner points can exist
in the optimal solution. For that reason, the data structure
used to encode a single solution (Fig. 4) allows encoding a
maximumnumber of p−2 2Dpoints, however additional bits
are used to indicate which “genes” are active. That allows
modeling the problems in which the solution consists of a
number of Steiner points smaller than p−2. Still, the length
of the chromosome is constant. However, the only candidate
Steiner points that are used to calculate MST are the points
with the activation bits set to true. The coordinates of the
points are encoded as real values. The i th chromosome in
the population can be described as

chi = [(xi1, yi1), . . . , (xip−2, yip−2), (bi1, bi2, . . . , bip−2)]
(3)

where
(
xi j , yi j

) ∈ R
2 are the coordinates of j-th candidate

Steiner point, bi j is the corresponding activation bit and j =
1, . . . , p − 2.

3.2 The proposedmemetic algorithm

The main loop of the proposed algorithm is summarized in
Fig. 5.Apart from theproposedMA, theGA is also presented.
It is given to alleviate the understanding of the role of the local
search in the proposed MA, which is designed on the basis
of the GA from Fig. 5. In fact, the GA is also used in the
numerical tests described in Sect. 4 (denoted as enorm).

The main difference between the GA and the MA is
the evaluation step. In the case of the GA, the candidate
Steiner points encoded by the active genes in the chromo-
some are combined with the terminal points of the ESTP
being solved, and the Steiner ratio of this solution is calcu-
lated and used as the evaluation of the chromosome. In the
case of the MA, after extracting of candidate Steiner points
from active genes, there is an approach to correct/improve
this set of candidate points using the local search proce-
dure. The local search algorithm can be either the correction
procedure (Procedure 4) or the improvement procedure (Pro-
cedure 3). Which one of them is used, is a parameter of
the algorithm and it is set before the start of the algorithm.
It does not change during the execution of the given run.
The Steiner ratio of the corrected/improved solution is used
as the evaluation of the original chromosome. Addition-
ally, to compare the usefulness of the Baldwin effect and
Lamarckian evolution, the corrected/improved genes can be
accepted into the initial chromosome with a probability of
prob_change, which is a parameter of the algorithm. By
setting prob_change to 0, we only consider the Baldwin
effect, while setting it to 1, the evolution is of Lamarckian
type. However, intermediate values can also be consid-
ered. The results of the numerical experiments presented
in Sect. 4 show the importance of the proper setting of
prob_change.

The next section gives a detailed description of all of the
steps of the proposed MA.
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Fig. 5 The main loop of the proposed MA

3.3 Detailed description of the proposed algorithm

In what follows a detailed description of all the steps of the
MA (Fig. 5) is provided. Most of the steps are the same for
the GA, and the only difference is during the evaluation step.

First, during the initialization, the population of random
solutions (chromosomes) is generated. For i th chromosome
the coordinates of the candidate j th Steiner point are gener-
ated according to (4) and (5):

xi j = urand ∈
[
mint=(tx ,ty)∈T tx , maxt=(tx ,ty)∈T tx

]
(4)

yi j = urand ∈
[
mint=(tx ,ty)∈T ty, maxt=(tx ,ty)∈T ty

]
(5)

where T is a set of terminals, and urand is a random value
generated from a uniform distribution. The activation bits are
set to true with probability abits_init_prob.

Then, until the termination condition is satisfied, the fol-
lowing steps are repeated.

1. Evaluation of solutions. This step is the only one inwhich
the proposed MA is different from the GA. In what fol-
lows, it is clearly stated, which steps are executed only
in the case of the MA.
Firstly, for both, genetic and MA, for each chromosome,
only those candidate Steiner points with activation bits
set to true are selected and combinedwith the set of termi-
nals T . MST of the combined points becomes a candidate
solution.
Only for the GA

a. Fitness value (Steiner ratio) of the solution becomes
the fitness value of the chromosome.
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Fig. 6 Visualization of the crossover operator

Only for the MA

a. Application of local search method. There are two
options, correcting the solution with Procedure 4 or
improving it with Procedure 3. The choice is made
before the algorithm starts, and it is fixed for a given
run of the algorithm.

b. Fitness value (Steiner ratio) of the corrected/improved
solution becomes the fitness value of the original
chromosome.

c. With probability prob_change the original chromo-
some accepts the corrected/improved genes (Steiner
points).

For both,GAandMA, if the best solution from the current
population is better than the best one found until now,
remember the new best solution. The remembered best
solution is always corrected to guarantee that the output
of the algorithm satisfies the degree and angle conditions.

2. Tournament selection is performed. The number of
selected solutions equals the size of the population. The
selected solutions are put on the list in the order in which
they were selected.

3. Crossover step is performed. For each selected chromo-
some, with probability prob_cross it is crossed over with
the next chromosome on the list of selected chromo-
somes. Otherwise, it is copied with no change. In the
case of the last chromosome on the list, it is crossed over
with the first one on the list, if necessary.

4. Mutation of activation bits is performed.With probability
prob_mut_activation each activation bit is inverted. This
probability should not be large (e.g. 0.1 has been used in
this work).

5. Mutation of candidate Steiner point positions is per-
formed. For each point encoded in the chromosome
data structure (both active and inactive), with probability

prob_mut_coordinates, its coordinates are changed using
a randomperturbation based on uniformdistribution. The
maximum allowed change is limited by the parameter
mut_range. A given point s = (

sx , sy
)
is mutated accord-

ing to (6) and (7):

sx → sx + rangex ∗ (1 − 2 ∗ urand) (6)

sy → sy + rangey ∗ (1 − 2 ∗ urand) (7)

where

rangex = mut_range ∗ (max tx − min tx ) (8)

rangey = mut_range ∗ (max ty − min ty) (9)

and t = (
tx , ty

) ∈ T , where T is a set of terminals
in ESTP and urand is a random number from uniform
distribution over [0,1].

6. The third mutation step is performed. With probabil-
ity prob_mut_reset, each point is reset to new random
coordinates according to (4) and (5). This mutation type
should have a low probability as it introduces significant
change into the chromosome.

7. Check the stopping condition, if true, finish the algo-
rithm.

The crossover operator is a simple one-point crossover.
First, a cutting point is generated, and the offspring is pro-
duced by interchanging the two resulting parts. The idea is
presented in Fig. 6.

There are three mutation operators. This may seem to be
too complicated, however, after some consideration each of
these operators is justifiable. Switching the activation bits is
crucial for the algorithm to adapt to the problems in which a
different number of Steiner points are optimal. Mutating the
positions of the candidate Steiner points is the most expected
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mutation type and does not seem to require additional justifi-
cation. The last mutation operator, resetting the coordinates
to the random ones, may help to escape the algorithm from
local minima. However, it should be used with a small prob-
ability as it is much damaging to the chromosome. It should
be noted that the second and third mutation operator is exe-
cuted not depending on the value of the activation bits, i.e.,
the given gene in the chromosome may be inactive and still
mutated by changing the coordinates or resetting them.

Point 1c of the MA requires explanation. The problem is
that the corrected or improved solution may have a different
number of Steiner points than there are active bits in the cur-
rent chromosome. For example, let us assume that there is an
ESTP with ten terminals. Thus, each chromosome encodes a
solution with eight candidate Steiner points and eight activa-
tion bits. Let us further assume that for a given chromosome
only 4 activation bits are set to true. To evaluate the solution
these four points are extracted from the data structure and
combined with terminals in T . If the local search procedure
is called, some of these points may be removed by the correc-
tion procedure. If an improvement procedure is called, some
Steiner points may be added. If the decision is to replace the
original chromosome by its corrected/improved version, the
question is how to put the new set of Steiner points back into
the data structure, in which there are still inactive genes.

Let us assume that in our example the correction procedure
removed one candidate Steiner point and corrected the coor-
dinates of the remaining three. This is not much problematic,
and the simple strategy is to put the three corrected points
exactly at the same positions in the data structure while the
removed point becomes inactive (its activation bit is changed
to false). Another approach would be to insert the corrected
points into random locations of active positions and set the
remaining active bits to false. The second approach has been
used in this work.

Let us now assume that during the local search step the
improvement procedure removed one candidate point, cor-
rected the coordinates of three and added two new Steiner
points. The problem is now how to include the new Steiner
points into the chromosome data structure. There are several
options. After some preliminary numerical experiments, the
approach used in this work is as follows. First, the improved
Steiner points are put randomly at the positions of active
genes in the chromosome. Then, in case there are still Steiner
points to be placed into the data structure, inactive positions
are selected randomly, set to these remaining Steiner points
and their activation bits are set to true.

4 Experimental studies

In this section, the results of numerical experiments are pre-
sented together with a proper statistical analysis. The main

goal of these experiments is to measure the effect of Bald-
win effect and Lamarckian evolution on the ability of the
proposed MA to provide a solution to ESTP. The influence
of two main factors is to be measured.

The first factor is the selection of the local search method.
The correction procedure from Sect. 2 (Procedure 4) is the
first choice. After application of this procedure for any set of
candidate Steiner points (which may not satisfy the degree
and angle conditions), the result is a set of points that satis-
fies the degree and angle conditions (to the extent limited by
the parameter ε). In the case when the candidate points are
almost satisfying the conditions, the change introduced by
the correction procedure is very limited. In another case the
set of candidate Steiner points may bemodified significantly,
e.g., some points can be removed. However, this procedure
does not seek for new points that could improve the solution.
For that reason, this local searchmethod can be considered as
ameasure of a potential of the set of candidate Steiner points.
The second choice is the improvement procedure (Procedure
3)which actively seeks new candidate Steiner points and uses
the correction procedure as its part. The improvement pro-
cedure modifies the original set of points more significantly
than the correction procedure. It measures the potential of the
solution to improvement. However, taking into account the
randomness of the improvement procedure, there is a dan-
ger that the resulting evaluation is of limited use as a fitness
value of the original solution, as there is no guarantee, that
the improvement procedure will be able to improve it again
as much when started for the second time. There is no such
danger in case of correction procedure which is determinis-
tic. Thus, it can be expected, that the results when applying
improvement procedure with small values of prob_change
may not be satisfying.

The second factor is the selection of the probability
prob_change of acceptance of the corrected/improved chro-
mosome instead of the original one. If prob_change is 0,
only the Baldwin effect is considered. If prob_change is 1,
the Lamarckian evolution is in play. Setting prob_change to
the value between 0 and 1 gives a full spectrum of possi-
ble intermediate approaches. It is not obvious that this value
should be small or high. Higher values may increase the con-
vergence, however, by limiting the population diversity, they
may force the convergence to the local minima. Low values
may not use the full benefits of incorporating local search
methods, and there will be a slow convergence.

4.1 Description of problems

For the purpose of this study, three sets of random prob-
lems were generated on [0, 1]2. There are three groups of 20
problems, with 10, 20 and 50 terminals, respectively. Exam-
ple problem with 50 terminals is presented in Fig. 7. All
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Fig. 7 Example test problem with 50 terminals (circles): a terminals connected in MST, b example solution with Steiner points (marked as +)

the problems and solutions are available upon request from
Author.

4.2 Algorithms and settings

Several versions of the algorithm have been tested. First, the
local searchmethod is selected, then the probability of accep-
tance of the modified solution. For the correction procedure
chosen as the local method, there are algorithms abbreviated
as cp0.0, cp0.2, cp0.4, cp0.6, cp0.8 and cp1.0, where the val-
ues after the letters “cp” indicate the values of prob_change.
For example, cp0.8 means that a correction procedure is used
as the local search method and the modified chromosome
is accepted with the probability 0.8. For the improvement
procedure selected as the local searchmethod, there are algo-
rithms abbreviated as ip0.0, ip0.2, ip0.4, ip0.6, ip0.8 and
ip1.0, where the values after the letter “ip” indicate the val-
ues of prob_change. Note that in all cases the Steiner ratio
of the corrected/improved chromosome is used as the fitness
function even in the cases when the original chromosome is
not replaced.

Additionally, the GAwith no local searchmethod is tested
for comparison. Itmeans that the steps 1b, 1c, and 1d from the
description of the algorithm in Sect. 3 are replaced by simply
calculating the Steiner ratio for the points with activation bits
set to true, even though they may not satisfy the degree and
angle conditions. This allows testing the importance of any
of the local search methods. The algorithm is abbreviated as
enorm.

The improvement procedure (Procedure 3) is also included
in the comparison. It allows testing the capability of this
heuristic when used outside the evolutionary framework. In
this case, the improvement procedure starts with an empty
set of Steiner points and adds new candidate Steiner points

one by one in a greedy way. Due to the usage of the cor-
rection procedure as a part of this improvement procedure,
some of the already existing Steiner points can be removed,
and the resulting dynamics can be treated as an interesting
greedy optimization approach to ESTP. Three versions of the
improvement procedure are tested,with the parameter nn (the
number of the nearest neighbors in Procedure 3) equal 3, 5
and -1, where nn = −1 means that the three points used to
calculate the Fermat point are randomly selected from among
all available points.

Table 1 summarizes the algorithms tested together with
the values of the parameters used. It should be observed
that the improvement procedure is employed in the MAwith
max_i ters = 1, which means that there is an attempt to
insert only one new candidate Steiner point. Thus, the usage
of this local search method is limited to prevent the pre-
mature convergence and preserve the population diversity.
Still, the parameter max_tr ies = 100, which means that
the improvement procedure actively searches for the new
candidate Steiner point and stops only if it is not possible
to generate new satisfying Fermat point (Procedure 2) for
100 attempts. On the other hand, algorithms nn3, nn5 and
nn-1 look for multiple candidate Steiner points (parameter
max_i ters = 3∗|T | − 2, where T is the set of terminals in a
given ESTP). Although it is known that the maximum num-
ber of Steiner points can be at most |T | − 2 in the optimal
solution, it should be remembered that the correction pro-
cedure (used by the improvement procedure) may remove
some of the Steiner points after introducing a newone.Due to
this dynamic character of the improvement procedure when
max_i ters > 1, setting max_i ters > |T | − 2 may be ben-
eficial.

The parameters for the evolutionary part of the MA have
been set after several trial runs and have been observed to
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Table 1 Algorithms and parameters

Alg. Evolutionary
framework

Local search method Probability of acceptance of
change solution (change_prob)

cp0.0 Yes Correction procedure (ε = 1e−5) 0.0

cp0.2 0.2

cp0.4 0.4

cp0.6 0.6

cp0.8 0.8

cp1.0 1.0

ip0.0 Improvement procedure (nn = 3,max_tr ies =
100,max_i ters = 1, ε = 1e−5)

0.0

ip0.2 0.2

ip0.4 0.4

ip0.6 0.6

ip0.8 0.8

ip1.0 1.0

enorm None -

nn3 No Improvement procedure (max_tr ies =
100,max_i ters = 3∗(|T | − 2), ε = 1e−8)

nn5

nn-1

work satisfactorily. They may not be optimal. However, the
important thing here is that they are common to all versions
of the MA and the main aim of this study is to measure the
differences resulting from different local search procedures
and varying levels of the probability of acceptance of the cor-
rected/improved solution. The final best solution from each
run of the MA is finally corrected with ε = 1e−8, although
ε = 1e−5 was used during the evolution to speed up the
computations. This is done for a fair comparison with the
results of nn3, nn5, and nn-1 algorithms, in which ε = 1e−8
has been used.

In case of the evolutionary framework the following set-
tings are used: population size 80, number of iterations 200,
tournament size 3, abits_ini t_prob = 0.8, prob_cross =
0.7, prob_mut_activation=0.1, prob_mut_coordinates
= 0.1, prob_mut_resest = 0.02, mut_range = 0.1.

4.3 Results for random problems

Each of the algorithms described in Sect. 4.2 has been run ten
times for each ESTP considered. Here we report results for
mean Steiner ratios of these ten runs for each problem. This
is due to the statistical comparison framework that is used in
this work. The main aim is to compare the average results
of 16 algorithms over 20 ESTP problems in a given group
of problems (10, 20 and 50 terminals). Friedman test with
Shaffer’s post hoc procedure is used to compare the mean

Steiner ratios of each algorithm over a set of 20 problems in
the group.

Friedman test is a type of non-parametric statistical test
with the aim to discover differences in themean results of sev-
eral algorithms over several problems at once. This approach
is much better than running several pair-wise statistical tests
such as the sign tests or Wilcoxon test. The reason is that
the probability of Type I error (discover a difference when
there is, in fact, no difference between algorithms consid-
ered) is much smaller when running Friedman test. In the
case of Friedman test, all algorithms being compared and
all problems are taken up at once, and the pair-wise com-
parisons are performed only in case there are differences
among the algorithms discovered byFriedman test. The rank-
ing of algorithms is provided by the Friedman test, and the
post-hoc procedure is used to control the Family-Wise Error
Rate (FWER) for pair-wise comparisons. FWER reflects the
probability of making one or more false discovering while
performing pair-wise comparisons. For amuchmore detailed
description of the Friedman test and the statistical compari-
son framework, the reader is referred to [23]. The results of
Friedman test and Shaffer’s post hoc procedure presented in
this work are calculated by Keel software package [24].

It should be mentioned here, that one of the requirements
for Friedman test is that the number of algorithms being com-
pared should be smaller than the number of problems. Since
in this work there are 16 algorithms and 20 problems in a
group, this requirement is satisfied.
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Table 2 Friedman’s ranks for algorithms based on the mean results for problems with ten terminals

Algorithm ip1.0 cp0.2 cp0.0 cp0.4 cp0.6 ip0.8 cp0.8 cp1.0 ip0.6 ip0.4 ip0.0 ip0.2 nn5 enorm nn3 nn-1

Rank 4.175 4.55 4.6 5.875 6 6.5 6.75 7.175 9.275 9.675 10.15 10.625 12.05 12.05 12.95 13.6

Table 3 p values adjusted by Shaffer’s procedure (problems with ten terminals)

cp0.2 cp0.0 cp0.4 cp0.6 ip0.8 cp0.8 cp1.0 ip0.6 ip0.4 ip0.0 ip0.2 nn5 enorm nn3 nn-1

ip1.0 10.561 10.561 8.283 7.450 5.146 4.186 2.639 0.057 0.021 0.007 0.002 0.000 0.000 0.000 0.000

cp0.2 – 10.561 9.729 9.729 7.224 5.758 3.981 0.125 0.054 0.016 0.005 0.000 0.000 0.000 0.000

cp0.0 – 9.729 9.729 7.450 5.978 4.186 0.137 0.061 0.018 0.006 0.000 0.000 0.000 0.000

cp0.4 – 10.561 10.561 10.561 9.729 1.459 0.789 0.325 0.125 0.004 0.004 0.000 0.000

cp0.6 – 10.561 10.561 9.729 1.776 0.981 0.421 0.153 0.005 0.005 0.000 0.000

ip0.8 – 10.561 10.561 3.396 2.027 0.997 0.424 0.018 0.018 0.002 0.000

cp0.8 – 10.561 4.302 2.706 1.459 0.694 0.035 0.035 0.004 0.000

cp1.0 – 6.196 4.356 2.696 1.338 0.095 0.095 0.011 0.002

ip0.6 – 10.561 10.561 9.729 3.396 3.396 0.981 0.293

ip0.4 – 10.561 10.561 5.046 5.046 1.776 0.630

ip0.0 – 10.561 7.450 7.450 3.272 1.338

ip0.2 – 9.729 9.729 5.146 2.696

nn5 – 10.561 10.561 9.400

enorm – 10.561 9.400

nn3 – 10.561

p values which indicate significant differences (less than 0.05) are in bold

Problems with ten terminals
The Friedman’s ranks achieved by each of the 16 algo-

rithms for the 20 problems with ten terminals are presented
in Table 2. These ranks are based on the average performance
of the algorithms.

The first significant finding is that the idea of combin-
ing the evolutionary approach with local search procedures
is justified. The “pure” evolutionary algorithm (enorm) and
the greedy local search algorithms (nn3, nn5, nn-1) are per-
forming poorly and have been assigned the worst ranks.
On the other hand, the best performing algorithm is ip1.0,
i.e., the MA with the improvement procedure as the local
search method. It is interesting that its prob_change equals
1.0, which means that it is always beneficial to accept the
improved solution. Algorithm ip1.0 is followed by several
versions of evolutionary algorithms with the correction pro-
cedure as the local search method. In this case, it seems to be
beneficial to use the Steiner ratio of the corrected solution as
the fitness value of the original solution without changing it.
What is more, from Table 3 it can be observed that the post
hoc procedure is not able to detect significant (with signifi-
cant level α = 0.05) differences between the best performing
algorithm (ip1.0) and algorithms cp0.2, cp0.0, cp0.4, cp0.6,
cp0.8, and cp1.0. The p–values which indicate significant
differences (less than α = 0.05) are marked bold. Addi-
tionally, there is no difference detected between the best
ip1.0 and algorithms ip0.8 and ip0.6. From this it can be

concluded that the correction procedure can be used with
Baldwin effect, Lamarckian evolution and any intermediate
approach with no significant difference in averaged perfor-
mance compared to the best performing one. On the other
hand, when the improvement procedure is used, Lamarckian
evolution is preferred. This can be explained by the observa-
tion that the improvement proceduremodifies the solution (in
a randomway) muchmore than the correction procedure and
using the Steiner ratio of the improved solution as the fitness
value of the original solution is misleading to the evolution-
ary process. The correction procedure is better in estimating
the potential of the unchanged solution and works better with
low values of change_prob.

The evolutionary algorithm with no local search method
(enorm) is performing poorly, which indicates the impor-
tance of the correction/improvement procedures. Algorithms
ip1.0, cp0.2, cp0.0, cp0.4, cp0.6, ip0.8, and cp0.8 are per-
forming significantly better than enorm. However, it can also
be observed that by not selecting the change_prob value cor-
rectly, the resultingMA is not significantly different from the
simple evolutionary algorithm enorm. There is no significant
difference between enorm and algorithms cp1.0, ip0.6, ip0.4,
ip0.0, ip0.2. To summarize, to achieve significant improve-
ment by incorporating local search into the evolutionary
framework, Lamarckian evolution should be used in case
of improvement procedure, and Baldwin effect should be
utilized in case of the correction procedure. A similar obser-
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Table 4 Number of best solutions found (problems with ten terminals)

Algorithm cp0.0 cp0.2 cp0.4 ip0.6 ip0.8 cp0.8 cp1.0 ip0.2 ip0.4 ip1.0 nn5 cp0.6 nn3 ip0.0 nn-1 enorm

Number of best solutions 19 19 19 19 19 18 18 18 18 18 18 17 17 15 15 8

Table 5 Friedman’s ranks for algorithms based on the mean results for problems with 20 terminals

Algorithm ip1.0 ip0.8 cp0.0 ip0.6 ip0.4 cp0.2 cp0.4 ip0.2 cp0.6 ip0.0 cp0.8 cp1.0 nn5 nn3 enorm nn-1

Rank 1.65 2.975 4.85 5.8 6.325 6.725 7.5 7.9 8 9 9.275 9.95 11.65 14.2 15.1 15.1

Table 6 p values adjusted by Shaffer’s procedure (problems with 20 terminals)

ip0.8 cp0.0 ip0.6 ip0.4 cp0.2 cp0.4 ip0.2 cp0.6 ip0.0 cp0.8 cp1.0 nn5 nn3 enorm nn-1

ip1.0 7.955 1.644 0.356 0.126 0.052 0.008 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ip0.8 - 6.603 2.666 1.330 0.739 0.172 0.074 0.058 0.005 0.002 0.000 0.000 0.000 0.000 0.000

cp0.0 - 7.955 7.658 6.603 3.292 1.968 1.711 0.356 0.201 0.051 0.001 0.000 0.000 0.000

ip0.6 - 7.955 7.955 7.247 5.544 5.038 1.644 1.092 0.356 0.008 0.000 0.000 0.000

ip0.4 - 7.955 7.955 7.387 7.247 3.251 2.253 0.883 0.029 0.000 0.000 0.000

cp0.2 - 7.955 7.955 7.955 4.708 3.613 1.577 0.074 0.000 0.000 0.000

cp0.4 - 7.955 7.955 7.658 6.914 3.939 0.356 0.001 0.000 0.000

ip0.2 - 7.955 7.955 7.944 5.719 0.739 0.002 0.000 0.000

cp0.6 - 7.955 7.955 6.248 0.859 0.003 0.000 0.000

ip0.0 - 7.955 7.955 3.292 0.040 0.004 0.004

cp0.8 - 7.955 4.243 0.074 0.009 0.009

cp1.0 - 7.247 0.290 0.045 0.045

nn5 - 3.613 1.141 1.141

nn3 - 7.955 7.955

enorm - 7.955

p values which indicate significant differences (less than 0.05) are in bold

vation can be done for the local search methods: any of the
algorithms ip1.0, cp0.2, cp0.0, cp0.4, cp0.6, ip0.8, and cp0.8
is significantly better than any of the algorithms nn3, nn5,
and nn-1.

It should be kept in mind that these preliminary obser-
vations are based on relatively simple ESTPs with just ten
terminals. A similar analysis in the next subsections based on
ESTP with 20 and 50 terminals show which of these conclu-
sions can also be supported in case of more difficult ESTPs.

For the sake of completeness, in Table 4 it is summarized
for each algorithm, in how many ESTPs it was able to find
the best-known solution (obtained by any of the algorithms
considered). There are onlyminor differences among the best
performing (in average) algorithms alreadymentioned.How-
ever, it could be surprising that for example, algorithm nn5
was able to find the best-known solutions in 18 ESTPs. Still,
its average performance it significantly worse than that of
ip1.0.

Problems with 20 terminals
The Friedman’s ranks achieved by each of the 16 algo-

rithms for the 20 problems with 20 terminals are presented

in Table 5. These ranks are based on the average performance
of the algorithms.

Similarly to the results for ESTPs with ten terminals,
the best performing algorithm is ip1.0. However, based on
the post hoc analysis (Table 6) its averaged performance
is not significantly different (with the significance level
α = 0.05) than that of algorithms ip0.8, cp0.0, ip0.6, ip0.4,
and cp0.2. Again, the correction procedure seems to work
better with Baldwin effect (small values of change_prob) and
the improvement procedure works better with high values of
change_prob (Lamarckian evolution).

In this set of ESTPs with 20 terminals, it is even more
evident that the simple evolutionary algorithm enorm is not
able to solve the problems. Based on the post hoc analysis
(Table 6), it can be observed that enorm is significantly worse
than any of the hybridmethods. On the other hand, only algo-
rithms ip1.0, ip0.8, cp0.0, ip0.6, ip0.4 are significantly better
than algorithmnn5.However, algorithmnn5by itself is found
to be significantly better than none of the considered ones.

Table 7 shows the number of best solutions found by each
of the algorithms. Again, there is a remarkable ability of the
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Table 7 Number of best solutions found (problems with 20 terminals)

Algorithm ip0.6 ip1.0 nn5 ip0.4 ip0.2 ip0.8 nn3 cp0.0 cp0.2 cp0.6 cp0.4 cp0.8 ip0.0 cp1.0 nn-1 enorm

Number of best solutions 17 17 17 16 15 15 12 8 7 7 6 6 6 4 4 1

Table 8 Friedman’s ranks for algorithms based on the mean results for problems with 50 terminals

Algorithm ip1.0 ip0.8 ip0.6 ip0.4 ip0.2 nn5 cp0.8 cp0.6 cp0.2 cp0.4 cp0.0 cp1.0 ip0.0 nn3 nn-1 enorm

Rank 1.05 2.05 3.4 4.25 5.95 7.7 8.55 8.9 9 9 10 10 12.45 12.7 15 16

Table 9 p values adjusted by Shaffer’s procedure (problems with 50 terminals)

ip0.8 ip0.6 ip0.4 ip0.2 nn5 cp0.8 cp0.6 cp0.2 cp0.4 cp0.0 cp1.0 ip0.0 nn3 nn-1 enorm

ip1.0 8.370 3.675 1.409 0.069 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ip0.8 – 8.138 3.886 0.498 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ip0.6 – 8.370 3.161 0.249 0.042 0.018 0.014 0.014 0.001 0.001 0.000 0.000 0.000 0.000

ip0.4 – 6.471 1.009 0.249 0.119 0.098 0.098 0.010 0.010 0.000 0.000 0.000 0.000

ip0.2 – 6.372 3.030 1.952 1.754 1.754 0.393 0.393 0.001 0.001 0.000 0.000

nn5 – 8.370 8.145 8.145 8.145 3.798 3.798 0.098 0.059 0.000 0.000

cp0.8 – 8.370 8.370 8.370 8.052 8.052 0.498 0.327 0.001 0.000

cp0.6 – 8.370 8.370 8.370 8.370 0.882 0.592 0.004 0.000

cp0.2 – 8.370 8.370 8.370 1.009 0.685 0.005 0.000

cp0.4 – 8.370 8.370 1.009 0.685 0.005 0.000

cp0.0 – 8.370 3.421 2.771 0.059 0.005

cp1.0 – 3.421 2.771 0.059 0.005

ip0.0 – 8.370 3.161 0.882

nn3 – 3.798 1.221

nn-1 – 8.370

p values which indicate significant differences (less than 0.05) are in bold

nn5 algorithm to find the best solutions at least once com-
pared to its poor averaged performance. Taking into account
the average performance and the number of best solutions
found, it can be concluded from this set of experiments that
the evolutionary algorithm with improvement procedure and
Lamarckian evolution should be preferred.

Problems with 50 terminals
The Friedman’s ranks achieved by each of the 16 algo-

rithms for the 20 problems with 50 terminals are presented
in Table 8. These ranks are based on the average performance
of the algorithms.

In the case of ESTPs with 50 terminals, it is evident
that the evolutionary algorithms with improvement proce-
dure and Lamarckian evolution performs best on average.
It can be observed (Table 8) that ip1.0, ip0.8, ip0.6, ip0.4
and ip0.2 have the best ranks from among all algorithms.
Algorithm ip1.0 is assigned the highest rank, however, a sig-
nificant difference (Table 9) between ip1.0 and algorithms
ip0.8, ip0.6, ip0.4 and ip0.2 cannot be discovered. Accepting
the improved solution is highly beneficial as even the small

values of change_prob (such as in ip0.2) make the evolu-
tionary algorithm with improvement procedure significantly
better than ip0.0. On the other hand, the usefulness of using
the correction procedure as the local search method in the
evolutionary algorithm is no longer proved when compared
to the best performing ip1.0 and ip0.8 algorithms: according
to Shaffer’s post hoc procedure, any of the algorithms cp0.0–
cp1.0 are performing significantlyworse than ip1.0 and ip0.8.
On the other hand, the correction procedure in MA with any
change_prob value improves the performance of simple evo-
lutionary algorithm enorm significantly. Taking into account
that the correction procedure is much less computationally
expensive than the improvement procedure, it might still be
of use in difficult problems with many terminals.

Similarly to the previous set of experiments the relatively
high rank of nn5 heuristic should be noticed. Again, based
on the results, there is not enough evidence that its averaged
behavior is better than any of the evolutionary algorithms
with improvement or even correction procedures. The high
rank of the nn5 algorithm might be explained based on the
results presented in Table 10, where the numbers of best
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Table 10 Number of best solutions found (problems with 50 terminals)

Algorithm nn5 ip1.0 ip0.8 ip0.4 nn3 cp0.0 cp0.2 cp0.4 cp0.6 cp0.8 cp1.0 enorm ip0.0 ip0.2 ip0.6 nn-1

Number of best solutions 13 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

Fig. 8 Summary of average
results of the MA with
improvement procedure for
problems from OR-library:
minimum, maximum and mean
values for each group of
problems are presented
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Fig. 9 Summary of best
solutions found by the MA with
improvement procedure for
problems from OR-library:
minimum, maximum and mean
values for each group of
problems are presented
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solutions found by each of the algorithms are presented. It is
interesting to note that the clear winner here is nn5 heuristic.
It can be deduced that the poor average performance of nn5
is somehow compensated by its ability to find the best solu-
tions in only limited number of the considered ten runs per
problem.

4.4 Results for problems fromOR-Library

In order to assess the ability of the proposed approach
to provide optimal or near optimal solutions, ESTPs from
OR–Library have been used [25]. In this section we com-
pare the results of the proposed algorithm with the best
performing settings (ip1.0) with the optimal solutions for
the problems provided in the OR-Library files estein10,
estein20, estein30, estein40, estein50, estein60, estein70,
estein80, estein90 and estein100. Those files have been
obtained from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

esteininfo.html. Each file contains 15 EST problems with
the number of terminals corresponding to the number in the
name of the file. For example, in the file estein80, there are
15 problems, each with 80 terminals (points on 2D plane).

The algorithm ip1.0 with the same settings as in the pre-
vious subsection has been run ten times for each problem.
The mean and the best Steiner ratios have been calculated
for each problem over the ten results. Next, for each group of
problems of a given size, the average, minimum and maxi-
mum Steiner ratio have been found in the 15 problems. Next,
these values have been compared with the Steiner ratios of
the known optimal solutions taken from the library file. The
results are summarized in Figs. 8 and 9. The presented values
are the quotient of the mean, minimum and maximum values
of the quotient for each group of problems. The value of the
quotient equal 1 indicates that the optimal solution has been
found. The bigger the values, the worse the solution (bigger
Steiner ratio).
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From the results presented in Figs. 8 and 9, it can be seen
that the proposed algorithm can provide stable performance
and find near-optimal solutions. From Fig. 9 it can be seen
that the Steiner ratios of the best solutions are never worse
more than 1% than the Steiner ratios of the optimal solutions
from OR-Library. The mean Steiner ratios are worse slightly
more than 1% than the optimal ones only for a few problems
with 90 and 100 terminals (Fig. 8).

The results presented in this section indicate that the pro-
posed algorithm scales well with the size of the problems.
Perfect solutions have been found for all problems with 10
and 20 terminals and near optimal solutions for the rest. No
significant fall in the quality of the results can be observed
when the number of terminals grows.

5 Conclusions

The main purpose of this work was to investigate the impor-
tance of local search procedures in a MA for Euclidean
Steiner Tree Problem (ESTP) on a plane. ESTP is a dif-
ficult problem, and there is still a need for new heuristics
as the exact methods are computationally demanding. Evo-
lutionary algorithms are known to be efficient in locating
the promising areas of the search space, on the other hand,
they are slow in fine tuning the solutions. For that reason,
local search methods can be used as a part of the evolu-
tionary framework to speed up the convergence. However,
this may lead to the quick loss of diversity in population
and premature convergence. Two well-known approaches
have been tested, Baldwin effect and Lamarckian evolu-
tion together with a set of intermediate solutions in which
the corrected/improved solution is accepted with a given
probability. Two local search methods have been tested, the
correction procedure, which only repairs the set of candidate
Steiner points making them satisfy the degree and angle con-
dition and the improvement procedure which actively adds
new candidate Steiner points. As the second procedure (the
improvement procedure) modifies the candidate solution sig-
nificantly more than the correction procedure, it might be
expected to be more dangerous to use as it can limit the abili-
ties of an evolutionary algorithm to explore the search space.
However, as the numerical experiments showed, when the
ESTPs become more difficult (problems with 10, 20 and 50
terminals have been tested), theMAbased on aGAcombined
with the improvement procedure and Lamarckian evolution
becomes the best choice when the averaged performance is
considered. This was supported by statistical analysis of the
results using Friedman test followed by Shaffer’s post hoc
procedure.

The best performing variant of the proposedMA has been
tested on problems from OR-Library with known optimal
solutions. There are 15 problems in each set of problems

with 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 terminals on
a 2D plane. The Steiner ratios of the best results of the pro-
posed MA are never worse more than 1% than the Steiner
ratios of the optimal solutions taken from the library. It can be
observed that the algorithm scales well and there is no signif-
icant drop in the performance when the size of the problems
(the number of terminals) grows.

This work to the best of Author’s knowledge is the first
attempt to test the importance of local search methods in a
MAwhen applied to ESTP. It by no means exhaust the topic.
Considering the enormous number of evolutionary heuris-
tics that exists nowadays and possibly other local search
procedures, further work can explore the other combina-
tions of evolutionary/local heuristics. The results presented
in this work suggest that to solve ESTP with the evolution-
ary algorithm the role of the local search method is of crucial
importance and it should be allowed to modify the candidate
solutions significantly. The future work can also include the
application of the describedmethod to problemswith an even
higher number of terminals. The inherent parallel nature of
GAmight be very helpful in solving such difficult problems.
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