
Memetic Comp. (2012) 4:3–17
DOI 10.1007/s12293-012-0075-1

REGULAR SURVEY PAPER

Chemical Reaction Optimization: a tutorial
(Invited paper)

Albert Y. S. Lam · Victor O. K. Li

Received: 11 July 2011 / Accepted: 31 January 2012 / Published online: 12 February 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Chemical Reaction Optimization (CRO) is a
recently established metaheuristics for optimization, inspired
by the nature of chemical reactions. A chemical reaction is
a natural process of transforming the unstable substances to
the stable ones. In microscopic view, a chemical reaction
starts with some unstable molecules with excessive energy.
The molecules interact with each other through a sequence of
elementary reactions. At the end, they are converted to those
with minimum energy to support their existence. This prop-
erty is embedded in CRO to solve optimization problems.
CRO can be applied to tackle problems in both the discrete
and continuous domains. We have successfully exploited
CRO to solve a broad range of engineering problems, includ-
ing the quadratic assignment problem, neural network train-
ing, multimodal continuous problems, etc. The simulation
results demonstrate that CRO has superior performance when
compared with other existing optimization algorithms. This
tutorial aims to assist the readers in implementing CRO to
solve their problems. It also serves as a technical overview
of the current development of CRO and provides potential
future research directions.

Keywords Chemical Reaction Optimization ·
Metaheuristic · Nature-inspired algorithm ·
Approximate algorithm · Optimization

A. Y. S. Lam (B)
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, 273 Cory Hall, Berkeley,
CA 94720, USA
e-mail: albertlam@ieee.org

V. O. K. Li
Department of Electrical and Electronic Engineering,
The University of Hong Kong, Rm. 610D, Chow Yei
Ching Building, Pokfulam Rd., Hong Kong, China
e-mail: vli@eee.hku.hk

1 Introduction

Nature, by itself, is a complex system and human beings
and their associated activities are parts of Nature. This com-
plex system operates forever without any problems because
there are laws governing the operations of all contained com-
ponents. The ways in which Nature functions are excellent
principles to operate complicated systems and to solve prob-
lems. When it comes to mathematics and computer science,
these operating methods are called algorithms [29]. Mimick-
ing the behaviors of Nature to achieve goal-oriented activi-
ties is called Natured-inspired computing [31]. Thus, we can
see that the ideas of imitating phenomena from Nature have
great potential in developing algorithms to tackle engineer-
ing problems, especially those for which we lack adequate
knowledge to design the corresponding efficient solving
methods.

Moreover, optimization is one of the cornerstones in engi-
neering and science; most of the problems can be formu-
lated in the form of optimization. It is prevalent, ranging
from power generation scheduling in electrical engineer-
ing [1], stock market trend prediction in finance [42], to
DNA sequencing in biomedical science [32]. Various opti-
mization techniques have been attempted to solve optimiza-
tion problems. However, it is generally believed that for a
class of problems, called nondeterministic polynomial-time
hard (NP-hard) in computation complexity theory [11], algo-
rithms obtaining the optimal solutions in polynomial time do
not exist [10]. In reality, many important real-world prob-
lems are classified as NP-hard. Does it mean that there is
no hope to solve these problems efficiently? Auspiciously,
we are satisfied with near-optimal (or sub-optimal) solu-
tions most of the time provided that the objective func-
tion values of these solutions are not too far away from
the optimal. This gives birth to approximate algorithms,

123

4 Memetic Comp. (2012) 4:3–17

a very influential class of optimization algorithms nowa-
days.

In the past few decades, the field of Nature-inspired opti-
mization techniques has grown incredibly fast. These algo-
rithms are usually general-purpose and population-based.
They are normally referred to as evolutionary algorithms1

because many of them are motivated by biological evolution.
Evolution means “the variation of allele frequencies in popu-
lations over time” [2]. We can, without harm, broaden the idea
of “evolution” to non-biological processes. In a broad sense,
evolutionary algorithms cover those which vary a group of
solutions in iterations based on some Nature-inspired oper-
ations. Examples include, but are not limited to, Genetic
Algorithm (GA) [13], Memetic Algorithm (MA) [6,23], Ant
Colony Optimization (ACO) [8], Particle Swarm Optimiza-
tion (PSO) [15], Differential Evolution (DE) [28], and Har-
mony Search (HS) [12]. Many of them are inspired by the
biological process, varying in scale from the genetic level,
e.g. GA, MA, and DE, to the creature level, e.g. ACO and
PSO. Unlike the others, HS is motivated by the phenomenon
of human activities in composing music.

The aforementioned algorithms are successful in solving
many different kinds of optimization problems, as demon-
strated by their huge number of citations in the literature.
According to the No-Free-Lunch Theorem [35], all meta-
heuristics which search for extrema are exactly the same
in performance when averaged over all possible objective
functions. In other words, when one works excellent in a
certain class of problems, it will be outperformed by the oth-
ers in other classes. Therefore, all algorithms which have
been shown to address some optimization problems success-
fully are equally important, as each of them must perform
identically well on the average. As the spectrum of optimi-
zation problems is huge, the number of reported successful
metaheuristics is much less than the number of problems.
Recently, Lam and Li [18] proposed a new metaheuristic for
optimization, inspired by the nature of chemical reactions.
They coined it Chemical Reaction Optimization (CRO). In
a short period of time, CRO has been applied to solve many
problems successfully, outperforming many existing evolu-
tionary algorithms in most of the test cases. In this tutorial,
we introduce this new paradigm, provide guidelines to help
the readers implement CRO for their optimization problems,
summarize the applications of CRO reported in the literature,
and identify possible future research directions for CRO.

The rest of this tutorial is organized as follows. Section 2
gives the inspiration of CRO. We explain the characteristics
of CRO in Sect. 3 and introduce the basic elements of CRO in
Sect. 4. In Sect. 5, we demonstrate the CRO framework and
show how the algorithm is structured. We briefly describe

1 They are also sometimes called metaheuristics.

most of the problems addressed by CRO in Sect. 6. We con-
clude this tutorial and suggest potential future work in Sect. 7.

2 Inspiration

CRO is a technique which loosely couples chemical reactions
with optimization. It does not attempt to capture every detail
of chemical reactions. In general, the principles of chemical
reactions are governed by the first two laws of thermodynam-
ics [14]. Here we explain these laws at a high level to enable
the readers to easily grasp the working mechanisms of chem-
ical reactions. The first law (conservation of energy) says that
energy cannot be created or destroyed; energy can transform
from one form to another and transfer from one entity to
another. A chemical reacting system consists of the chemi-
cal substances and its surroundings. Each chemical substance
possesses potential and kinetic energies, and the energies of
the surroundings are symbolically represented by the central
energy buffer in CRO.2 A reaction is endothermic when it
requires heat obtained from the surroundings to initialize the
reaction process. An exothermic reaction refers to one whose
chemical substances give heat to the surroundings. These two
kinds of reactions can be characterized by the initial buffer
size: when it is positive, the reaction is endothermic; when
it is zero, the reaction is exothermic. The second law says
that the entropy of a system tends to increase, where entropy
is the measure of the degree of disorder. Potential energy is
the energy stored in a molecule with respect to its molecular
configuration. When it is converted to other forms, the sys-
tem becomes more disordered. For example, when molecules
with more kinetic energy (converted from potential energy)
move faster, the system becomes more disordered and its
entropy increases. Thus all reacting systems tend to reach a
state of equilibrium, whose potential energy drops to a min-
imum. In CRO, we capture this phenomenon by converting
potential energy to kinetic energy and by gradually losing the
energy of the chemical molecules to the surroundings.

A chemical system undergoes a chemical reaction when
it is unstable, in the sense that it possesses excessive energy.
It manipulates itself to release the excessive energy in order
to stabilize itself. This manipulation is called chemical reac-
tions. If we look at the chemical substances at the microscopic
level, a chemical system consists of molecules, which are
the smallest particles of a compound that retain the chem-
ical properties of the compound.3 Molecules are classified
into different species based on the underlying chemical prop-
erties. For example, carbon monoxide (CO) and nitrogen

2 The central energy buffer will be introduced in Sect. 4.
3 The definition of molecule is from the General Chemistry Online:
Glossary from Frostburg State University, available at http://antoine.
frostburg.edu/chem/senese/101/index.shtml.

123

http://antoine.frostburg.edu/chem/senese/101/index.shtml
http://antoine.frostburg.edu/chem/senese/101/index.shtml

Memetic Comp. (2012) 4:3–17 5

Fig. 1 Illustrative representation of a chemical reaction on the potential
energy surface [18]

dioxide (NO2) are two different chemical species. The chem-
ical system (CO + NO2) is unstable and the unstable chem-
icals finally convert to more stable species, CO2 and NO.
The overall chemical equation which governs this process
can be described by CO + NO2 → CO2 + NO. In fact,
this reacting system is realized in multiple stages, described
by consecutive sub-reactions4: 2NO2 → NO3 + NO and
NO3 + CO→ NO2 + CO2. We depict the aforementioned
chemical reaction on the potential energy surface in Fig. 1.
We can see that a chemical reaction is accomplished by some
consecutive (and parallel) sub-reaction steps, from reactants
changing to products via intermediates and transition states.
A chemical reaction always results in more stable products
with minimum energy and it is a step-wise process of search-
ing for the optimal point.

Molecules store energy in the form of chemical bonds;
bond formation requires energy from the outside while bond
breakage releases energy to the surroundings. A molecule
is identified by its molecular structure, which characterizes
the contained atoms, bond length, angle, and torsion. Mol-
ecules with subtle changes in molecular structures are still
considered to belong to the same species.

A chemical change of a molecule is triggered by a col-
lision. There are two types of collisions: uni-molecular and
inter-molecular collisions. The former describes the situa-
tion when the molecule hits on some external substances
(e.g. a wall of the container) while the latter represents the
cases where the molecule collides with other molecules.
The corresponding reaction change is called an elementary
reaction. An ineffective elementary reaction is one which
results in a subtle change of molecular structure. We consider
four kinds of elementary reactions: on-wall ineffective col-
lision, decomposition, inter-molecular ineffective collision,
and synthesis. With respect to molecularity, decomposition

4 Some systems may have the sub-reactions take place spontaneously.

Table 1 Characteristics of the four elementary reactions

Extent of change Number of molecules involved

Uni-molecular Inter-molecular

More Decomposition Synthesis

Less On-wall ineffective Inter-molecular

collision ineffective collision

and synthesis correspond to on-wall ineffective collision and
inter-molecular ineffective collision, respectively, but they
have much more vigorous changes to the molecular struc-
tures. We summarize the elementary reactions in Table 1.

Optimization is the study of problems in which one seeks
to minimize (or maximize)5 a function by systematically
choosing the values of the variables in an allowed set. Most of
the currently widely utilized optimization algorithms oper-
ate iteratively, irrespective of whether they are traditional
techniques (e.g. descent methods, Newton’s methods [3]) or
the evolutionary ones. We can see that the nature of chemi-
cal reactions and optimization resemble each other at a high
level; they both seek to undergo a series of events step-by-
step. Due to the success of other evolutionary algorithms and
the No-Free-Lunch Theorem, CRO was proposed based on
these observations.

3 Characteristics

Conservation of energy in CRO is as natural selection in GA.
Re-distribution of energy among the molecules and inter-
change of energy from one form to another govern the algo-
rithmic philosophy of CRO. With the underlying assumption
of energy conservation and transformation, we manipulate
the solutions through a random sequence of elementary reac-
tions. The two ineffective collisions implement local search
(intensification) while decomposition and synthesis give the
effect of diversification. An appropriate mixture of intensi-
fication and diversification makes an effective search of the
global minimum in the solution space.

CRO is a variable population-based metaheuristic. The
total number of molecules in different iterations may not be
the same. When an (on-wall or inter-molecular) ineffective
collision happens, the number of molecules before and after
the change remains identical. On the other hand, with decom-
position and synthesis, the number increases and decreases,
respectively. With our definitions of the decomposition and
synthesis criteria, we can implicitly influence their frequen-
cies by controlling α and β, respectively (the details will be

5 We assume an optimization is a minimization problem. A maximi-
zation problem can be converted to the corresponding minimization by
adding a minus sign to the objective function.

123

6 Memetic Comp. (2012) 4:3–17

discussed in Sect. 5). However, the frequencies have a stron-
ger relationship with the “landscape” of the objective func-
tion. For example, if “down-hill” search direction is always
possible, we will never trigger the decomposition criterion.
If “hill-climbing” does not often happen, molecules will not
convert their kinetic energy for worse solutions and the syn-
thesis criterion is not invoked. When working with a small set
of molecules, we focus on local search more in some regions.
Otherwise, we try to spread “seeds” (i.e. molecules) to the
whole solution space in a greater extent. Therefore, CRO tries
to adapt itself to the problem with the goal of locating the
global minimum effectively.

In a broad sense, CRO is an algorithmic framework where
we only define the general operations of agents and the
energy management scheme. It allows certain implementa-
tion details to be adjusted to suit the characteristics of prob-
lems. In other words, CRO has high flexibility for users to
customize it to meet their own needs.

CRO has a strong relationship with memetic computa-
tion, which is defined as “a paradigm that uses the notion
of meme(s) as units of information encoded in computa-
tional representations for the purpose of problem-solving”
[6]. MA hybridizes global and local heuristic search tech-
niques. CRO realizes the global and local search with the
elementary reactions. Moreover, we can incorporate (individ-
ual and social) learning ability or ideas from other algorithms
into CRO through appropriate designs of the decomposition
and synthesis mechanisms. This may result in a more pow-
erful CRO-based algorithm for particular problems.

CRO enjoys the advantages of both Simulated Anneal-
ing (SA) [17] and GA. The energy conservation requirement
gives similar effects of the Metropolis Algorithm used in SA
while the decomposition and synthesis operations share sim-
ilarities with the crossover and mutation operations of GA.
When the number of molecules is small, CRO is more like
SA. When some crossover and mutation operators are imple-
mented in decomposition and synthesis, CRO performs more
like GA (more discussion can be found in Sect. 5.6).

The basic unit in CRO is a molecule. Each molecule has
certain attributes, e.g. potential and kinetic energies, molec-
ular structures, etc., with values characterizing that mole-
cule. The elementary reactions define the implementations
of molecular interactions. Thus, we can easily program CRO
with an object-oriented programming language [30], e.g.
C++ and Java. We can define a class whose data fields rep-
resent the attributes and whose methods describe the ele-
mentary reactions. Whenever a molecule is constructed (in
initialization and decomposition), we create an object repre-
senting a molecule from the class. If a molecule is removed
from the system by combining with another one (in synthe-
sis), we can simply destroy the corresponding object.

Parallelization of CRO can be done without too much
effort. When we implement multiple CROs for solving a

particular problem, we do not need strong synchronization
among the CROs. Unlike other evolutionary algorithms, CRO
does not define generations and each iteration involves only
a subset of molecules. Each CRO maintains its own popu-
lation size. Interactions between CROs can be carried out at
a certain instant without much restriction as each CRO does
not need to wait for another CRO to complete certain actions,
e.g. computation of the whole population in a generation in
GA. An attempt to parallelize CRO can be found in [39].

To summarize, the advantages of CRO are highlighted as
follows:

– CRO is a design framework which allows deploying dif-
ferent operators to suit different problems.

– Its variable population size allows the system to adapt to
the problems automatically.

– Conversion of energy and transfer of energy in different
entities and in different forms make CRO unique among
meterheursitics. CRO has the potential to tackle those
problems which have not been successfully solved by
other metaheuristics.

– Other attributes can easily be incorporated into the agent
(i.e. molecule). This gives flexibility to design different
operators.

– CRO enjoys the advantages of both SA and GA.
– CRO can be easily programmed in object-oriented pro-

gramming language, where a class defines a molecule and
methods define the elementary reaction types.

– It is easy to modify CRO to run in parallel, as the pop-
ulation size does not need to be synchronized between
computing units.

4 Basic components, elementary reactions, and concepts

In this section, we introduce the building blocks of CRO and
explain how they are integrated as a complete algorithm. We
first define the manipulated agent, then describe the elemen-
tary reactions, and finally elaborate on the core concept of
CRO, namely, conservation of energy.

4.1 The manipulated agent

CRO is a multi-agent algorithm and the manipulated agents
are molecules. Each molecule has several attributes, some
of which are essential to the basic operations of CRO. The
essential attributes include (a) the molecular structure (ω); (b)
the potential energy (PE); and (c) the kinetic energy (KE).
The rest depends on the algorithm operators and they are uti-
lized to construct different CRO variants for particular prob-
lems provided that their implementations satisfy the charac-
teristics of the elementary reactions. The optional attributes
adopted in most of the published CRO variants are (d) the

123

Memetic Comp. (2012) 4:3–17 7

number of hits (NumHit); (e) the minimum structure (Min-
Struct); (f) the minimum PE (MinPE); and (g) the minimum
hit number (MinHit). Illustrations of the attributes mentioned
above are listed in the following:

1. Molecular structure ω captures a solution of the prob-
lem. It is not required to be in any specific format: it can
be a number, a vector, or even a matrix. For example, if
the problem solution space is defined as a set of vectors
composed of five real numbers, then ω can be any of
these vectors.

2. Potential energy PE is defined as the objective function
value of the corresponding solution represented by ω. If
f denotes the objective function, then we have

PEω = f (ω). (1)

3. Kinetic energy KE is a non-negative number and it quan-
tifies the tolerance of the system accepting a worse
solution than the existing one. We will elaborate on the
concept later in this section.

4. Number of hits When a molecule undergoes a collision,
one of the elementary reactions will be triggered and it
may experience a change in its molecular structure. Num-
Hit is a record of the total number of hits (i.e. collisions)
a molecule has taken.

5. Minimum structure MinStruct is the ω with the mini-
mum corresponding PE which a molecule has attained
so far. After a molecule experiences a certain number of
collisions, it has undergone many transformations of its
structure, with different corresponding PE. MinStruct is
the one with the lowest PE in its own reaction history.

6. Minimum potential energy When a molecule attains its
MinStruct, MinPE is the corresponding PE.

7. Minimum hit number MinHit is the number of hits when
a molecule realizes MinStruct. It is an abstract notation
of time when Minstruct is achieved.

4.2 Elementary reactions

There are four types of elementary reactions, each of which
takes place in each iteration of CRO. They are employed
to manipulate solutions (i.e. explore the solution space) and
to redistribute energy among the molecules and the buffer.
For demonstration purposes, we will also give examples of
the most frequently used operators in various applications of
CRO in Sect. 5. Other designs can be found in the references
provided in Sect. 6. Note that there is no strict requirements
on the mechanisms of the operators and operators designed
for other algorithms may also be adopted. However, CRO
ensures the conservation of energy when new solutions are
generated with the operators.

4.2.1 On-wall ineffective collision

An on-wall ineffective collision represents the situation when
a molecule collides with a wall of the container and then
bounces away remaining in one single unit. In this collision,
we only perturb the existing ω to ω′, i.e.,

ω→ ω′.

This can be done by picking ω′ in the neighborhood of ω.
Let N (·) be any neighborhood search operator, we have ω′ =
N (ω) and PEω′ = f (ω′). Moreover, a certain portion of
KE of the transformed molecule is withdrawn to the cen-
tral energy buffer (buffer). Let KElossRate be a parameter of
CRO, 0 ≤ KELossRate ≤ 1, and a ∈ [KELossRate, 1] be
a random number, uniformly distributed from KELossRate
to 1. We get

KEω′ = (PEω − PEω′ + KEω)× a (2)

and the remaining energy, (PEω − PEω′ + KEω)× (1− a),
is transferred to buffer. If KEω is large enough such that the
transformed molecule satisfies the following energy conser-
vation condition:

PEω + KEω ≥ PEω′ (3)

(further discussed in Sect. 4.3), we can have PEω′ > PEω.
In other words, we can obtain a worse solution in this ele-
mentary reaction. Of course, it is always possible to undergo
an on-wall ineffective collision when PEω′ ≤ PEω. When
a molecule experiences more of this elementary reaction, it
will have more KE transferred to buffer. Hence, the chance
of having a worse solution is lower in a subsequent change.

4.2.2 Decomposition

Decomposition refers to the situation when a molecule hits
a wall and then breaks into several parts (for simplicity, we
consider two parts in our discussion). Assume that ω pro-
duces ω′1 and ω′2, i.e.,

ω→ ω′1 + ω′2.

Any mechanism, which can produce ω′1 and ω′2 from ω, is
allowed. Theoretically, even generating solutions indepen-
dent of the existing one (random generation of new solution)
is feasible. The idea of decomposition is to allow the system
to explore other regions of the solution space after enough
local search by the ineffective collisions. The effectiveness
of the solution generation mechanism is problem-dependent.
Since more solutions are created, the total sum of PE and KE
of the original molecule may not be sufficient. In other words,
we may have

PEω + KEω < PEω′1 + PEω′2 .

123

8 Memetic Comp. (2012) 4:3–17

As energy conservation is not satisfied, this decomposition
has to be aborted. To increase the chance of having a decom-
position completed, we randomly draw a small portion of
energy from buffer to support the change. Let δ1 and δ2 be two
independent and identically distributed numbers uniformly
generated in the range of [0, 1]. We modify the energy con-
servation condition for decomposition as follows:

PEω + KEω + δ1 × δ2 × buffer ≥ PEω′1 + PEω′2 . (4)

This models the situation that some energy from buffer is
transferred to the molecule when it hits the wall. If (4) holds,
the existing molecule with ω is replaced by the two newly
generated ones, whose KEs randomly share the remaining
energy Edec = (PEω +KEω + δ1× δ2× buffer)− (PEω′1 +
PEω′2), i.e.,

KEω′1 = Edec × δ3 and (5)

KEω′2 = Edec × (1− δ3), (6)

where δ3 is a random number generated in [0, 1]. The energy
in the buffer is also updated by

buffer′ = (1− δ1δ2)buffer. (7)

4.2.3 Inter-molecular ineffective collision

Inter-molecular ineffective collision takes place when multi-
ple molecules collide with each other and then bounce away.
The molecularity (assume two) remains unchanged before
and after the process, i.e.,

ω1 + ω2 → ω′1 + ω′2.

This elementary reaction is very similar to the uni-molecu-
lar ineffective counterpart; we generate ω′1 and ω′2 by ω′1 =
N (ω1) and ω′2 = N (ω2). The energy management is similar
but no buffer is involved. The energy conservation condition
can be stated as

PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′1 + PEω′2 . (8)

As more molecules are involved, the total sum of energy
of the molecular sub-system is larger than that of the on-
wall ineffective collision. The probability of the molecules
to explore their immediate surroundings is higher. In other
words, the molecules have higher flexibility to be trans-
formed to more diverse molecular structures. We can use
the same operator for on-wall ineffective collision to pro-
duce new solutions. We apply the operator to each mole-
cule to get a new one. If (8) is satisfied, KEs of the trans-
formed molecules share the remaining energy Einter =
(PEω1 + PEω2 + KEω1 + KEω2) − (PEω′1 + PEω′2) in the
sub-system, i.e.,

KEω′1 = Einter × δ4 and (9)

KEω′2 = Einter × (1− δ4), (10)

where δ4 is a random number generated in [0, 1].

4.2.4 Synthesis

Synthesis does the opposite of decomposition. A synthesis
happens when multiple (assume two) molecules hit against
each other and fuse together, i.e.,

ω1 + ω2 → ω′.

As only one molecule is produced, it is likely to satisfy the
energy conservation condition:

PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′ . (11)

If (11) holds, the resulting KEω′ just takes up all the remain-
ing energy, i.e.,

KEω′ = (PEω1 + PEω2 + KEω1 + KEω2)− (PEω′). (12)

We can see that we allow greater change to ω′ with respect to
ω1 and ω2 and KEω′ is usually higher than KEω. The result-
ing molecule has a higher “ability” to explore a new solution
region. Any mechanism allowing the combination of solu-
tions is allowed, where the resultant molecule is in a region
farther away from the existing ones in the solution space.
The idea behind synthesis is diversification of solutions. The
implementation detail is again problem-dependent.

4.3 Conservation of energy

One of the fundamental assumptions of CRO is conserva-
tion of energy, which means that energy cannot be created
or destroyed. The whole system refers to all the defined
molecules and the container, which is connected to buffer.
The total amount of energy of the whole system is deter-
mined by the objective function values (i.e. PE) of the initial
population of molecules whose size is PopSize, the initial
KE (InitialKE) assigned, and the initial value of buffer. Let
P Eωi (t), K Eωi (t), PopSize(t), and bu f f er(t) be the PE
of molecule i , the KE of molecule i , the number of mole-
cules, and the energy in the central buffer at time t . When the
algorithm evolves, the total amount of energy in the system
always remains constant, i.e.,

PopSize(t)∑

i=1

(PEωi (t)+ KEωi (t))+ buffer(t) = C, (13)

where C is a constant. Each elementary reaction manages
a sub-system (i.e. a subset of entities of the system); a
uni-molecular collision involves a molecule and the container
while an inter-molecular collision concerns multiple mole-
cules. After an elementary reaction, the total energy of the
constructed sub-system remains the same. Let k and l be the

123

Memetic Comp. (2012) 4:3–17 9

number of molecules involved before and after a particular
elementary reaction, and let ω and ω′ be the molecular struc-
tures of an existing molecule and the one to be generated
from the elementary reaction, respectively. In general, the
elementary reaction can only take place when it satisfies the
following energy conservation condition:

k∑

i=1

(PEωi + KEωi) ≥
l∑

i=1

PEω′i . (14)

We modify this condition for decomposition as it involves
buffer on the left-hand side of (14). Note that PE is deter-
mined by (1) according to the molecular structure. If the
resultant molecules have very high potential energy, i.e. they
give very bad solutions, the reaction will not occur.

Theoretically, energy cannot attain a negative value and
any operation resulting in negative energy should be forbid-
den. However, some problems may attain negative objec-
tive function values (i.e. negative PE), but we can convert
the problem to an equivalent one by adding an offset to the
objective function to make each PE non-negative. The law
of conservation of energy is still obeyed and the system
works perfectly. Interested readers may refer to [20] for more
details.

5 Algorithm design

In this section, we will guide the readers to develop a basic
version of CRO. This serves to help the readers understand
how CRO works. We also give examples of some common
operators used in CRO. Although CRO is a general-purpose
metaheuristic, as with other general-purpose metaheuristics,
this basic CRO may not give good performance to all prob-
lems of interest. At the end of this section, we also give some
suggestions on how to proceed to more advanced versions of
CRO which can be more adaptive to the problem.

Similar to other evolutionary algorithms or metaheuris-
tics, CRO consists of three stages: initialization, iterations,
and the final stage. We define the elements of the algorithms
in the initialization and the algorithm explores the solution
space in iterations. In the final stage, the algorithm terminates
and the best found solution is output.

5.1 Initialization

Imagine there is a container with some chemical substances
inside in the forms of molecules. We initialize the set-
tings of the algorithm and assign values to the algorithmic
parameters, including PopSize, KELossRate, MoleColl,
buffer, InitialKE, α, and β.6

6 We will discuss MoleColl, α, and β in Sect. 5.2.

Algorithm 1 “Molecule” class
1: class Molecule
2: Attributes:
3: ω, PE, KE, NumHit, MinStruct, MinPE, MinHit
4: Method:
5: Molecule() \\constructor
6: {
7: Randomly generate ω in the solution space
8: PE ← f (ω)

9: KE ← InitialKE
10: NumHit← 0
11: MinStruct← ω

12: MinPE ← PE
13: MinHit← 0
14: }
15: Onwall IneffectiveCollision()
16: Decomposition()
17: IntermolecularIneffectiveCollision()
18: Synthesis()
19: end class

In this stage, we define the manipulated agent, i.e. a mol-
ecule, set the parameter values, and construct the initial pop-
ulation of molecules. As mentioned in Sect. 3, it is preferred
to program CRO with an object-oriented programming lan-
guage [30]. We create a “Molecule” class with some attri-
butes and methods. The attributes are those mentioned in
Sect. 4.1 while we define five methods in the class, including
the class constructor and the four elementary reactions.7 The
constructor defines the details of an object when it is created
according to the class. Here the object refers to a “mole-
cule”. As we normally generate the initial set of solutions
randomly in the solution space, we assign a random solution
to ω in the constructor. The pseudocode of the “Molecule”
class is given in Algorithm 1. We create PopSize number of
molecules from “Molecule” to form the initial population of
molecules.

5.2 Iterations

Molecules with energy move and trigger collisions. A mole-
cule can either hit on a wall of the container or collide with
each other. This is decided by generating a random num-
ber b in [0, 1]. If b > MoleColl or the system only has one
molecule, we have a uni-molecular collision. Otherwise, an
inter-molecular collision follows.

For a uni-molecular collision, we randomly select one
molecule from the population and decide if it results in an
on-wall ineffective collision or a decomposition, by check-
ing the decomposition criterion on the chosen molecule. In
most of the CRO applications in Sect. 6, the decomposition

7 As we only carry out the elementary reactions in the iterations stage,
we will explain their implementations in Sect. 5.2.

123

10 Memetic Comp. (2012) 4:3–17

criterion is defined as

NumHit −MinHit > α. (15)

This means that the molecule has undergone α times of local
search without locating a better local minimum. Thus we
should explore other parts of the solution space through
decomposition. Other definitions of decomposition criteria
are allowed provided that diversification takes place suitably
in between intensifications. If (15) is satisfied, it will result
in a decomposition. Otherwise, we get an on-wall ineffec-
tive collision. The pseudocodes of on-wall ineffective colli-
sion and decomposition are shown in Algorithms 2 and 3,
respectively.

Algorithm 2 OnwallIneffectiveCollision
1: Input: molecule Mω

2: ω′ ← N (ω)

3: PEω′ ← f (ω′)
4: NumHitω ← NumHitω + 1
5: if PEω + KEω ≥ PEω′ then
6: Generate a ∈ [KELossRate, 1]
7: KEω′ ← (PEω − PEω′ + KEω)× a
8: buffer ← buffer + (PEω − PEω′ + KEω)× (1− a)

9: ω← ω′
10: PEω ← PEω′
11: KEω ← KEω′
12: if PEω < MinPEω then
13: MinStructω ← ω

14: MinPEω ← PEω

15: MinHitω ← NumHitω
16: end if
17: end if

Algorithm 3 Decomposition
1: Input: molecule Mω

2: Create Mω′1 and Mω′2
3: Obtain ω′1 and ω′2 from ω

4: PEω′1 ← f (ω′1) and PEω′2 ← f (ω′2)
5: if PEω + KEω ≥ PEω′1 + PEω′2 then
6: Edec ← PEω + KEω − (PEω′1 + PEω′2)
7: goto Step 13
8: else
9: Generate δ1, δ2 ∈ [0, 1]
10: Edec ← PEω + KEω + δ1δ2 × buffer − (PEω′1 + PEω′2)
11: if Edec ≥ 0 then
12: buffer ← buffer × (1− δ1δ2)

13: Generate δ3 ∈ [0, 1]
14: KEω′1 ← Edec × δ3 and KEω′2 ← Edec × (1− δ3)

15: MinStructω′1 ← ω′1 and MinStructω′2 ← ω′2
16: MinPEω′1 ← PEω′1 and MinPEω′2 ← PEω′2
17: Destroy Mω

18: else
19: NumHitω ← NumHitω + 1
20: Destroy Mω′1 and Mω′2
21: end if
22: end if

Similarly, for an inter-molecular collision, we randomly
select two molecules from the population and determine if
there will be an inter-molecular ineffective collision or a
synthesis by checking the synthesis criterion on the chosen
molecules. We usually adopt the following definition in the
deployments of CRO in Sect. 6: all involved molecules satisfy

KE ≤ β. (16)

That means all involved molecules have kinetic energy less
than or equal to β. Molecules with too low KE lose the flexi-
bility of escaping from local minima. We trigger a synthesis
to bring those inflexible molecules to other solution regions
for exploration. If (16) for each involved molecule is sat-
isfied, it will result in a synthesis. Otherwise, we have an
inter-molecular ineffective collision. The pseudocodes of
inter-molecular ineffective collision and synthesis are shown
in Algorithms 4 and 5, respectively.

Algorithm 4 IntermolecularIneffectiveCollision
1: Input: molecules Mω1 and Mω2

2: ω′1 ← N (ω1) and ω′2 ← N (ω2)

3: PEω′1 ← f (ω′1) and PEω′2 ← f (ω′2)
4: NumHitω1 ← NumHitω1 + 1 and NumHitω2 ← NumHitω2 + 1
5: Einter ← (PEω1 + PEω2 + KEω1 + KEω2)− (PEω′1 + PEω′2)
6: if Einter ≥ 0 then
7: Generate δ4 ∈ [0, 1]
8: KEω′1 ← Einter × δ4 and KEω′2 ← Einter × (1− δ4)

9: ω1 ← N (ω′1) and ω2 ← N (ω′2)
10: PEω1 ← PEω′1 and PEω2 ← PEω′2
11: KEω1 ← KEω′1 and KEω2 ← KEω′2
12: if PEω1 < MinPEω1 then
13: MinStructω1 ← ω1
14: MinPEω1 ← PEω1

15: MinHitω1 ← NumHitω1

16: end if
17: if PEω2 < MinPEω2 then
18: MinStructω2 ← ω2
19: MinPEω2 ← PEω2

20: MinHitω2 ← NumHitω2

21: end if
22: end if

Algorithm 5 Synthesis
1: Input: molecules Mω1 and Mω2

2: Create Mω′
3: Obtain ω′ from ω1 and ω2
4: PEω′ ← f (ω′)
5: if PEω1 + PEω2 + KEω1 + KEω2 ≥ PEω′ then
6: KEω′ ← (PEω1 + PEω2 + KEω1 + KEω2)− PEω′
7: MinStructω′ ← ω′
8: MinPEω′1 ← PEω′
9: Destroy Mω1 and Mω2

10: else
11: NumHitω1 ← NumHitω1 + 1 and NumHitω2 ← NumHitω2 + 1
12: Destroy Mω′
13: end if

123

Memetic Comp. (2012) 4:3–17 11

Fig. 2 Schematic diagram of CRO [18]

Inequalities (15) and (16) control the degree of diversifi-
cation by α and β. Proper values of α and β balance intensifi-
cation (i.e. exploitation) and diversification (i.e. exploration).

After an elementary reaction (manipulation of solutions)
completes, we check if the energy conservation condition is
obeyed. If not, the change is abolished. Then we check if
any newly determined solution has a lower objective func-
tion value. If so, we record the best solution obtained so far.
If no stopping criteria are met, we will start a new iteration.

5.3 The final stage

If any of the stopping criteria is met, we will go to the
final stage. The stopping criteria are defined according to
the user’s requirements and preferences. Typical stopping
criteria include the maximum amount of CPU time used,
the maximum number of function evaluations performed,
obtaining an objective function value less than a predefined
threshold, the maximum number of iterations performed

without improvements, etc. In this stage, we simply output
the best solution found with its objective function value and
terminate the algorithm.

5.4 The overall algorithm

To program CRO, we just need to assemble the previously
mentioned components together according to the peudocode
given in Algorithm 6. To ease understanding the flow of the
algorithm, we also give the schematic diagram of CRO in
Fig. 2.

Here are some suggested values for the parameters:
PopSize = 10, K E Loss Rate = 0.2, MoleColl =
0.2, I ni tial K E = 1000, α = 500, β = 10, and bu f f er =
0. These values are deduced from our implementation in
[18,20]. However, these parameter values are problem-
dependent. To maximize the performance of CRO for a par-
ticular problem, the readers may perform some parameter
tunings to determine a good combination of parameter values.

123

12 Memetic Comp. (2012) 4:3–17

Algorithm 6 CRO
1: Input: Objective function f and the parameter values
2: \\ Initialization
3: Set PopSize, KELossRate, MoleColl, buffer, InitialKE, α, and β

4: Create PopSize number of molecules
5: \\ Iterations
6: while the stopping criteria not met do
7: Generate b ∈ [0, 1]
8: if b > MoleColl then
9: Randomly select one molecule Mω

10: if Decomposition criterion (15) met then
11: Trigger Decomposition
12: else
13: Trigger OnwallIneffectiveCollision
14: end if
15: else
16: Randomly select two molecules Mω1 and Mω2

17: if Synthesis criterion (16) met then
18: Trigger Synthesis
19: else
20: Trigger IntermolecularIneffectiveCollision
21: end if
22: end if
23: Check for any new minimum solution
24: end while
25: \\ The final stage
26: Output the best solution found and its objective function value

5.5 Operator examples

Here we give examples of operators used in some applica-
tions of CRO given in Sect. 6.

5.5.1 Two-exchange

It is also called pair-exchange or 2-opt [5]. It is a neighbor-
hood search operator N (·) for combinatorial problems. It can
be used in Line 2 of Algorithm 2 and Line 2 of Algorithm 4.

Consider a problem with solutions in the form of vec-
tors of n elements. Let ω = [ω(i), 1 ≤ i ≤ n] be a
particular solution. First we randomly pick two distinct ele-
ments from ω, e.g., ω(i) and ω(j), where i < j . Then
we form a new solution ω′ by exchanging their positions,
i.e., ω′ = [ω(1), . . . , ω(i − 1), ω(j), ω(i + 1), . . . , ω(j −
1), ω(i), ω(j + 1), . . . , ω(n)]. If the problem is confined to
a permutation vector space, this operator can guarantee that
ω′ is still a permutation vector as long as ω is a permutation
vector.

5.5.2 Gaussian perturbation with reflection

Gaussian perturbation is also called Gaussian mutation [4]. It
is a neighborhood search operator N (·) for continuous prob-
lems. It can be used in Line 2 of Algorithm 2 and Line 2 of
Algorithm 4.

Consider a problem with continuous solution space. Let
ω = [ω(i), 1 ≤ i ≤ n] where ω(i) ∈ [li , ui], li ≤

ui ; li , ui ∈ R,∀i . First we randomly pick an element ω(i)
from ω. Let �i be a random variable with a Gaussian prob-
ability density function having zero mean and variance σ 2.
Let δi be a realization of �i . We have ω̃(i) = ω(i) + δi . If
ω̃(i) is smaller than li , we get ω′(i) by reflecting on li with
the amount of violation. Otherwise, we have ω̃(i) = ω(i). If
ω̃(i) is larger than ui , we obtain ω′(i) similarly by reflecting
on ui . Mathematically, we get ω′(i) by

ω′(i) =

⎧
⎪⎪⎨

⎪⎪⎩

2li − ω̃(i) if ω̃(i) < li ,

2ui − ω̃(i) if ω̃(i) > ui ,

ω̃(i) otherwise.

(17)

5.5.3 Half-total change

It is an example of a decomposition operator and it can be
used in Line 3 of Algorithm 3. As its name implies, we pro-
duce a new solution from an existing one by keeping one half
of the existing solution values and assigning the remaining
half with new values. Suppose we try to produce two new
solutions ω′1 = [ω′1(i), 1 ≤ i ≤ n] and ω′2 = [ω′2(i), 1 ≤
i ≤ n] from ω = [ω(i), 1 ≤ i ≤ n]. For ω′1, we first copy
ω to ω′1 and then randomly pick 	n/2
 elements in the vec-
tor of ω′1, where 	·
 returns the largest integer not greater
than the argument. For each of these elements, e.g., ω′1(i),
we assign a new value according to the problem constraints.
For example, if ω′1(i) can only take a value in a set Si , we
can just randomly select an element from Si to ω′1(i). If Si

is a continuous set, we can add a random perturbation to it
to get a new ω′1(i), similar to the Gaussian perturbation with
reflection scheme mentioned in the previous subsection for
the i th element of ω′1. After producing ω′1, we produce ω′2
similarly. As the randomly chosen elements of ω′1 and ω′2 and
the newly assigned values are different, ω′1 is quite different
from ω′1, and also from ω.

5.5.4 Probabilistic select

It is an example of synthesis operator and it can be used in
Line 3 of Algorithm 5. Suppose we produce solution ω′ =
[ω′(i), 1 ≤ i ≤ n] by combining ω1 = [ω1(i), 1 ≤ i ≤ n]
and ω2 = [ω2(i), 1 ≤ i ≤ n]. This operator tries to randomly
select elements from ω1 and ω2 to form ω′. To do this, we
assign each ω′(i) with a value equal to either ω1(i) or ω2(i)
randomly.

5.6 Advanced settings

We have only specified how the basic CRO works. Due
to the No-Free-Lunch Theorem [35], it cannot have good
performance for all kinds of problems. Recall that CRO is
cast as a general-purpose algorithm and it is stated in the form

123

Memetic Comp. (2012) 4:3–17 13

of an algorithmic framework. Many details can be modified
to suit a particular problem. Here we attempt to give the read-
ers some directions for developing advanced versions.

In the basic CRO, we always specify the maximum num-
ber of molecules involved in an elementary reaction to be
two. Each elementary reaction needs to satisfy the energy
conservation condition (14) in order to realize a new solution.
However, if more than two molecules are involved (except
the on-wall ineffective collision which is always one-to-one),
more energy may be committed and the molecules may attain
new solutions to a greater extent; more molecules may com-
pensate others for a great change in PE. For example, we
may allow an inter-molecular ineffective collision with three
molecules: ω1 + ω2 + ω3 → ω′1 + ω′2 + ω′3.

We only give the principles of the elementary reactions in
Sect 5.2, where operators are required to specify how to gen-
erate new solutions from existing ones. In Sect. 5.5, we give
examples of some commonly used operators of CRO. Sim-
ilar to other evolutionary algorithms, it is possible to design
good operators to gain better performance for a particular
problem. Moreover, we can also adopt the operators suc-
cessfully used in other algorithms in CRO. For example, the
effect of decomposition is similar to that of mutation in GA.
We can apply a mutation operator to a molecule twice to
produce two different molecules. We can also apply a GA
crossover operator in synthesis to combine solutions into
one.

We can design the decomposition and synthesis criteria
other than those given in (15) and (16). Decomposition and
synthesis bring diversification to the algorithm. Diversifi-
cation cannot take place too often, or it will be become a
completely random algorithm. The criteria specify when a
diversification happens in between intensifications. Recall
that in Sect. 4.1, only the molecular structure ω, PE, and
KE are necessary to characterize a molecule. Other attributes
are optionally used to describe the condition of a molecule
for checking the decomposition and synthesis criteria. Other
attributes can also be introduced for different designs of the
criteria.

Many optimization problems impose constraints to dif-
ferentiate feasible solutions from the infeasible ones. New
solutions generated in the elementary reactions may be fea-
sible or infeasible depending on the operators used. There
are generally three approaches to handle constraints:

1. One can design the operators which always map to fea-
sible solutions.

2. We allow the operators to produce infeasible solutions
but we introduce a mechanism to convert any infeasible
solutions into feasible ones at the end of each iteration.

3. We allow infeasible solutions without any correction
mechanism but we impose a penalty at the objective func-
tion to any infeasible solution.

More information about constraint-handling techniques can
be found in [9].

6 Applications

Although CRO is a newly proposed algorithm, it has
been applied to problems in many disciplines successfully.
CRO has been compared with many existing evolutionary
approaches and it achieves very competitive or even superior
performance. Applications of CRO with the operators used
are summarized in Table 2.

6.1 Quadratic assignment problem

Quadratic Assignment Problem is a fundamental combinato-
rial problem in operations research [22]. It belongs to location
analysis, about minimizing the transportation cost by vary-
ing the locations of facilities. Consider the assignment of n
facilities to n locations. We know the distance between each
pair of locations and the human flow between each pair of
facilities. The problem is to minimize the total cost (distance
× flow) by arranging the locations of the facilities. In [18],
the earliest version of CRO is compared with the variants
of some popular evolutionary algorithms and CRO achieves
superior performance in many test instances. In [39], a paral-
lel version of CRO with a synchronous communication strat-
egy is proposed to tackle the problem. The computation time
and the solution quality of the parallel implementation are
improved when compared to those of the sequential version
of CRO.

6.2 Resource-constrained project scheduling problem

Resource-Constrained Project Scheduling Problem is one of
the most intractable, NP-hard optimization problems in oper-
ations research, related to project management, resource allo-
cation, and the manufacturing process [7]. Consider that time
is divided into slots and there are some activities to be sched-
uled for a project. Each activity requires resources to process
and it may span more than one time slot. Resources are lim-
ited; we need to decide which activities should be supported
in a certain time slot. There are also precedence constraints
among the activities. In other words, some activities can only
start when certain ones have been completed. The objective
is to minimize the lifespan of the project. In [18], CRO can
achieve the known global minimums of most instances in the
standard benchmarks.

6.3 Channel assignment problem in wireless mesh networks

A wireless mesh network is composed of some stationary
wireless mesh routers, each of which is equipped with certain

123

14 Memetic Comp. (2012) 4:3–17

Ta
bl

e
2

A
pp

lic
at

io
ns

of
C

R
O

Pr
ob

le
m

R
ef

.
Ty

pe
Fi

el
d

Y
ea

r
So

lu
tio

n
St

ru
ct

ur
e

N
ei

gh
bo

rh
oo

d
op

er
at

or
D

ec
om

po
si

tio
n

op
er

at
or

Sy
nt

he
si

s
op

er
at

or

Q
ua

dr
at

ic
A

ss
ig

nm
en

t
Pr

ob
le

m

[1
8,

39
]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

O
pe

ra
tio

ns
re

se
ar

ch
20

10
Pe

rm
ut

at
io

n
ve

ct
or

Tw
o-

ex
ch

an
ge

C
ir

cu
la

r
sh

if
t

D
is

ta
nc

e-
pr

es
er

vi
ng

cr
os

so
ve

r

R
es

ou
rc

e-
C

on
-

st
ra

in
ed

Pr
oj

ec
t

Sc
he

du
lin

g
Pr

ob
le

m

[1
8]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

O
pe

ra
tio

ns
re

se
ar

ch
20

10
Pe

rm
ut

at
io

n
ve

ct
or

Tw
o-

ex
ch

an
ge

C
ir

cu
la

r
sh

if
t

D
is

ta
nc

e-
pr

es
er

vi
ng

cr
os

so
ve

r

C
ha

nn
el

A
ss

ig
nm

en
t

Pr
ob

le
m

in
w

ir
el

es
s

m
es

h
ne

tw
or

ks

[1
8]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

C
om

m
un

ic
at

io
ns

,
N

et
w

or
ki

ng
20

10
In

te
ge

r
ve

ct
or

O
ne

-d
if

fe
re

nc
e

H
al

f-
to

ta
l-

ch
an

ge
Pr

ob
ab

ili
st

ic
se

le
ct

Po
pu

la
tio

n
T

ra
ns

iti
on

Pr
ob

le
m

in
pe

er
-t

o-
pe

er
liv

e
st

re
am

in
g

[1
9]

C
on

tin
uo

us
C

om
m

un
ic

at
io

ns
,

N
et

w
or

ki
ng

20
10

R
ig

ht
st

oc
ha

st
ic

m
at

ri
x

R
an

do
m

ly
re

di
st

ri
bu

te
th

e
su

m
of

tw
o

ra
nd

om
nu

m
be

rs
in

to
tw

o

R
an

do
m

ly
as

si
gn

ro
w

s
to

ne
w

so
lu

tio
ns

w
ith

ra
nd

om
ge

ne
ra

tio
n

of
un

as
si

gn
ed

ro
w

s

Pr
ob

ab
ili

st
ic

se
le

ct
on

ro
w

s

C
og

ni
tiv

e
R

ad
io

Sp
ec

tr
um

A
llo

ca
tio

n
Pr

ob
le

m

[2
1]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

C
om

m
un

ic
at

io
ns

,
N

et
w

or
ki

ng
20

10
B

in
ar

y
ve

ct
or

O
ne

-d
if

fe
re

nc
e

R
an

do
m

ly
as

si
gn

bi
ts

to
ne

w
so

lu
tio

ns
w

ith
ra

nd
om

ge
ne

ra
tio

n
of

un
as

si
gn

ed
bi

ts

Pr
ob

ab
ili

st
ic

se
le

ct

G
ri

d
Sc

he
du

lin
g

Pr
ob

le
m

[3
6,

37
]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

C
om

pu
tin

g
20

10
,2

01
1

Pe
rm

ut
at

io
n

ve
ct

or
,

in
te

ge
r

ve
ct

or
In

se
rt

io
n,

tw
o-

ex
ch

an
ge

,
O

ne
-d

if
fe

re
nc

e

R
an

do
m

ge
ne

ra
tio

n,
ha

lf
-r

an
do

m
Po

si
tio

n-
ba

se
d,

on
e-

po
si

tio
n

ex
ch

an
ge

St
an

da
rd

co
nt

in
uo

us
be

nc
hm

ar
k

fu
nc

tio
ns

[2
0]

C
on

tin
uo

us
M

at
he

m
at

ic
s

20
11

R
ea

lv
ec

to
r

G
au

ss
ia

n
pe

rt
ur

ba
tio

n
H

al
f-

to
ta

l-
ch

an
ge

Pr
ob

ab
ili

st
ic

se
le

ct
,

B
L

X
-α

St
oc

k
Po

rt
fo

lio
Se

le
ct

io
n

Pr
ob

le
m

[3
8]

M
ix

ed
-i

nt
eg

er
,

m
ul

ti-
ob

je
ct

iv
e,

N
P-

ha
rd

Fi
na

nc
e

20
11

M
ix

ed
-i

nt
eg

er
ve

ct
or

O
ne

-d
if

fe
re

nc
e

H
al

f-
ra

nd
om

K
ee

p
th

e
al

ig
ne

d
nu

m
be

rs
an

d
ra

nd
om

ly
ge

ne
ra

te
th

e
re

st
A

rt
ifi

ci
al

ne
ur

al
ne

tw
or

k
tr

ai
ni

ng
[4

1]
C

on
tin

uo
us

C
om

pu
ta

tio
na

l
in

te
lli

ge
nc

e
20

11
R

ea
lm

at
ri

ce
s

an
d

ve
ct

or
s

G
au

ss
ia

n
pe

rt
ur

ba
tio

n
Pe

rt
ur

b
ev

er
y

el
em

en
tw

ith
0.

5
pr

ob
ab

ili
ty

Pr
ob

ab
ili

st
ic

se
le

ct

N
et

w
or

k
C

od
in

g
O

pt
im

iz
at

io
n

Pr
ob

le
m

[2
5]

C
om

bi
na

to
ri

al
,

N
P-

ha
rd

C
om

m
un

ic
at

io
ns

,
N

et
w

or
ki

ng
20

11
In

te
ge

r
ve

ct
or

O
ne

-d
if

fe
re

nc
e

R
an

do
m

ly
ge

ne
ra

te
a

so
lu

tio
n

an
d

m
od

if
y

th
e

co
di

ng
lin

ks

Pr
ob

ab
ili

st
ic

se
le

ct

123

Memetic Comp. (2012) 4:3–17 15

radio interfaces. Two routers establish a communication link
if they are located in the transmission range of each other with
the same channel assigned to one of their interfaces. There
are only limited channels available and two established com-
munication links on the same channel interfere each other if
they are in close proximity. The Channel Assignment Prob-
lem assigns channels to the communications links so as to
minimize the induced interference subject to interface con-
straint, which means that we cannot assign more channels to
a router than the number of interfaces equipped. This prob-
lem is NP-hard and combinatorial [33]. CRO can improve
the existing solutions to the problem [18].

6.4 Population Transition Problem in peer-to-peer live
streaming

In a peer-to-peer live streaming system, there is a stream
source providing streaming data, together with peers receiv-
ing the data. Due to heterogeneous network conditions, peers
experience different transmission delays for the data from the
source and they can be grouped into colonies according to the
delays. For a particular peer, its upstream peers with shorter
transmission delays and those in the same colony can serve
as a source for the data. The system is in universal streaming
when all peers are served with sufficient streaming data. Peers
can join and leave the system and switch to another colony
while the system can impose rules to guide peers to join the
colonies (e.g. assign transition probability for peers transiting
from colony to colony). Population Transition Problem max-
imizes the probability of universal streaming by assigning
population transition probabilities among all colonies [19].
In [19], CRO is compared with some practical strategies and
simulation shows that the evolutionary approach by CRO
performs better than the non-evolutionary ones.

6.5 Cognitive radio spectrum allocation problem

In many countries, wireless channel utilization is regu-
lated and most of the channels can only be used by autho-
rized users. Due to the widespread employment of wireless
devices, the shared channels become overcrowded and their
quality of service deteriorates. With underutilization of the
restricted channels, the capacity of the whole wireless sys-
tem will substantially increase when unauthorized users are
allowed to use the restricted channels provided that higher
priority is given to the authorized users. Adjoining users on
the same channel induce interference. Restricted to an inter-
ference-free environment, the spectrum allocation problem
assigns channels to users in order to maximize system util-
ity subject to hardware constraint (which is similar to the
interface constraint in Sect. 6.3) [26]. CRO shows dramatic
improvement over other existing approaches [21].

6.6 Grid scheduling problem

Grid computing is the next wave of computing where we del-
egate computational tasks to the computer cloud (e.g. Inter-
net), instead of on a standalone machine [27]. The tasks are
taken up by idle computing resources and computed results
are then returned to the requester. The resources may be het-
erogeneous in computational power and volatile. Grid Sched-
uling Problem schedules tasks to resources so as to minimize
computational overheads and to utilize the resources effec-
tively. Several variants of CRO are proposed with different
considerations of solution representation and priority of the
elementary reactions [36,37]. CRO outperforms many exist-
ing evolutionary methods in most test cases.

6.7 Standard continuous benchmark functions

Many optimization problems are continuous problems. The
original CRO [18] mainly focuses on discrete problems
and a successful general-purpose metaheuristic should also
be applicable to the continuous domain. CRO is extended
to solve continuous problems systematically in [20]. This
continuous version is tested with the standard benchmarks
comprised of unimodal, high-dimensional and low-dimen-
sional multimodal functions [40]. Many existing evolution-
ary approaches are compared with CRO, which show very
competitive results. An adaptive scheme for CRO is also pro-
posed in [20].

6.8 Stock portfolio selection problem

Investing in a selection of stocks, instead of a single one,
is almost the golden rule in finance to reduce risk. There is
always a tradeoff in investment: minimizing the risk while
maximizing the return. Stock portfolio selection studies how
to build a portfolio of stocks with the consideration of the two
contradicting objectives [34]. It is a multi-objective mixed-
integer NP-hard problem. In [38], CRO is employed to solve
the problem based on the Markowitz model and the Sharpe
ratio. A super molecule-based CRO is proposed to compute
the Pareto frontier with better performance in terms of Sharpe
ratio, expected return, and variance than the canonical form.

6.9 Artificial neural network training

An artificial neural network is a very successful tool to model
the input–output relationships of complex systems. The net-
work is formed by interconnecting artificial neurons arranged
in layers, simulating a biological neural network [24]. It is
an adaptive system with the ability to learn from provided
data. It has many real-world applications, e.g. classification,
function approximation, and data mining. In order to model
a system, a neural network requires a set of related data for

123

16 Memetic Comp. (2012) 4:3–17

training, i.e., to evolve the network structure and to tune the
weights. In [41], CRO is employed to train neural networks.
The CRO-trained neural networks have the best testing error
rate among many representative evolutionary schemes.

6.10 Network coding optimization problem

In a traditional computer networks, sources send data to
destinations via some routers and the routers only receive
and forward the data without further processing. Network
coding enhances network performance when routers are
endowed with processing ability (coding). Network coding
can increase the system throughput without any topologi-
cal changes to the network. However, enabling coding on all
possible links increases computational cost. Network Coding
Optimization Problem minimizes the number of coding links
while maintaining a certain transmission rate [16]. It is an
NP-hard combinatorial problem. In [25], CRO is employed
to tackle this problem and is shown to outperform existing
algorithms.

7 Concluding remarks and future work

CRO is a recently developed general-purpose optimization
technique. Its inspiration comes from the nature of chem-
ical reactions. It mimics the interactions of molecules, in
the form of elementary reactions. The randomly constructed
sequence of elementary reactions lets the molecules explore
the solution space for the global minimum. Energy manage-
ment is the fundamental characteristic of CRO. The conser-
vation of energy governs the acceptance of new solutions and
the scope of search. Its variable population structure allows
the algorithm to adapt to the problem with reasonable mix-
ture of intensification and diversification. These are the rea-
sons why CRO performs very well in solving optimization
problems. Although CRO is just recently proposed, it has
been successfully applied to many benchmarks and practical
problems. The examples described in this paper give readers
some ideas on how to apply CRO to their own problems. We
believe this is just the start of the CRO journey. This tutorial
serves to summarize the current development of CRO and to
lay down potential research directions.

Thanks to the No-Free-Lunch Theorem, each successful
metaheuristic performs well on certain classes of problems.
Which classes of problems are suitable for CRO? There is
no easy answer at this moment. Similar to other evolutionary
algorithms, when CRO is applied to more areas, the research
community will give an answer. To ease implementation, a
toolbox called CROToolbox is available.8 Users can quickly

8 CROToolbox can be downloaded at http://cro.eee.hku.hk.

employ CRO to their own problems and learn the charac-
teristics of CRO with the toolbox. Moreover, there are very
few efforts on parallelization and distributed computation of
CRO. Due to its variable population structure, there is no
strict requirement on the population size and synchroniza-
tion among the distributed computational platforms. Further-
more, the frequencies of decomposition and synthesis affect
the performance. How best to control these frequencies to
further improve the performance is still an open question.

Acknowledgments This work was supported in part by the Strate-
gic Research Theme of Information Technology of The University of
Hong Kong. A.Y.S. Lam was also supported in part by the Croucher
Foundation Research Fellowship.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. AlRashidi M, El-Hawary M (2009) A survery of particle swarm
optimization applications in electric power systems. IEEE Trans
Evol Comput 13(4):913–918

2. Ashlock D (2004) Evolutionary computation for modeling and
optimization. Springer, New York

3. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge
University Press, Cambridge, UK

4. Burger R (2000) The mathematical theory of selection, recombi-
nation, and mutation. Wiley, Chichester

5. Cela E (1998) The quadratic assignment problem: theory and algo-
rithms. Kluwer Academic Publishers, Dordrecht, The Netherlands

6. Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey
on memetic computation. IEEE Trans Evol Comput 15(5):591–
607

7. Demeulemeester EL, Herroelen WS (2002) Project scheduling: a
research handbook. Academic Publishers, Boston, MA, USA

8. Dorigo M, Stutzle T (2004) Ant colony optimization. The MIT
Press, Cambridge, MA, USA

9. Eiben AE (2001) Evolutionary algorithms and constraint satisfac-
tion: definitions, survey, methodology, and research directions.
Theoretical aspects of evolutionary computing. Springer, London,
pp 13–30

10. Fortnow L (2009) The status of the P versus NP problem. Commun
ACM 52(9):78–86

11. Garey MR, Johnson DS (1979) Computers and intractability: A
guide to the theory of NP-completeness. WH Freeman & Co Ltd,
New York

12. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2):60–68

13. Goldberg DE (1989) Genetic algorithms in search, optimization,
and machine learning. Addison-Wesley, Reading, MA, USA

14. Guggenheim EA (1967) Thermodynamics: an advanced treatment
for chemists and physicists. 5th edn. Wiley, North Holland

15. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan
Kaufmann, San Francisco

16. Kim M, Medard M, Aggarwal V, OReilly UM, Kim W, Ahn CW
(2007) Evolutionary approaches to minimizing network coding
resources. In: Proceedings of the 26th annual IEEE conference
on computer Communications, Anchorage, AK, USA

17. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220((4598):671–680

123

http://cro.eee.hku.hk

Memetic Comp. (2012) 4:3–17 17

18. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheu-
ristic for optimization. IEEE Trans Evol Comput 14(3):381–399

19. Lam AYS, Xu J, Li VOK (2010) Chemical reaction optimization for
population transition in peer-to-peer live streaming. In: Proceed-
ings of the IEEE congress on evolutionary computation. Barcelona,
Spain

20. Lam AYS, Li VOK, Yu JJQ (2011, in press) Real-coded chemi-
cal reaction optimization. IEEE Trans Evol Comput (accepted for
publication)

21. Lam AYS, Li VOK (2010) Chemical reaction optimization for
cognitive radio spectrum allocation. In: Proceedings of the IEEE
Global Communications Conference. Miami, FL, USA

22. Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P,
Querido T (2007) A survey for the quadratic assignment problem.
Eur J Oper Res 176(2):657–690

23. Ong YS, Lim MH, Chen XS (2010) Research frontier: memetic
computation past, present and future. IEEE Comput Intell Mag
5(2):24–36

24. Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic
neural network. IEEE Trans Neural Netw 16(3):587–600

25. Pan B, Lam AYS, Li VOK (2011) Network coding optimization
based on chemical reaction optimization. In: Proceedings of the
IEEE global communications conference. Houston, TX, USA

26. Peng C, Zheng H, Zhao BY (2006) Utilization and fairness in spec-
trum assignment for opportunistic spectrum access. ACM/Kluwer
Mobile Netw Appl 11(4):555–576

27. Ritchie G, Levine J (2004) A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments. In:
Proceedings of 23rd workshop of the UK planning and scheduling
special interest group. Cork, Ireland

28. Price K, Storn R, Lampinen J (2005) Differential evolution: a prac-
tical approach to global optimization. Springer, Berlin

29. Rogers H (1987) Theory of recursive functions and effective com-
putability. The MIT Press, Cambridge, MA, USA

30. Schach S (2010) Object-oriented and classical software engineer-
ing. 8th edn. McGraw-Hill, New York

31. Shadbolt N (2004) Nature-inspired computing. IEEE Intell Syst
19(1):2–3

32. Shin SY, Lee IH, Kim D, Zhang BT (2005) Multiobjective evolu-
tionary optimization of DNA sequences for reliable DNA comput-
ing. IEEE Trans Evol Comput 9(2):143–158

33. Subramanian AP, Gupta H, Das SR, Cao J (2008) Minimum inter-
ference channel assignment in multiradio wireless mesh networks.
IEEE Trans Mobile Comput 7(12):1459–1473

34. Tollo GD, Roli A (2008) Metaheuristics for the portfolio selection
problem. J Financial Quant Anal 8(4):621–636

35. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

36. Xu J, Lam AYS, Li VOK (2010) Chemical reaction optimization
for the grid scheduling problem. In: Proceedings of the IEEE inter-
national conference on communications. Cape Town, South Africa

37. Xu J, Lam AYS, Li VOK (2011) Chemical reaction optimization
for task scheduling in grid computing. IEEE Trans Parallel Distrib
Syst 22(10):1624–1631

38. Xu J, Lam AYS, Li VOK (2011) Stock portfolio selection using
chemical reaction optimization. In: Proceedings of the international
conference on operations research and financial engineering. Paris,
France

39. Xu J, Lam AYS, Li VOK (2010) Parallel chemical reaction opti-
mization for the quadratic assignment problem. In: Proceedings of
the international conference on genetic and evolutionary methods.
Las Vegas, NV, USA

40. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. IEEE Trans Evol Comput 3(2):82–102

41. Yu JJQ, Lam AYS, Li VOK (2011) Evolutionary artificial neural
network based on chemical reaction optimization. In: Proceedings
of the IEEE congress on evolutionary computation. New Orleans,
LA, USA

42. Yu L, Chen H, Wang S, Lai KK (2009) Evolving least squares sup-
port vector machines for stock market trend mining. IEEE Trans
Evol Comput 13(1):87–102

123

	Chemical Reaction Optimization: a tutorial
	(Invited paper)
	Abstract
	1 Introduction
	2 Inspiration
	3 Characteristics
	4 Basic components, elementary reactions, and concepts
	4.1 The manipulated agent
	4.2 Elementary reactions
	4.2.1 On-wall ineffective collision
	4.2.2 Decomposition
	4.2.3 Inter-molecular ineffective collision
	4.2.4 Synthesis

	4.3 Conservation of energy

	5 Algorithm design
	5.1 Initialization
	5.2 Iterations
	5.3 The final stage
	5.4 The overall algorithm
	5.5 Operator examples
	5.5.1 Two-exchange
	5.5.2 Gaussian perturbation with reflection
	5.5.3 Half-total change
	5.5.4 Probabilistic select

	5.6 Advanced settings

	6 Applications
	6.1 Quadratic assignment problem
	6.2 Resource-constrained project scheduling problem
	6.3 Channel assignment problem in wireless mesh networks
	6.4 Population Transition Problem in peer-to-peer live streaming
	6.5 Cognitive radio spectrum allocation problem
	6.6 Grid scheduling problem
	6.7 Standard continuous benchmark functions
	6.8 Stock portfolio selection problem
	6.9 Artificial neural network training
	6.10 Network coding optimization problem

	7 Concluding remarks and future work
	Acknowledgments
	References

