Skip to main content
Log in

Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma

  • REVIEW ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

War trauma has been linked to changes in the neuroendocrine and immunological systems and increases the risk of physical disorders. Traumatic events during the war may have long-term repercussions on psychological and biological parameters in future generations, implying that traumatic stress may have transgenerational consequences. This article addresses how epigenetic mechanisms, which are a key biological mechanism for dynamic adaptation to environmental stressors, may help explain the long-term and transgenerational consequences of trauma. In war survivors, epigenetic changes in genes mediating the hypothalamus–pituitary–adrenal axis, as well as the immune system, have been reported. These genetic modifications may cause long-term changes in the stress response as well as physical health risks. Also, the finding of biomarkers for diagnosing the possibility of psychiatric illnesses in people exposed to stressful conditions such as war necessitates extensive research. While epigenetic research has the potential to further our understanding of the effects of trauma, the findings must be interpreted with caution because epigenetic molecular mechanisms is only one piece of a complicated puzzle of interwoven biological and environmental components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martsenkovskyi D, Martsenkovsky I, Martsenkovska I, Lorberg BJTLP. The Ukrainian paediatric mental health system: challenges and opportunities from the Russo-Ukrainian war. The Lancet. 2022;9(7):533–5.

    PubMed  Google Scholar 

  2. Lee C. 12 Healing Words: St Guthlac and the Trauma of War. Brill: Trauma in Medieval Society; 2018. p. 259–73.

    Google Scholar 

  3. Korinek K, Loebach P, Teerawichitchainan B. Physical and mental health consequences of war-related stressors among older adults: an analysis of posttraumatic stress disorder and arthritis in northern Vietnamese war survivors. J Gerontol B Psychol Sci Soc Sci. 2017;72(6):1090–102.

    PubMed  Google Scholar 

  4. Ebrahimzadeh MH, Fattahi AS, Nejad AB. Long-term follow-up of Iranian veteran upper extremity amputees from the Iran-Iraq war (1980–1988). J Trauma Acute Care Surg. 2006;61(4):886–8.

    Article  Google Scholar 

  5. Osokina O, Silwal S, Bohdanova T, Hodes M, Sourander A, Skokauskas N. Impact of the Russian invasion on mental health of adolescents in Ukraine. J Am Acad Child Adolesc Psychiatry. 2023;62(3):335–43.

    Article  PubMed  Google Scholar 

  6. McEwen BS, Karatsoreos IN. What is stress? Stress challenges and immunity in space. Berlin: Springer; 2020. p. 19–42.

    Book  Google Scholar 

  7. Henry JP. Biological basis of the stress response. Physiology. 1993;8(2):69–73.

    Article  CAS  Google Scholar 

  8. Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci. 2009;1179:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niermann HC, Figner B, Roelofs K. Individual differences in defensive stress-responses: the potential relevance for psychopathology. Curr Opin Behav Sci. 2017;14:94–101.

    Article  Google Scholar 

  10. Waheed AB, Ali A. Disaster response and potentials of social capital. J Environ Treatm Tech. 2017;5(4):114–7.

    Google Scholar 

  11. Jaafar JB, Ishak ANB, Hassan SB, Bin KF, Adrutdin MIQ. A Study of Customer satisfaction with planning movement of goods during disaster aid programs: a case study of flood hit in segamat. Johor J Environm Treatm Tech. 2020;8(1):419–28.

    Google Scholar 

  12. Van Ameringen M, Mancini C, Patterson B, Boyle MH. Post-traumatic stress disorder in Canada. CNS Neurosci Ther. 2008;14(3):171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meyer EC, Konecky B, Kimbrel NA, DeBeer BB, Marx BP, Schumm J, et al. Gender differences in associations between DSM–5 posttraumatic stress disorder symptom clusters and functional impairment in war veterans. Psychol Serv. 2018;15(2):230.

    Article  PubMed  Google Scholar 

  14. Gobin RL, Strauss JL, Golshan S, Allard CB, Bomyea J, Schnurr PP, et al. Gender Differences in response to acceptance and commitment therapy among operation enduring freedom/operation iraqi freedom/operation new dawn veterans. Womens Health Issues. 2019;29(3):267–73.

    Article  PubMed  Google Scholar 

  15. Costa DL, Yetter N, DeSomer H. Intergenerational transmission of paternal trauma among US Civil War ex-POWs. Proc Natl Acad Sci. 2018;115(44):11215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yehuda R, Cai G, Golier JA, Sarapas C, Galea S, Ising M, et al. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol Psychiat. 2009;66(7):708–11.

    Article  CAS  PubMed  Google Scholar 

  17. Yehuda R, Lehrner A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry. 2018;17(3):243–57.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hosseini E, Mehraein F, Shahhoseini M, Karimian L, Nikmard F, Ashrafi M, et al. Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet. 2016;33(8):1105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76–80.

    Article  PubMed  Google Scholar 

  20. Hosseini E, Shahhoseini M, Afsharian P, Karimian L, Ashrafi M, Mehraein F, et al. Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome. Arch Med Sci: AMS. 2019;15(4):887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lempiäinen JK, Garcia BA. Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J. 2023;480(1):57–85.

    Article  PubMed  Google Scholar 

  22. Elvevåg B, DeLisi LE. The mental health consequences on children of the war in Ukraine: a commentary. Psychiatry Res. 2022;317:114798.

    Article  PubMed  Google Scholar 

  23. Joshi PT, O’donnell DA. Consequences of child exposure to war and terrorism. Clin Child Fam Psychol Rev. 2003;6(4):275–92.

    Article  PubMed  Google Scholar 

  24. Brown DW, Anda RF, Tiemeier H, Felitti VJ, Edwards VJ, Croft JB, et al. Adverse childhood experiences and the risk of premature mortality. Am J Prev Med. 2009;37(5):389–96.

    Article  PubMed  Google Scholar 

  25. Akbulut-Yuksel M. Children of war the long-run effects of large-scale physical destruction and warfare on children. J Hum Resour. 2014;49(3):634–62.

    Google Scholar 

  26. Anderson V, Brown S, Newitt H, Hoile H. Long-term outcome from childhood traumatic brain injury: intellectual ability, personality, and quality of life. Neuropsychology. 2011;25(2):176.

    Article  PubMed  Google Scholar 

  27. Raza Z, Hussain SF, Foster VS, Wall J, Coffey PJ, Martin JF, et al. Exposure to war and conflict: the individual and inherited epigenetic effects on health, with a focus on post-traumatic stress disorder (2023).

  28. Henderson J, Denny K. The resilient child, human development and the “postdemocracy.” BioSocieties. 2015;10(3):352–78.

    Article  Google Scholar 

  29. Ramo-Fernández L, Schneider A, Wilker S, Kolassa IT. Epigenetic alterations associated with war trauma and childhood maltreatment. Behav Sci Law. 2015;33(5):701–21.

    Article  PubMed  Google Scholar 

  30. Kertes DA, Kamin HS, Hughes DA, Rodney NC, Bhatt S, Mulligan CJ. Prenatal maternal stress predicts methylation of genes regulating the hypothalamic–pituitary–adrenocortical system in mothers and newborns in the Democratic Republic of Congo. Child Dev. 2016;87(1):61–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pesonen A-K, Räikkönen K, Feldt K, Heinonen K, Osmond C, Phillips DI, et al. Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II. Psychoneuroendocrinology. 2010;35(5):758–67.

    Article  CAS  PubMed  Google Scholar 

  32. Young DA, Neylan TC, O’Donovan A, Metzler T, Richards A, Ross JA, et al. The interaction of BDNF Val66Met, PTSD, and child abuse on psychophysiological reactivity and HPA axis function in a sample of Gulf War Veterans. J Affect Disord. 2018;235:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Widom CS, Miller D, Li X, Gordon D, Brzustowicz L. Childhood maltreatment, serotonin transporter gene, and risk for callous and unemotional traits: a prospective investigation. Psychiatry Res. 2020;291:113271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikkheslat N, McLaughlin AP, Hastings C, Zajkowska Z, Nettis MA, Mariani N, et al. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav Immun. 2020;87:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Labonté B, Suderman M, Maussion G, Navaro L, Yerko V, Mahar I, et al. Genome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry. 2012;69(7):722–31.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Keiser AA, Tronson NC. Molecular mechanisms of memory in males and females. Sex differences in the central nervous system. Amsterdam: Elsevier; 2016. p. 27–51.

    Google Scholar 

  37. Asok A, Leroy F, Rayman JB, Kandel ER. Molecular mechanisms of the memory trace. Trends Neurosci. 2019;42(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  38. de Quervain D, Schwabe L, Roozendaal B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci. 2017;18(1):7–19.

    Article  PubMed  Google Scholar 

  39. Vukojevic V, Kolassa I-T, Fastenrath M, Gschwind L, Spalek K, Milnik A, et al. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J Neurosci. 2014;34(31):10274–84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci. 2019;52:2487–515.

    Article  PubMed  Google Scholar 

  41. Liebscher C, Grimm O, Diener S, Ridder S, Flor H. How does lymphocyte glucocorticoid receptor expression and salivary cortisol relate to trauma exposure and posttraumatic stress disorder. J Trauma Stress Disor Treat 3. 2014;1:2.

    Google Scholar 

  42. Kim T, Kim S, Chung H, Choi J, Kim S, Kang J. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder. Acta Psychiatr Scand. 2017;135(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kang JI, Kim TY, Choi JH, So HS, Kim SJ. Allele-specific DNA methylation level of FKBP5 is associated with post-traumatic stress disorder. Psychoneuroendocrinology. 2019;103:1–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bam M, Yang X, Zumbrun EE, Zhong Y, Zhou J, Ginsberg JP, et al. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci Rep. 2016;6(1):1–13.

    Article  Google Scholar 

  45. Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, et al. DNA methylation in repetitive elements and post-traumatic stress disorder: a case–control study of US military service members. Epigenomics. 2012;4(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  46. Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2015;16(1):1–12.

    Article  Google Scholar 

  47. Verhoeven JE, Yang R, Wolkowitz OM, Bersani FS, Lindqvist D, Mellon SH, et al. Epigenetic age in male combat-exposed war veterans: associations with posttraumatic stress disorder status. Mol Neuropsychiatry. 2018;4(2):90–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yehuda R, Flory JD, Bierer LM, Henn-Haase C, Lehrner A, Desarnaud F, et al. Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol Psychiat. 2015;77(4):356–64.

    Article  CAS  PubMed  Google Scholar 

  49. Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol. 2013;53:59–87.

    Article  CAS  PubMed  Google Scholar 

  50. Carmelli D, Heath AC, Robinette D. Genetic analysis of drinking behavior in World War II veteran twins. Genet Epidemiol. 1993;10(3):201–13.

    Article  CAS  PubMed  Google Scholar 

  51. Yehuda R, Daskalakis NP, Desarnaud F, Makotkine I, Lehrner A, Koch E, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psych. 2013;4:118.

    Google Scholar 

  52. Virolainen SJ, VonHandorf A, Viel KC, Weirauch MT, Kottyan LC. Gene-environment interactions and their impact on human health. Genes Immun. 2023;24(1):1–11.

    Article  PubMed  Google Scholar 

  53. Pulya S, Ghosh B. Epigenetics of memory processes. Handbook of epigenetics. Amsterdam: Elsevier; 2023. p. 443–64.

    Book  Google Scholar 

  54. Bonomi RE, Girgenti M, Krystal JH, Cosgrove KP. A role for histone deacetylases in the biology and treatment of post-traumatic stress disorder: what do we know and where do we go from here? Complex Psychiatry. 2022;8(1–2):13–27.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Siddiqui SA, Singh S, Ugale R, Ranjan V, Kanojia R, Saha S, et al. Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Res Bull. 2019;150:86–101.

    Article  CAS  PubMed  Google Scholar 

  56. Bowers ME, Yehuda R. Intergenerational transmission of stress vulnerability and resilience. Stress resilience. Amsterdam: Elsevier; 2020. p. 257–67.

    Google Scholar 

  57. Alford CF. Intergenerational transmission of trauma: Holocaust survivors, their children and their children’s children. J Psychosoc Stud. 2019;12(1–2):145–55.

    Article  Google Scholar 

  58. Rosenheck R, Nathan P. Secondary traumatization in children of Vietnam veterans. Hosp Commun Psychiatry. 1985;36:538–9.

    CAS  Google Scholar 

  59. Bader HN, Bierer LM, Lehrner A, Makotkine I, Daskalakis NP, Yehuda R. Maternal age at Holocaust exposure and maternal PTSD independently influence urinary cortisol levels in adult offspring. Front Endocrinol. 2014;5:103.

    Article  Google Scholar 

  60. Drummond JM. Transgenerational PTSD in Vietnam veterans and their offspring: cause and effect. Davenport: Kaplan University; 2016.

    Google Scholar 

  61. Rogers R. Intergenerational transmission of historical enmity. Psychodyn Int Relatsh. 1990;1:91–6.

    Google Scholar 

  62. Bierer LM, Bader HN, Daskalakis NP, Lehrner A, Provençal N, Wiechmann T, et al. Intergenerataional effects of maternal holocaust exposure on FKBP5 methylation. Am J Psychiatry. 2020;177:744–53.

    Article  PubMed  Google Scholar 

  63. Rahbar A, Abbasi M. A Brief clinical overview of etiological factors in infertility. J Infertil Reproduct Biol. 2020;8:6–8.

    Article  Google Scholar 

  64. Aoued HS, Sannigrahi S, Doshi N, Morrison FG, Linsenbaum H, Hunter SC, et al. Reversing behavioral, neuroanatomical, and germline influences of intergenerational stress. Biol Psychiat. 2019;85(3):248–56.

    Article  PubMed  Google Scholar 

  65. Meaney MJ, Plotsky PM. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Biol Basis Mind Body Interact. 2000;122:81.

    Article  Google Scholar 

  66. Yehuda R, Daskalakis NP, Lehrner A, Desarnaud F, Bader HN, Makotkine I, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry. 2014;171(8):872–80.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yehuda R, Halligan SL, Grossman R. Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Dev Psychopathol. 2001;13(3):733–53.

    Article  CAS  PubMed  Google Scholar 

  68. Moog NK, Buss C, Entringer S, Shahbaba B, Gillen DL, Hobel CJ, et al. Maternal exposure to childhood trauma is associated during pregnancy with placental-fetal stress physiology. Biol Psychiat. 2016;79(10):831–9.

    Article  PubMed  Google Scholar 

  69. Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Bartolomei MS, Benvenisty N, et al. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5):952–65.

    Article  CAS  PubMed  Google Scholar 

  70. Lambertini L, Li Q, Ma Y, Zhang W, Hao K, Marsit C, et al. Placental imprinted gene expression mediates the effects of maternal psychosocial stress during pregnancy on fetal growth. J Dev Orig Health Dis. 2019;10(2):196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fasolino M, Zhou Z. The crucial role of DNA methylation and MeCP2 in neuronal function. Genes. 2017;8(5):141.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nuber UA, Kriaucionis S, Roloff TC, Guy J, Selfridge J, Steinhoff C, et al. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum Mol Genet. 2005;14(15):2247–56.

    Article  CAS  PubMed  Google Scholar 

  74. Lee RS, Tamashiro KL, Yang X, Purcell RH, Huo Y, Rongione M, et al. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology. 2011;218(1):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE. 2012;7(3):e33201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lötsch J, Schneider G, Reker D, Parnham MJ, Schneider P, Geisslinger G, et al. Common non-epigenetic drugs as epigenetic modulators. Trends Mol Med. 2013;19(12):742–53.

    Article  PubMed  Google Scholar 

  77. Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. Genet Epigenet. 2014;6:GEG-S12270.

    Article  Google Scholar 

  78. Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet. 2008;74(4):307–15.

    Article  CAS  PubMed  Google Scholar 

  79. Mehta D, Miller O, Bruenig D, David G, Shakespeare-Finch J. A systematic review of DNA methylation and gene expression studies in posttraumatic stress disorder, posttraumatic growth, and resilience. J Trauma Stress. 2020;33(2):171–80.

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayeh Bolouki.

Ethics declarations

Conflict of interest

Author certifies that I have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

Ethical approval was not required as this study was a review paper.

Informed Consent

Consent was not required as this study was a review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolouki, A. Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma. Ind J Clin Biochem (2023). https://doi.org/10.1007/s12291-023-01136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-023-01136-1

Keywords

Navigation