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Abstract
In this study, we present a Finite Difference Method (FDM)-based stress integration algorithm for Crystal Plasticity Finite 
Element Method (CPFEM). It addresses the complexity of computing the first derivative of resolved shear stress in the 
Euler backward stress integration algorithm with Newton-Raphson method. The proposed FDM-based model was verified 
by evaluating its accuracy, convergence and computational efficiency through single-element simulations. The developed 
FDM-based model can be easily applied to various constitutive models for CPFEM, overcoming the problem of deriving 
complex derivative regardless of constitutive models. Additionally, the proposed FDM-based model was validated with the 
reduced texture approach using AA 2090-T3. Specific parameters including crystallographic orientations were calibrated 
and the plastic anisotropy was successfully described. In addition, the earing profiles were compared using various stress 
integration methods. As a result, the proposed FDM-based model can be used as an alternative to the Euler backward method 
using analytic derivatives with the compatible accuracy, convergence, computational efficiency along with easy implemen-
tation within the CPFEM framework.

Keywords Crystal plasticity finite element method · Finite difference method · Plastic anisotropy · Reduced texture 
approach · Stress integration algorithm

Introduction

Crystal plasticity has been widely used to predict mechani-
cal plastic properties. Many studies have been conducted 
especially to deal with anisotropy of metal since polycrys-
talline metal generally shows an anisotropic behavior due 
to a crystallographic texture [1, 2]. Five crystal plasticity 
models were compared for the anisotropy of AA1050, and 
the predicted anisotropic properties were used to character-
ize the continuum-level advanced yield functions [3]. The 
anisotropic properties of AA3103 under the cold-rolled 
(H18) and fully annealed (O) conditions were also studied 

using five crystal plasticity models, and the effect of thermo-
mechanical processing conditions was investigated [4]. The 
Yld2004-18p anisotropic yield function was calibrated by 
the predictions from CPFEM and full-constraint Taylor 
model using the rolling and recrystallization textures [5]. In 
addition, the mechanical tests were replaced by CPFEM, and 
the mechanical properties from hot band and various cold 
rolled reduction conditions were obtained [6]. This multi-
scale modeling was applied for the drawing processes, and 
the texture effect was investigated in terms of cold-rolled 
reductions. More applications of CPFEM were well sum-
marized by Roters et al. [7].

A constitutive model with a stress integration method is 
required to implement crystal plasticity theory into finite ele-
ment analysis [8–15]. In order to make it possible to update 
the material states, such as slip resistance and crystal lattice 
reorientation, various stress integration methods have been 
developed and can be classed as the Euler forward, semi-
implicit, Euler backward (fully-implicit) methods. In the 
Euler forward method, the slip rates of active slip systems 
and elastic deformation gradients are predetermined from 
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the last converged state, so they are all known quantities. 
In the semi-implicit method, only elastic deformation gra-
dients are predetermined, and the slip rates are unknown in 
the current configuration [13, 16–18]. Therefore, the New-
ton-Raphson method is normally employed to satisfy the 
consistency conditions at the end of the time increment. In 
the Euler backward method, both the slip rates and elastic 
deformation gradients are unknown quantities in the current 
configuration. The Newton-Raphson method demands the 
Jacobian matrix which requires the derivative of the resolved 
shear stress at each iteration. Given that the exact derivative 
plays an important role in the convergence of CPFEM with 
a quadratic convergence rate, it is necessary to use the exact 
derivative. However, the stress integration methods normally 
include a tensor exponential function making the volume 
constant in plastic region. In this case, the calculation of 
tensor exponential function and its derivative is a challeng-
ing issue. Although the exact computation of exponential 
function and its derivative guarantees an accurate result with 
a superior convergence rate, many researchers have approxi-
mated the exponential function and its derivative to avoid the 
complicated calculation of them [19, 20]. The exact calcula-
tion of exponential function in single crystal plasticity was 
implemented by Miehe [21], and the exact calculation of 
its derivative was derived by de Souza Neto [22]. However, 
the analytical derivative of the resolved shear stress and its 
implementation are somewhat complicated. In addition, the 
derivative of the resolved shear stress highly depends on the 
constitutive model. Therefore, the stress integration method 
using the Finite Difference Method (FDM) was developed 
to skip the complex calculation of derivative of the resolved 
shear stress. Three finite difference methods were investi-
gated in this work; the central, backward, and forward dif-
ference methods.

Crystal plasticity is a powerful tool for describing the 
mechanical behavior of metal. However, numerous grains exist 
in macroscale engineering applications, so it is not practical to 
employ the intensive information of crystallographic orienta-
tions. Therefore, it is desirable to implement the reasonable 
number of crystallographic orientations for computational 
efficiency while maintaining accuracy. In order to effectively 
reduce the computational cost, many researchers have intro-
duced specific methods. Among them, the texture component 
method was employed for CPFEM [23–26]. In this method, 
a small number of predefined texture components obtained 
from mathematical schemes are considered instead of all crys-
tallographic orientations. On the other hand, Rousselier et al. 
[27–29] developed the reduced texture methodology, where 
some sets of crystallographic orientations are calibrated until 
the satisfying description of anisotropic behavior is achieved. 
Moreover, the reduced texture methodology was employed to 
describe the multi-axial deformation of anisotropic metal with 
strength-differential effect [30] and ductile fracture for sheet 

metal [31]. Kim et al. [32] compared the results from the ran-
dom mapping (RM) and misorientation mapping (MM) using 
five crystallographic orientations to investigate the earing pro-
files of baked hardening steel. In addition, the methodology 
for compacting crystallographic orientations to a smaller set of 
representative orientations was developed to decrease the com-
putational cost [33], and generalized for any crystal structure 
[34]. In order to deal with a macroscale engineering applica-
tion, the proposed FDM-based model was also employed with 
a small number of crystallographic orientations.

In the present paper, the semi-implicit method and Euler 
backward method using analytical derivative were summa-
rized in a comprehensive way. The stress integration method 
using the FDM in the framework of Euler backward method 
was also newly developed. Several single element simulations 
with the various stress integration methods were compared in 
terms of accuracy, convergence, and computational efficiency. 
Furthermore, the time-efficient reduced texture approach was 
adopted to validate the proposed FDM-based model. The plas-
tic anisotropy of AA2090-T3 was described using the reduced 
texture approach. Then, the circular cup drawing simulation 
was carried out, and the results from the FDM and analytical 
derivative were compared. It is shown that the proposed FDM-
based model could be widely used for CPFEM.

Crystal plasticity model

Kinematics

The crystal plasticity model can predict the material deforma-
tion by the crystallographic slip and reorientation of crystal 
lattice. The basic kinematics of single crystal plasticity theory 
was proposed by Peirce et al. [11, 35]. It could be assumed that 
plastic deformation occurs due to the dislocation slip which 
is normally produced on the close-packed plane (slip plane) 
along the close-packed direction (slip direction). The plastic 
deformation generates irreversible shape change without any 
change of crystallographic orientation, while the elastic defor-
mation leads to reversible crystallographic lattice deforma-
tion with the change of crystallographic orientation. Although 
the elastic and plastic deformations occur simultaneously, the 
assumption of intermediate configuration makes it possible to 
decompose the total deformation gradient ( � ) into the elastic 
deformation gradient ( �e ) and the plastic deformation gradient 
( �p ) as described in Eq. (1).

In the decomposition scheme, the elastic deformation gradi-
ent indicates the combination of rigid body motion and elastic 
deformation of the crystallographic lattice. The plastic defor-
mation gradient means the summation of shear strains in each 
slip system. Figure 1 shows the decomposition of deformation 

(1)� = �
e
⋅ �

p.
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gradient in the reference, intermediate, and spatial configu-
rations. The intermediate configuration ( Ω ) is mapped from 
the reference configuration ( Ω0 ) by the plastic deformation 
gradient. The spatial configuration ( Ω ) is mapped from the 
intermediate configuration by the elastic deformation gradient 
[36]. Similar to the decomposition of deformation gradient, the 
velocity gradient ( � ) can also be divided into the elastic and 
plastic parts, i.e.,

Since the plastic deformation is considered to be similar 
to the simple shear, the plastic velocity gradient ( �p ) is the 
summation of shear strains over all the slip systems, so that 
the plastic velocity gradient can be given as:

where �(�) is the slip direction, �(�) is the normal direction 
of slip plane, NSYS is the number of slip systems, and ( � ) 
indicates the ( �)th slip system. The slip direction and nor-
mal direction of slip plane in the spatial configuration can 
be achieved from those in the reference configuration as 
follows:

(2)
� = �̇ ⋅ �

−1 =
(

�̇
e
⋅ �

p + �
e
⋅ �̇

p
)

⋅

{

(�p)−1 ⋅ (�e)−1
}

= �̇
e
⋅ (�e)−1 + �

e
⋅ �̇

p
⋅ (�p)−1 ⋅ (�e)−1 = �

e + �
p
.

(3)�
p =

NSYS
∑

𝛼=1

�̇� (𝛼)�(𝛼) ⊗ �
(𝛼),

(4)�
(�) = �

e
⋅ �

(�)

0
,

(5)�
(�) = �

(�)

0
⋅ (�e)−1.

From Eq. (3), the symmetric and skew-symmetric parts 
of plastic velocity gradient can be defined as:

where �(�) and �(�) are introduced for convenience.

Constitutive model

It is assumed that the stress arises from the elastic deforma-
tion of crystallographic lattice. Therefore, the pull-back and 
push-forward by the elastic deformation gradient are used to 
ensure the objectivity of formulation. In order to formulate 
the constitutive model in the intermediate configuration ( Ω ), 
Cauchy strain tensor ( �

e
 ) and Green strain tensor ( �

e
 ) are 

defined as:

(6)

�
p =

1

2

(

�
p + (�p)

T
)

=

NSYS
∑
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�̇� (𝛼)
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,
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(9)�
e
=

1

2

(

�
e
− �

)

.

Fig. 1  Multiplicative decompo-
sition of deformation gradient
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Second Piola-Kirchhoff stress tensor � can be obtained 
by using Green strain tensor:

where Le is the elasticity tensor.
Kirchhoff stress tensor ( � ) can also be given by the push-

forward of second Piola-Kirchhoff stress:

In this frame of the work, it is convenient to formulate the 
constitutive model in terms of Cauchy stress ( � ) because User 
MATerial interface (UMAT) accepts Cauchy stress instead of 

(10)� = L
e ∶ �

e

,

(11)� = �
e
⋅ � ⋅ (Fe)T .

Kirchhoff stress. However, it is still useful to take into account 
Kirchhoff stress since Cauchy stress can be approximated to 
Kirchhoff stress by ignoring the elastic volume change:

The objectivity should be considered when the constitutive 
model is employed. Jaumann rate is usually adopted as the 
objective stress rate in the constitutive models and defined as:

From Eq. (11), the rate of Kirchhoff stress can be writ-
ten as:

(12)� = J� = (det�e)� =

(

dV

dV0

)

� ≈ �.

(13)

(14)�̇ = �e
⋅

̇
� ⋅ (�e)T + �̇e

⋅

{

(�e)−1 ⋅ �e
}

⋅ � ⋅ (�e)T + �e
⋅ � ⋅

{

(�e)T ⋅ (�e)−T
}

⋅

(

�̇e
)T

= �e
⋅

[

L
e ∶

{

(�e)T ⋅ �e
⋅ �e

}]

⋅ (�e)T + �e
⋅ � + � ⋅ (�e)T .

to approximate the exact derivative of the resolved shear stress 
in “Fully-implicit method (Euler backward method) based on 
finite difference method” section, which allows for ease of 
implementation, regardless of the complexity of its derivative.

Semi‑implicit method

In the semi-implicit method, the kinematics is assumed to 
evolve linearly over a time increment by using the forward 
gradient projection. The resolved shear stress on the slip sys-
tem (α) can be determined as:

with

(17)�
(�) = � ∶ �

(�) = �
(�)

⋅ � ⋅ �
(�) = �

(�)

0
⋅ � ⋅ �

(�)

0
,

(18)� = �
e
⋅ �.

By substituting Eq. (14) into Eq. (13), Jaumann rate of 
Kirchhoff stress can be expressed as:

(15)

By writing the elastic part of deformation rate as the total 
and plastic parts, Jaumann rate of Kirchhoff stress becomes

(16)

Stress integration method

Two different stress integration methods were reviewed and 
extensively compared in “Semi-implicit method” and “Fully-
implicit method (Euler backward method)” section: the semi-
implicit method [13, 16] and fully-implicit method [9]. For 
the semi-implicit method, the Newton-Raphson method is 
utilized to find only the slip rates of slip systems, while the 
elastic deformation gradients come from the last conver-
gence configuration. On the other hand, the Newton-Raphson 
method is used to find both the slip rates of slip systems and 
elastic deformation gradients in the fully-implicit method. In 
the fully-implicit method, the derivative of the resolved shear 
stress is also required to employ the Newton-Raphson method. 
The calculation of derivative is complicated to implement, and 
could be changed according to constitutive models. Therefore, 
the stress integration using the FDM for CPFEM was proposed 
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The derivative of Eq. (17) with respect to time yields

(19)�̇� (𝛼) = �
(𝛼) ∶ � − �

(𝛼) ∶

NSYS
∑

𝛽=1

�̇� (𝛽)�(𝛽).

By using Eq. (19), the resolved shear stress can be updated 
at the end of the time increment as follows:

(20)𝜏
(𝛼)

n+1
= 𝜏(𝛼)

n
+ Δt ⋅ �̇� (𝛼) =

[

𝜏 (𝛼)
n

+ Δt ⋅ �(𝛼) ∶ �
]

− Δt ⋅ �(𝛼) ∶

NSYS
∑

𝛽=1

�̇�
(𝛽)

n+1
�
(𝛽).

The term in the square bracket can be regarded as a trial 
state because � (�)

n
 and �(�) are the known values and � is the 

input value. In other words, the trial state is directly updated 

to the next stress state when all the slip systems are inactive or 
have very small values of the slip rates. Besides, the updated 
resolved shear stresses ensure the consistency conditions for 
all slip systems at the end of the time increment:

(21)𝜙
(𝛼)

n+1
= 𝜏

(𝛼)

n+1
− 𝜏(𝛼)

rss

|

|

|n+1
=
[

𝜏 (𝛼)
n

+ Δt ⋅ R(𝛼) ∶ D
]

− Δt ⋅ R(𝛼) ∶

NSYS
∑

𝛽=1

�̇�
(𝛽)

n+1
�
(𝛽) − 𝜏 (𝛼)

rss

(

�̇�
(𝛼)

n+1
, g

(𝛼)

n+1

)

.

Therefore, the unknown values (slip rates) are obtained 
after the iterative process based on the Newton-Raphson 
method for highly non-linear equations. Furthermore, Jaco-
bian matrix is required when the Newton-Raphson method 
is employed, thus the derivative with respect to the slip rate 
is needed:

with

In Eq. (22), the subscript k is the iteration number at each 
time increment and 𝛿�̇� (𝛽)

k
 is the correction added to the cur-

rent estimate of slip rate to obtain the next estimate. The 
iterations are repeated until the residual is smaller than a 
numerical tolerance. Then, the grain level stress at (n + 1) 
time increment is updated as:

where � is the rotation tensor of material. Later, the grain 
level stresses are volume-averaged to achieve the integration 
point level stress in this study.

Fully‑implicit method (Euler backward method)

In the fully-implicit method, both the slip rates and elastic 
deformation gradients are unknown quantities. Therefore, 

(22)𝜙
(𝛼)

k
+

NSYS
∑

𝛽=1

d𝜙
(𝛼)

k

d�̇� (𝛽)
⋅ 𝛿�̇�

(𝛽)

k
= 0,

(23)

d𝜙
(𝛼)

k

d�̇� (𝛽)
= −

[

Δt ⋅ �(𝛼) ∶ �
(𝛽) +

𝜕𝜏(𝛼)
rss

𝜕�̇� (𝛽)
+

NSYS
∑

𝛿=1

𝜕𝜏 (𝛼)
rss

𝜕g(𝛿)

𝜕g(𝛿)

𝜕�̇� (𝛽)

]

.

(24)

an iterative method is performed to ensure that the quanti-
ties satisfy the consistency conditions at the end of time 
increment. Therefore, the derivative of the resolved shear 
stress is required for the Newton-Raphson method. In this 
section, the derivative is fully summarized. Additionally, the 
elastic deformation gradients are directly updated to reduce 
the storage requirements because the elastic deformation 
gradients can evaluate the crystal reorientations.

Tensor exponential function

The exact computation of tensor exponential functions is 
recommended for high accuracy of the Euler backward 
method, and it can be defined by the series representation 
[21]:

In addition, the tensor exponential function makes the 
volume constant during the plastic deformation. The deter-
minant of tensor exponential function becomes [37]

In Eq. (26), det[exp[�]] = 1 when tr[�] = 0 . Given these 
relationships with Eq.  (31), det

[

�
p

n+1

]

= 1 since 

tr

�

NSYS
∑

𝛼=0

�̇�
(𝛼)

n+1
⋅ �

(𝛼)

0
⊗ �

(𝛼)

0

�

= 0 . For the numerical computa-

tion of series expansion, a convergence criterion is required, 
and the convergence criterion is defined as follows:

(25)exp[�] =

∞
∑

n=0

1

n!
�

n.

(26)det[exp[�]] = exp[tr[�]].
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with

where �tol = 10−10 was adopted in this paper. The exact 
derivative of tensor exponential function can also be 
expressed using the series representation [38]:

where nmax comes from Eq. (28).

(27)exp[�] =

nmax
∑

n=0

1

n!
�

n,

(28)
1

nmax!
‖�

nmax
‖ < 𝜀tol,

(29)
[

�exp[�]

��

]

ijkl

=

nmax
∑

n=1

1

n!

n
∑

m=1

[�m−1]ik[�
n−m]lj,

Stress integration algorithm

By substituting Eq. (3) into Eq. (2), the derivative of plastic 
deformation gradient can be defined as:

With the backward exponential map integrator [37], the 
plastic deformation gradient at the current configuration 
(n + 1) can be defined as:

Substituting Eq. (31) into Eq. (1) gives the updated elastic 
deformation gradient at the current configuration:

(30)�̇
p =

[

NSYS
∑

𝛼=1

�̇� (𝛼)�
(𝛼)

0
⊗ �

(𝛼)
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]

⋅ �
p.
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n+1
= exp
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⋅ �
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(𝛼)

0

)

]

⋅ �
p
n
.

(32)�
e
n+1

= �n+1 ⋅
(

�
p

n+1

)−1
= �n+1 ⋅ (�n)

−1
⋅ �

e
n
⋅ exp

[

NSYS
∑

𝛼=1

(

−Δt ⋅ �̇�
(𝛼)

n+1
⋅ �

(𝛼)

0
⊗ �

(𝛼)

0

)

]

,

where �n+1 is the input value, and �e
n
 , �n are the known 

quantities. Detailed stress integration algorithm in the fully-
implicit method is summarized in Appendix 1.

Fully‑implicit method (Euler backward method) 
based on finite difference method

Finite Difference Method (FDM)

It is complicated to compute the derivative of the resolved 
shear stress as derived in “Fully-implicit method (Euler 
backward method)” section. Also, other constitutive models 
are sometimes introduced, resulting in new calculation of the 

derivative. In order to avoid this issue, the analytical deriva-
tive of the resolved shear stress was directly approximated 
by using the numerical derivative: Finite Difference Method 
(FDM). The FDM-based model makes the implementation 
of conventional and new constitutive models easier. The 
numerical approach was also implemented for the return 
mapping method used in the continuum-level constitutive 
models for sheet metal forming [38, 39].

In this study, three finite difference methods were investigated. 
The central difference method was adopted since it has a higher-
order truncation error. The backward and forward difference 
methods were also employed due to computational efficiency. For 
the central difference method, the first derivative of the resolved 
shear stress can be derived by using the Taylor series:

(33)
𝜏 (𝛼)

(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽) + Δ�̇� (𝛽),⋯ , �̇� (NSYS)
)

= 𝜏(𝛼)
(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽),⋯ , �̇� (NSYS)
)

+
𝛿𝜏(𝛼)

𝛿�̇� (𝛽)

(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽),⋯ , �̇� (NSYS)
)

⋅ Δ�̇� (𝛽)

+
1

2!

𝛿2𝜏(𝛼)

𝛿�̇� (𝛽)2

(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽),⋯ , �̇� (NSYS)
)

⋅

(

Δ�̇� (𝛽)
)2
,

(34)
𝜏 (𝛼)

(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽) − Δ�̇� (𝛽),⋯ , �̇� (NSYS)
)

= 𝜏(𝛼)
(
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⋅

(
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)2

⋯ .

By subtracting Eq. (34) from Eq. (33), the first derivative 
of the resolved shear stress can be achieved:
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For the backward and forward difference methods, 
the first derivatives of resolved shear stress can also be 
expressed in Eqs. (36) and (37), respectively.

Equations (35)–(36) are the key equations to be imple-
mented. Two additional resolved shear stresses are com-
puted for the central difference method, while one addi-
tional resolved shear stress is required for the backward 
and forward difference methods. The Jacobian matrix 
consists of 12 × 12 = 144 terms for FCC materials leading 
to 144 approximations per one Newton-Raphson iteration.

Step size for finite difference method

The step size ( Δ�̇� (𝛽) ) for the FDM is required to compute the 
derivative of the resolved shear stress, and it is critical for 
the FDM. In this research, a constant step size for all slip 
rates was used due to simplicity, and expressed in Eq. (38). 
Here, the step size for the FDM is different from the time 
increment size ( Δt ) in the finite element simulation.

The reason why the step size was investigated is that a 
very small step size generally does not ensure the accu-
racy of the FDM. The accuracy of the FDM depends on 
the summation of the truncation and round-off errors. The 
truncation error results from the Taylor series expansion 
in Eqs. (33) and (34). For the central difference method 

(35)𝜕𝜏 (𝛼)

𝜕�̇� (𝛽)
≈

𝜏 (𝛼)
(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽) + Δ�̇� (𝛽),⋯ , �̇� (NSYS)
)

− 𝜏 (𝛼)
(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽) − Δ�̇� (𝛽),⋯ , �̇� (NSYS)
)

2 ⋅ Δ�̇� (𝛽)

(36)𝜕𝜏 (𝛼)

𝜕�̇� (𝛽)
≈

𝜏 (𝛼)(�̇� (1), �̇� (2),⋯ , �̇� (𝛽),⋯ , �̇� (NSYS)) − 𝜏 (𝛼)(�̇� (1), �̇� (2),⋯ , �̇� (𝛽) − Δ�̇� (𝛽),⋯ , �̇� (NSYS))

Δ�̇� (𝛽)

(37)𝜕𝜏 (𝛼)

𝜕�̇� (𝛽)
≈

𝜏 (𝛼)
(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽) + Δ�̇� (𝛽),⋯ , �̇� (NSYS)
)

− 𝜏 (𝛼)
(

�̇� (1), �̇� (2),⋯ , �̇� (𝛽),⋯ , �̇� (NSYS)
)

Δ�̇� (𝛽)

(38)Δ�̇� (𝛽) = 𝛿.

Fig. 2  Twelve slip systems for 
FCC materials

in Eq. (35), the truncation error has the order of (�̇� (𝛽))2 . 
Therefore, the truncation error is reduced when the step 
size decreases. The forward and backward difference 
methods have the same tendency although the order of 
truncation error is �̇� (𝛽) . On the other hand, the round-off 
error results from the limited storing space for numbers 
in computer, and the round-off error becomes larger when 
the step size decreases. Therefore, the truncation error 
from the series expansion and the round-off error from 
the numerical problem are inversely proportional to each 
other. Additionally, in order to check whether the step size 
depends on the input value, two cases were investigated.

In Case 1, �n was an identity and �n+1 was set to cause 10% 
uniaxial tensile state. For the crystal orientation, a single crys-
tal with a cube texture, 

(

�1,�,�2

)

= (0◦, 0◦, 0◦) , was used. 
A l so ,  �̇� (𝛼) = (10−10, 0.5,−0.5, 10−10,−0.5, 0.5,−0.5, 0.5, 
10−10, 0.5, 10−10,−0.5) was employed for the slip rates 
because the 2,6,8 and 10th slip systems are activated in the 
positive direction, and the 3,5,7 and 12th slip systems are 
activated in the negative direction. The twelve slip systems 
for FCC materials are shown in Fig. 2. For the elasticity ten-
sor constants, 

(

C1111,C1122,C1212

)

= (108000, 62000, 28300) 
[MPa] was used [40]. In Case 2, only �n+1 was changed to 
cause 0.1% uniaxial tension to investigate the size effect of 
the input value.
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Figure 3 shows the average relative errors of the FDM 
(144 terms) with respect to the analytical derivative accord-
ing to the step size and FDM type; the central, backward, 
and forward difference methods. The results show two char-
acteristics. First, the error decreases to a specific step size 
value but increases as the step size further decreases due to 
the truncation and round-off errors. Second, a specific step 
size for the minimum error does not exist. Therefore, the 
constant step size approach with � = 10−5 was adopted for 
the central difference method, and � = 10−7 was employed 
for the backward and forward difference methods consider-
ing the minimum errors in Fig. 3

Comparison of stress integration methods

Numerical examples in this paper are based on the face-cen-
tered cubic (FCC) lattice which has twelve slip systems. For 
the polycrystalline aggregates, the Taylor assumption was 
employed. The main objective in this section is the comparison 
of various stress integration methods including the proposed 

FDM-based model. Therefore, the semi-implicit, Euler back-
ward, and proposed FDM-based methods were compared in 
terms of accuracy, convergence, and computational efficiency. 
All simulations were performed by using a commercial soft-
ware Abaqus2016/Standard with UMAT. When UMAT for 
Abaqus is developed and the local orientation is employed, the 
input form of deformation gradient should be precisely figured 
out. The input forms for the deformation gradient depending on 
the local orientation were well explained by Nolan et al. [41].

Accuracy

Uniaxial tensile and simple shear simulations were per-
formed in this section. The results from various stress inte-
gration methods were compared in terms of accuracy. 
For the crystal orientation, a Copper texture component, 
(

�1,�,�2

)

= (90◦, 35◦, 45◦) , was employed. There are two 
types of hardening models: phenomenological [11, 13, 42] 
and physical-based models [43–47]. In this paper, a phenom-
enological model was used. The resolved shear stress can be 
defined as:

Fig. 3  Averaged relative 
errors of resolved shear stress 
derivatives by three difference 
methods: (a) Central differ-
ence method; (b) Backward 
difference method; (c) Forward 
difference method

(a) (b)
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Table 1  Material constants 
for comparison used in crystal 
plasticity finite element analysis

g
0
[MPa] gs[MPa] h

0
[MPa] hs[MPa] �̇�

0

[-/s]
m

[-]
C
1111

[MPa] C
1122

[MPa] C
1212

[MPa]

90 120 240 40 0.001 0.1 108,000 62,000 28,300
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Fig. 4  Boundary conditions for single element simulations: a Uniaxial tension; b Simple shear

Fig. 5  Comparisons of stress-
strain curves from uniaxial 
tensile simulations according to 
the number of steps and various 
stress integration methods: a 
various methods with thousand 
increments; b various steps 
under semi-implicit method; c 
various steps under Euler back-
ward method using analytical 
derivative; d various steps under 
the proposed method using cen-
tral difference method; e various 
steps under the proposed 
method using backward differ-
ence method; b various steps 
under the proposed method 
using forward difference method
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where g(�) is the slip resistance, �̇� (𝛼) is the slip rate on the 
slip system (�) , �̇�0 is the reference shear rate, and m is the 
strain-rate sensitivity exponent. The slip resistance can be 
evolved by using the rate form:

where h�� represents the hardening matrix. The hardening 
matrix can be defined as:

(39)𝜏 (𝛼)
rss

= g(𝛼)

(

|

|

�̇� (𝛼)|
|

�̇�0

)m

sign(�̇� (𝛼)),

(40)ġ(𝛼) =

NSYS
∑

𝛽=1

h𝛼𝛽
|

|

|

�̇� (𝛽)
|

|

|

,

with

where � is the 3 × 3 unity matrix, and 1.0 ≤ q ≤ 1.4 [48]. 
In this section, the isotropic hardening model was assumed 
by setting q = 1 . Finally, the slip hardening rate becomes as 
follows [49, 50]:

(41)h�� = q��h�(no sum on �),

(42)q�� =

⎡

⎢

⎢

⎢

⎣

� q� q� q�

q� � q� q�

q� q� � q�

q� q� q� �

⎤

⎥

⎥

⎥

⎦

,

Fig. 6  Comparisons of stress-
strain curves from simple shear 
simulations according to the 
number of steps and various 
stress integration methods: a 
various methods with thousand 
increments; b various steps 
under semi-implicit method; c 
various steps under Euler back-
ward method using analytical 
derivative; d various steps under 
the proposed method using cen-
tral difference method; e various 
steps under the proposed 
method using backward differ-
ence method; b various steps 
under the proposed method 
using forward difference method
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where hs,h0 are the asymptotic and initial hardening rates, 
and gs,g0 are the saturated and initial values of the slip 
resistance. The material constants for CPFEM are shown 
in Table 1. Boundary conditions for the uniaxial tensile and 
simple shear simulations are illustrated in Fig. 4. Also, 1 
[mm]× 1 [mm]× 1 [mm] solid element with reduced integra-
tion (C3D8R element in Abaqus) was employed.

Various time increment sizes were imposed for the sim-
ulations where the total time increment was 1 s in order to 
evaluate the accuracy of various stress integration methods. 
Figures 5 and 6 show the stress-strain curves from the uniaxial 
tensile and simple shear simulations, respectively. In each sim-
ulation, the time increment was set to constant. In other words, 
0.001 s constant time for ‘1000 steps’, 0.1 s constant time for 
‘10 steps’, and 0.25 s constant time for ‘4 steps’ were imposed. 
The uniaxial tensile simulation results from the FDM-based 
model show good agreement with those from the Euler back-
ward method using the analytical derivative and those from 
the semi-implicit method even for the large time increment 
size. On the other hand, a large error occurs when the time 
increment size becomes larger in the simple shear simulation 
results from the semi-implicit method. Since the quantities of 
kinematics are not from the current configuration but from the 
last convergence state, the semi-implicit method is converged 
with a large error or diverged when the large change in the 
elastic deformation gradient exists. For the Euler backward 

(43)

h𝛽 = hs + (h0 − hs)sech
2

{(

h0 − hs

gs − g0

)

𝛾

}

, 𝛾 =
∫

t

0

NSYS
∑

𝛼=1

|

|

|

�̇� (𝛼)
|

|

|

dt,

method using the analytical derivative and FDM-based model, 
they showed good agreement with each other regardless of 
time increment sizes. Therefore, the Euler backward method 
using the analytical derivative and FDM-based model are ben-
eficial when a large time increment and rotation are imposed. 
In addition, the average relative errors of first derivatives of 
resolved shear stresses were evaluated between the FDM and 
analytical derivative. The errors were compared at the first 
Newton-Raphson iteration at the half-time step (0.5 s) of the 
simulation where total four steps were imposed. The estimated 
errors are listed in Table 2, and the errors are negligible.

Convergence

The uniaxial tensile simulation with the same boundary 
condition in Fig. 4a was performed to evaluate the conver-
gence of various stress integration methods. One hundred 
random orientations were used, and the (1 1 1) pole figure is 
shown in Fig. 7a. The material constants for CPFEM were 
the same with Table 1 except for the strain-rate sensitivity 
exponent ( m ) which was set to 0.01 and 0.001 in this sec-
tion. The results of m = 0.01 from various stress integra-
tion methods are shown in Fig. 8. The time increment was 
0.001 s for ‘1000 steps’. For the ‘auto’ scheme, the time 
increment was bounded between 10−6 s and 1 s with an ini-
tial time increment of 10−3 s. With small time increments, 
every stress integration method predicts the same result. 
However, the number of steps and predicted results become 
different when the time increment increases. For the semi-
implicit method, 27 steps were required to be converged, 
and significant errors also occurred. It is because the elastic 
deformation gradients are from the last convergence state, 
and the kinematics is assumed to evolve linearly over a time 
increment. It resulted in the deviated solution when the time 
increment size was large. For the Euler backward method 
using the analytical derivative and FDM-based model, 
only 25 steps were used for convergence, and the accuracy 
was also maintained. The convergence issue was more 
pronounced at lower strain-rate sensitivity ( m = 0.001 ). 

Table 2  Relative errors [%] of three finite difference methods with 
respect to analytical derivatives

Case Central differ-
ence method

Backward dif-
ference method

Forward 
difference 
method

Uniaxial tension 1.72E-8 5.04E-6 5.03E-6
Simple shear 1.33E-8 3.96E-6 4.32E-6

Fig. 7  (1 1 1) pole figures of 
random orientations: a 100 
grains; b 300 grains
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Although the semi-implicit method failed to converge, the 
Euler backward method using the analytical derivative and 
FDM-based model predicted the same results and converged 
with 91 steps. In conclusion, the proposed FDM-based 
model has the same accuracy and convergence with the 
Euler backward method using analytical derivative.

Computational efficiency

The uniaxial tensile simulation was performed, as shown 
in Fig. 4a to investigate computational efficiency. In order 

to evaluate the computational time according to the deriva-
tives more clearly, three hundred random orientations were 
employed, and the (1 1 1) pole figure for the random grains 
is shown in Fig. 7b. The material constants for CPFEM were 
the same with Table 1 except for the strain-rate sensitivity 
exponent ( m ) which was set to 0.01. All the simulations took 
a constant time increment, and thousand steps were imposed 
in total. Since the simulation time depends on the terms for 
computing the tensor exponential functions and their deriv-
atives, as shown in Eqs. (27) and (29), the computation 
time according to the terms was compared. The wall-clock 

Fig. 8  Comparisons of stress-
strain curves from uniaxial 
tensile simulations according to 
the number of steps and various 
stress integration methods: a 
various methods with thousand 
increments; b under semi-
implicit method; c under Euler 
backward method using ana-
lytical derivative; d under the 
proposed method using central 
difference method; e under 
the proposed method using 
backward difference method; 
b under the proposed method 
using forward difference method (a) (b)

(c) (d)

(e) (f)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Semi-implicit            (1000 steps)
 Analytical derivative (1000 steps)
 Central difference    (1000 steps)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Semi-implicit (1000 steps)
 Semi-implicit (Auto)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Analytic derivative (1000 steps)
 Analytic derivative (Auto)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Central difference (1000 steps)
 Central difference (Auto)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Backward difference (1000 steps)
 Backward difference (Auto)

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

sserts
eurT

]aP
M[

True strain 

 Forward derivative (1000 steps)
 Forward derivative (Auto)



International Journal of Material Forming (2024) 17:11 

1 3

Page 13 of 20 11

simulation times from all the cases for terms and stress 
integration methods were averaged after performing simu-
lations three times. Also, the averaged simulation time was 
normalized by that from the Euler backward method using 
analytical derivative with nmax = 2 in Eqs. (27) and (29). As 
shown in Fig. 9, the simulation time from the FDM-based 
model is faster than that from the Euler backward method 
using the analytical derivative in most cases. Besides, the 
Euler backward method using analytical derivative highly 
depends on how many terms are used for computing the 
tensor exponential functions and their derivatives, while the 
number of terms has a negligible effect on the FDM-based 

model. Therefore, the FDM approach is more efficient than 
the analytical derivatives when the number of terms for com-
puting the series expansion is large.

Validation with the reduced texture 
approach

In order to validate the proposed FDM-based model, the 
reduced texture approach was implemented due to the ben-
efit of computational efficiency in large-scale CPFEM. In the 
reduced texture approach, the specific parameters including 
crystallographic orientations are calibrated to characterize 
the plastic anisotropy of matal. The main objective of the 
reduced texture approach is not a complete representation 
of the real texture behavior but is to use the crystal plasticity 
model in large-scale engineering applications with a reason-
able computational cost by minimizing the number of crys-
tallographic orientations. The reduced texture methodology 
was proposed with the self-consistent model [27–29]. In this 
chapter, the Euler backward method using analytical deriva-
tive and the proposed FDM-based model were applied.

Experimental data

For experimental data, a strongly anisotropic aluminum 
alloy (AA 2090-T3) data was used. The r-values and yield 
stress ratios ( s� = ��∕�0 ) where �� indicates the yield 
stress along the � degrees from the rolling direction were 
obtained from the tensile test carried out along the rolling 
(RD), diagonal (DD), and transverse (TD) directions in the 
previous research, and experimental results are specified 
in Table 3 [51, 52]. The reference data were generated by 
considering the experimental results; the r-values, yield 
stress ratios, and stress-strain hardening curve along the 
RD [27, 28]. Therefore, the stress-strain hardening curves 
along the � degrees from the RD are written in Eq. (44) 
with the assumption of isotropic hardening.
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Fig. 9  Normalized wall-clock simulation time depending on ways of 
derivatives and terms for computing tensor exponential functions

Table 3  Experimental results of AA 2090-T3

RD DD TD

Yield stress ratio 1.0000 0.8148 0.9115
r-value 0.20 1.57 0.70

Fig. 10  Reconstructed experi-
mental data: a stress-strain 
curves; b transverse strain 
curves
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The transverse strain curves were also built with the 
assumption that the strain value has a very small effect 
on the r-values. All of the data were reconstructed up to 
�11 = 0.28 to consider the prediction of the large strain 
value in the circular cup drawing simulation. Figure 10 
shows the reconstructed experimental data.

(44)�̃�𝜃 = 646
(

0.025 + 𝜀
p)0.227

⋅ s𝜃[MPa].

Calibration of parameters

Calibration of parameters was conducted with Isight2016 
and Abaqus2016/Standard. As mentioned in “Experimental 
data” section, the experimental results prepared for the cali-
bration are defined as:

• True stress-strain curves(RD, DD, TD; three curves)
• Transverse strain curves(RD, DD, TD; three curves)

For the material characterization, the single element 
tensile simulations were performed along the RD, DD, and 
TD. 1 [mm]× 1 [mm]× 1 [mm] solid element with reduced 
integration (C3D8R element in Abaqus) was elongated to 
produce the strain ( �11 ) value of 0.28. Total time increment 
was set to be 2,800 s to impose �̇�11 = 10−4 s−1 . The fixed 

Table 4  Material constants for characterizing AA 2090-T3

�̇�
0

[-/s]
m

[-]
C
1111

[MPa]
C
1122

[MPa]
C
1212

[MPa]

0.001 0.04 108,000 62,000 28,300

Table 5  Results of calibrated 
parameters for AA 2090-T3 Hardening h

0

[MPa]
hs
[MPa]

g
0
[MPa] gs[MPa] q

[-]
199.32 37.23 99.69 130.21 1.0470

Grain information �
1
(1)

[◦]
�(1)

[◦]
�
2
(1)[◦] f (1)

[-]
�
1
(2)[◦] �(2)

[◦]
�
2
(2)[◦]

62.66 13.59 51.02 0.0882 51.08 32.07 4.58

Fig. 11  Experimental data 
and simulation results from: 
a stress-strain curves under 
Euler backward method 
using analytical derivative; b 
transverse strain curves under 
Euler backward method using 
analytical derivative; c stress-
strain curves under the proposed 
FDM-based model; d transverse 
strain curves under the proposed 
FDM-based model
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material constants are shown in Table 4. Among the parame-
ters to be calibrated, there are specific parameters that imply 
the information of orientations. In the same way as Rous-
selier et al. [27], two texture representatives were adopted; 
(

�1(1)�(1)�2(1)
)

 and 
(

�1(2)�(2)�2(2)
)

 . Each texture rep-
resentative consists of four crystallographic orientations 

defined as 
(

�1��2

)

,
(

−�1� − �2

)

,
(

−�1 − � − �2

)

 , and 
(

�1 − ��2

)

 for the orthotropic symmetry. Total eight crys-
tallographic orientations are employed at each integration 
point. In addition, other parameters related to the slip resist-
ance and latent hardening exist, thus all of the parameters to 
be optimized are as follows:

Fig. 12  a Schematic view, tool dimensions, and process variables for circular cup drawing; b Quarter of blank mesh for circular cup drawing 
simulation

Fig. 13  Cup height from: a 
experiment, Yld2000-2d, and 
reduced texture approach with 
Euler backward method using 
analytical derivatives; b reduced 
texture approach with the pro-
posed FDM-based model
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• Latent hardening parameter ( q ; one parameter),
• Slip resistance parameters ( h0,hs,g0 , and gs ; four param-

eters),
• Orientation parameters

where f (1) represents the volume fraction of grains for tex-
ture representative (1), and q is limited between 1 and 1.4. 
Even though it is challenging to identify the parameter of 
latent hardening from the only monotonic tensile experi-
ment where strain path is not changed, it was adopted for 
the parameter as a fitting scheme.

Table 5 shows the calibrated parameters, and the cor-
responding simulation results from the integration methods 
using analytical derivative and FDM are shown in Fig. 11. 
The integration methods using analytical derivative and 
FDM predicted the same results. In addition, the predicted 
stress-strain and transverse strain curves show good agree-
ment with the experimental data. With eight crystallographic 
orientations, the FDM-based model successfully predicted 
the anisotropic behavior of AA 2090-T3.

Cup drawing simulation

A circular cup drawing simulation was performed to esti-
mate the applicability of FDM-based model for large-scale 
engineering problems. Figure 12a shows the schematic view, 
tool dimensions, and process variables for the circular cup 
drawing analysis [52]. In the circular cup drawing analysis, a 
quarter part of the blank was analyzed due to the assumption 
that the metal has orthotropic symmetry, and the mesh of the 
blank is shown in Fig. 12b. For the elements, 100 and 2400 
elements were utilized for C3D6 and C3D8R, respectively. 
Total time was 5000 s, and the time increment was allowed 
between 0.001 s and 30 s.

The cup drawing simulations were conducted with 
the Euler backward method using analytical derivative 
and FDM; the central, backward, and forward difference 
methods. Therefore, four cases were performed and com-
pared in terms of accuracy and computational efficiency. 
Figure 13a shows the earing profiles from the experimen-
tal results and predictions from the Yld2000-2d [38] and 
the reduced texture approach with the integration method 

((

�1(1)�(1)�2(1)
)

,
(

�1(2)�(2)�2(2)
)

, and f (1);seven parameters
)

,

using the analytical derivative. Figure 13b shows the ear-
ing profiles predicted by the FDM-based model. The num-
bers of simulation steps and normalized times from various 
methods are specified in Table 6. Three comparisons are 
following. First, all of the predicted cup heights from the 
reduced texture approach are the same regardless of the ways 
of derivatives; the analytical derivative, central, backward, 
and forward difference methods. Second, the predicted ear-
ing profiles show good agreement with the experimental 
result. The cup height from the reduced texture approach 
was also compared with that from the Yld2000-2d [38] since 
both of them employed the yield stress ratios and r-values 
along the RD, DD, and TD. For the Yld2000-2d, a small 
ear in the 15 degrees from the RD was not predicted. On 
the other hand, the reduced texture approach could predict 
six ears including the small ear in the 15 degrees, in spite of 
the fact that the experimental r-value along the 75 degrees 
was not utilized. As shown in Fig. 14, r-value at 75 degrees 
affects the small ear in 15 degrees, as explained by Yoon 
et al. [52]. It was also shown that r-value has a large effect 
on the cup height in other research [53, 54]. In Fig. 14, the 
r-values were obtained every 15 degrees in the tensile strain 
range between 0.03 and 0.2, and the spline interpolation was 
used to draw the line. Also, the FDM-based model using the 
central difference method was employed. Third, the numbers 
of simulation steps and normalized times (wall-clock time) 
of all the cases were compared, which were averaged after 
performing three times per case. As shown in Table 6, the 

Table 6  Results of the number 
of steps and normalized wall-
clock simulation time

Euler backward 
(Analytical 
derivative)

Euler backward (FDM)

Central difference Backward 
difference

Forward differ-
ence

The number of steps 220 220 220 220
Normalized simulation time 1.000 1.053 0.908 0.907
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0.0

0.4
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2.0
 EXP
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eulav-r

Angle from the rolling direction [Deg.]

Fig. 14  Simulation result of r-value predicted by the FDM-based 
model using central difference method
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numbers of simulation steps are the same regardless of the 
ways of derivatives. In the view of computational efficiency, 
the FDM-based model had a shorter simulation time than the 
integration method using analytical derivative. Considering 
computational efficiency, the backward and forward differ-
ence methods could be a better choice since their accuracy 
is also quite high.

Summary and conclusion

The Euler backward stress integration algorithm using the 
FDM was proposed for CPFEM. The FDM successfully 
approximated the analytical derivative of the resolved shear 
stress. Three methods were investigated for the FDM: the 
central, backward, and forward difference methods. Three 
finite difference methods were adopted because the central 
difference method showed high accuracy because of the 
higher-order truncation error. On the other hand, the back-
ward and forward difference methods showed high compu-
tational efficiency.

The proposed FDM-based model was verified through 
the single element simulations in terms of accuracy, con-
vergence, and computational efficiency. The accuracy and 
convergence of the FDM-based model were almost the same 
with the Euler backward method using analytical deriva-
tive. In the view of computational efficiency, simulation 
time depends on how many terms are used for computing 
the tensor exponential functions and their derivatives. The 
results indicate that the larger terms are employed, the more 
efficient the FDM-based model is. Moreover, the FDM-
based model can be easily applied to any form of constitutive 
model for CPFEM (such as Eq. (10)), so that the restriction 
to derive the complex derivative could be solved regardless 
of the constitutive model. Taking into account the single 
element simulation results, the proposed FDM-based model 
could be the alternative to the Euler backward method using 
analytical derivative in the view of accuracy, convergence, 
computational efficiency, and easy implementation.

For further validation of the FDM-based model, the 
reduced texture approach was adopted to implement the 
crystal plasticity model into a large-scale metal forming 

example. In this work, the anisotropic behavior of AA 
2090-T3 was characterized. Circular cup drawing simula-
tions were also performed, and the earing profiles were com-
pared. The same earing profiles were predicted regardless 
of the ways of derivatives. However, the FDM-based model 
showed a shorter simulation time than the Euler backward 
method using analytical derivative. The proposed FDM-
based model was successfully implemented in CPFEM and 
validated through the prediction of plastic anisotropy and 
earing profile.

Appendix 1. Detailed stress integration 
algorithm in fully‑implicit method

In order to use the Newton-Raphson method, the resolved 
shear stress derivative is required for the Jacobian matrix. 
Differentiating Eq. (17) with respect to the slip rate gives:

This equation is followed by the derivative of Eq. (18):

Calculations of the derivatives of Eqs. (8)–(9) yield

Differentiation of Eq. (32) gives
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where the derivative of tensor exponential function is speci-
fied in Eq. (29).

The unknown quantities are obtained by using the New-
ton-Raphson method in a similar way to the semi-implicit 
method. Kirchhoff stress at the current configuration can 
be updated by using Eqs. (8)–(9) and (10). The grain level 
stress at the current configuration is updated as:

In the Euler backward method, the stress state can be 
computed directly, as shown in Eq. (51), so there is no 
need for the space to store the stress state. On the other 
hand, the stress state is updated by adding Jaumann rate 
from the previous stress state in the semi-implicit method, 
thus the storage space for the stress state is required. 
Therefore, the Euler backward method requires less stor-
age space than the semi-implicit method. Further calcula-
tion for the tangent modulus can be found in Appendix 2.

Appendix 2. Tangent modulus

The tangent modulus is required to ensure the quadratic 
convergence rate in CPFEM. The derivative of the consist-
ency condition takes the following form:

The critical resolved shear stress ( � (�)
rss

 ) is the function of 
the slip rate ( �̇� (𝛼) ) and the slip resistance ( g(�) ). Therefore, 
the derivative of critical resolved shear stress becomes

Substituting Eqs. (19) and (53) into Eq. (52) gives

with

Taking the inverse matrix of Eq. (55) ( [�] =
[

�
]−1 ) on 

both sides of Eq. (54) gives the expression of the slip rate 
in terms of deformation rate as follows:

(51)�n+1 = �
e
n+1

⋅ �n+1 ⋅
(

�
e
n+1

)T
.

(52)�̇�(𝛼) = �̇� (𝛼) − �̇�(𝛼)
rss
.

(53)�̇� (𝛼)
rss

=

NSYS
∑

𝛽=1

𝜕𝜏 (𝛼)
rss

𝜕�̇� (𝛽)

�̇� (𝛽)

Δt
+

NSYS
∑

𝛽=1

NSYS
∑

𝛿=1

𝜕𝜏 (𝛼)
rss

𝜕g(𝛿)

𝜕g(𝛿)

𝜕�̇� (𝛽)

�̇� (𝛽)

Δt
.

(54)�
(𝛼) ∶ (�Δt) =

NSYS
∑

𝛽=1

𝜒 (𝛼𝛽)
⋅ �̇� (𝛽),

(55)𝜒 (𝛼𝛽) =
𝜕𝜏 (𝛼)

rss

𝜕�̇� (𝛽)
+

NSYS
∑

𝛿=1

𝜕𝜏 (𝛼)
rss

𝜕g(𝛿)

𝜕g(𝛿)

𝜕�̇� (𝛽)
+ Δt ⋅ �(𝛼) ∶ �

(𝛽).

(56)�̇� (𝛼) =

NSYS
∑

𝛽=1

𝜓 (𝛼𝛽)
�

(𝛽) ∶ (�Δt).

Finally, the tangent modulus can be defined from Eq. (16):
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