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Abstract
In this paper, we have investigated necking formability of anisotropic and tension-compression asymmetric metallic sheets 
subjected to in-plane loading paths ranging from plane strain tension to near equibiaxial tension. For that purpose, we have 
used three different approaches: a linear stability analysis, a nonlinear two-zone model and unit-cell finite element calcula-
tions. We have considered three materials –AZ31-Mg alloy, high purity α-titanium and OFHC copper– whose mechanical 
behavior is described with an elastic-plastic constitutive model with yielding defined by the CPB06 criterion (15) which 
includes specific features to account for the evolution of plastic orthotropy and strength differential effect with accumulated 
plastic deformation (48). From a methodological standpoint, the main novelty of this paper with respect to the recent work 
of N’souglo et al. (42) –which investigated materials with yielding described by the orthotropic criterion of Hill (24)– is the 
extension of both stability analysis and nonlinear two-zone model to consider anisotropic and tension-compression asym-
metric materials with distortional hardening. The results obtained with the stability analysis and the nonlinear two-zone 
model show reasonable qualitative and quantitative agreement with forming limit diagrams calculated with the finite element 
simulations, for the three materials considered, and for a wide range of loading rates varying from quasi-static loading up to 
40000 s− 1, which makes apparent the capacity of the theoretical models to capture the mechanisms which control necking 
formability of metallic materials with complex plastic behavior. Special mention deserves the nonlinear two-zone model, 
as it does not need prior calibration –unlike the stability analysis– and it yields accurate predictions that rarely deviate more 
than 10% from the results obtained with the unit-cell calculations.

Keywords  Dynamic formability · Tension-compression asymmetry · Plastic orthotropy · Linear stability analysis · Two-
zone model · Finite elements

Introduction

Formability of sheet metal products generally increases at 
high strain rates [5, 6, 21, 54, 59]. The stabilizing effect 
of inertia, which delays necking formation and enhances 
workpiece ductility [20, 29, 55], is exploited in high velocity 

metal working operations, such as explosive, electromag-
netic and electrohydraulic forming processes, to deform 
low-ductility lightweight alloys beyond their quasi-static 
limit [40].

For instance, Balanethiram and Daehn [6] performed 
electrohydraulic forming experiments with 6061 aluminum 
sheets at a speed of ≈ 300 m/s. The strain rate attained dur-
ing the experiments was estimated to be above 1000 s− 1. 
The specimens of thickness 1.6 mm were launched onto a 
conical die with an apex angle of 90∘ and a diameter base 
of 102 mm. The comparison of the electrohydraulic test-
ing results with quasi-static forming limit diagrams taken 
from the literature [3] showed that the ductility of the metal 
sheets near plane strain increased by a factor of 4 at high 
strain rates. Years later, Golovashchenko [22] carried out 
pulsed electromagnetic forming of AA 6111-T4 and AA 
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5754 sheets into conical and v-shape dies, and compared the 
results with forming limit diagrams obtained under quasi-
static loading by forming the aluminum specimens with 
a hemispherical punch into a round die cavity. Consistent 
with the earlier work of Balanethiram and Daehn [6], the 
results of Golovashchenko [22] showed that the limit strains 
for both aluminum alloys under nearly plane strain condi-
tions were up to ≈ 2.5 times greater at high loading rates. 
Shortly after, Dariani et al. [18] obtained dynamic forming 
limit diagrams for Al 6061-T6 sheets by explosive forming 
of specimens of 1 mm thickness into cylindrical and flat 
type dies. Different specimen designs were used to obtain 
limit strains corresponding to both the negative and positive 
minor strain regions of the forming limit diagram. As in the 
experiments of Balanethiram and Daehn [6], the strain rate 
in the workpiece during the tests was estimated to be around 
1000 s− 1. Dariani et al.  [18] reported an improvement of 
≈ 150% in the formability of the material near plane strain 
in comparison with conventional quasi-static forming, with 
this increase being more/less important as the loading path 
moves away from plane strain and approaches equibiaxial/
uniaxial tension. Moreover, Rohatgi et al. [53] investigated 
the high strain rate formability of 5182-O aluminum sheets 
using the electrohydraulic forming technique. Free-forming 
and conical-die forming experiments were performed with 
specimens of 1 mm thickness tested at strain rates of ≈ 4000 
s− 1. The experimental results showed that the dynamic form-
ability of the aluminum 5182-O sheets, at minor strains of 
− 0.1 and − 0.05, was ≈ 2.5 and ≈ 6.5 times greater than 
under quasi-static loading conditions for free-forming and 
conical-die forming conditions, respectively. The higher 
increase in ductility for conical-die forming can be explained 
by the fact that in this case an additional deformation occurs 
during the impact of the blank against the die [23].

Xu et al. [60, 62] carried out electromagnetic free-bulging 
forming experiments with AZ31 magnesium sheets of 1 mm 
thickness. The tests were performed with and without an alu-
minum driver sheet. The driver served to increase the form-
ing velocity, which was limited in the experiments without 
the driver due to the low electrical conductivity of the mag-
nesium alloy. Specifically, the experiments without driver 
sheet showed that relative to the formability results obtained 
under quasi-static loading, the major and minor limit strains 
increased by 67% and 77%, respectively. On the other hand, 
the driver sheet was shown to have a positive impact on the 
formality of the AZ31 specimens, which increased as the 
thickness of the driver increased. For instance, using a driver 
sheet of 2 mm thickness led to an increase of the major and 
minor limit strains, relative to quasi-static loading, of 148% 
and 184%, respectively. Shortly after, the same authors car-
ried out electromagnetic forming experiments with AZ31 
magnesium sheets subjected to uniaxial tension [61]. The 
thickness of the samples was 1 mm, as in the experiments 

of Xu et al. [60, 62]. The tests were performed at different 
forming speeds, with the maximum strain rate attained in 
the experiments varying between 1200 s− 1 and 3500 s− 1. As 
in the free-bulging tests of Xu et al. [60, 62], in which the 
samples were subjected to nearly equibiaxial stretching, the 
tensile formability of the AZ31 sheets in the electromagnetic 
experiments of Xu et al. [61] was significantly greater than 
in conventional quasi-static tests, the increase in the major 
and minor limit strains being 112% and 96%, respectively.

Electromagnetic free-bulging forming experiments on 
Ti-6Al-4V sheets of 1 mm thickness were performed by Li 
et al. [36] using a driver plate made of AA5052-O with 2 mm 
thickness. As in the formability tests performed by Xu et al. 
[60, 62] with AZ31 magnesium specimens, the driver plate 
was used in order to reach high forming velocities, up to 165 
m/s, that otherwise would be difficult to attain due to the low 
conductivity of the titanium alloy. Postmortem analysis of the 
specimens showed that the major and minor limit strains were 
0.093 and 0.028, respectively. The comparison with quasi-
static tests in which the titanium sheets were formed with a 
hemispherical punch into a round die cavity, for which the 
major and minor limit strains were 0.079 and 0.029, revealed 
that the ductility of the titanium sheets increased approxi-
mately 20% at high strain rates. Shortly after, the same 
authors developed a novel experimental design to perform 
electromagnetic forming experiments on Ti-6Al-4V sheets 
under uniaxial tension, plain strain and equibiaxial stretch-
ing, using different specimen designs [35]. The strain rate 
attained in the experiments was estimated to be around 4000 
s− 1. The tests of Li et al. [35] showed that, relative to the 
quasi-static formability of the material, the dynamic ductility 
of the Ti-6Al-4V sheets increased ≈ 15% for uniaxial tension, 
≈ 75% for plain strain and ≈ 25% for equibiaxial stretching.

High velocity forming experiments with metallic materi-
als other than lightweight alloys were also performed by 
several authors to determine the dynamic ductility of dif-
ferent structural materials. For instance, Balanethiramand 
Daehn [5] used electrohydraulic forming to obtain the limit 
strains of Interstitial Free iron sheets of 0.84 mm thickness 
deformed at strain rate of 1000 s− 1 under nearly plane strain 
conditions. The comparison with the corresponding quasi-
static forming limits showed that the ductility of the material 
increased by nearly three times at high strain rates. Shortly 
after, Balanethiram and Daehn [6] carried out additional 
electrohydraulic forming tests with OFHC copper sheets of 
0.34 mm and 0.79 mm thickness. The experimental evidence 
was that the thicker samples show greater improvement in 
formability at high strain rates probably due to the increase 
of inertia effects with the sheet thickness. Moreover, Seth 
et al. [54] investigated the high velocity formability of sev-
eral high strength sheet steels with both very low and high 
quasi-static ductility. The samples were electromagnetically 
launched at a shaped punch at velocities of 50 − 220 m/s. 
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The thickness of the steel sheets ranged from 0.15 mm to 
0.58 mm, and different punch geometries were used to obtain 
different strain states in the specimens. An aluminum 6111 
T4 sheet of the same diameter as the workpiece (80 mm) and 
1 mm thick was used as a driver in all the experiments. The 
electromagnetic forming experiments yielded failure strains 
for all the steel sheets that were significantly beyond the 
quasi-static limit, for any strain state between plane strain 
and equibiaxial stretching, and notably for the materials with 
lower quasi-static ductility. Moreover, Golovashchenko et al.  
[23] performed electrohydraulic forming of DP500, DP590, 
DP780 and DP980 dual phase steel sheets into conical and 
a v-shape dies so that the samples were subjected to plane 
strain and equibiaxial stretching, respectively. The thickness 
of the DP500 specimens was 0.65 mm, while for the samples 
made of DP590, DP780 and DP980 it was 1 mm. The maxi-
mum strain rate attained in the experiments was estimated to 
be about 20000 s− 1. The limit strains obtained in the electro-
hydraulic forming tests were compared with the formability 
limits resulting from quasi-static limiting dome height tests 
in which the samples were formed with a hemispherical 
dome into a round cavity. As in the electrohydraulic form-
ing experiments, different specimen designs were used to 
obtain plane strain and equibiaxial stretching conditions in 
the samples during testing. Comparison of the limit strains 
measured in the electrohydraulic forming experiments and in 
the limiting dome height tests showed that the ductility of all 
materials tested increased at high strain rates. For instance, 
the improvement in plane strain formability varied between 
63% and 190%, depending on the grade of dual phase steel.

All these experimental results substantiate the pioneer-
ing claim of Balanethiram and Daehn [6] that the beneficial 
contribution of inertial forces to the formability of metals 
sheets is both large and general, as it affects most ductile 
metallic materials. On the other hand, the experimental evi-
dence is that the quantitative effect of inertia on formability 
improvement depends on the strain state [35, 60–62], and 
also on the mechanical behavior of the material, since the 
extent of the formability improvement is different for dif-
ferent metal sheets [23, 54]. Nevertheless, as of today, it 
is not clear which features of the constitutive behavior of 
the material affect the most to the dynamic ductility of the 
metal sheets. In fact, the number of publications providing 
insights, either theoretically or using finite element calcula-
tions, on the effect of the constitutive behavior of the mate-
rial on the dynamic formability of metal sheets is relatively 
small, and generally consider the material to be isotropic 
[29, 44, 53, 58, 63], which is a crude assumption since most 
sheet metal products display plastic anisotropy.

An exception is the recent work of N’souglo et al.  [42], 
who developed a linear stability analysis and a nonlinear 
two-zone model, and performed finite element simulations 
for materials with yielding described by Hill [24] criterion, 

in order to investigate the role of plastic orthotropy on the 
dynamic formability of thin sheets of 2 mm thickness sub-
jected to loading paths ranging from plane strain to near 
equibiaxial stretching, and to strain rates varying between 
100 s− 1 and 50000 s− 1. Forming limit diagrams obtained 
with the stability analysis and the two-zone model were 
compared with the finite element results obtained for five 
different materials, two of them were model materials with 
mechanical properties specifically tailored to bring to light 
the interplay between inertia and orthotropy in dynamic 
formability, while the other three were actual materials, 
TRIP-780 steel, AA 5182-O and AA 6016-T4. The results 
obtained with the three approaches –stability analysis, two-
zone model and finite element calculations– showed qualita-
tive agreement for the five materials considered, and brought 
out that: (1) the effect of anisotropy on dynamic formabil-
ity increases as the loading path moves away from plane 
strain and approaches equibiaxial tension, (2) the ductility 
improvement due to inertia becomes significant when the 
applied strain rate is greater than ≈ 2000 s− 1, and (3) for 
strain rates greater than 10000 s− 1 inertia seems to be the 
main factor responsible for neck retardation, over and above 
the stabilizing effect of strain rate sensitivity. However, the 
scope of these findings is limited by the fact that N’souglo 
et al.  [42] did not provide a quantitative comparison with 
experimental data, and also because the Hill yield function 
[24] fails when it comes to describe the mechanical response 
of metal sheets which exhibit complex plastic anisotropy [7, 
26]. In particular, the theory of Hill [24] has been shown 
not to reproduce the directionality of plastic properties of 
face-centered cubic metals, such as aluminium alloys, which 
display greater biaxial flow stress than uniaxial flow stress 
[8, 47]. In addition, the formulation of Hill [24] does not 
account for the strength-differential effect which character-
izes the mechanical response of hexagonal close packed 
metals, such as titanium and magnesium materials, which 
generally display both evolving plastic anisotropy and ten-
sion-compression asymmetry in yielding [14, 15, 31, 50]. 
Therefore, it is evident that the work of N’souglo et al.  [42] 
needs to be extended to consider more advanced constitutive 
models that capture the complex mechanical response gen-
erally shown by metal sheets frequently used in high-speed 
forming operations and needs to be validated with experi-
mental data (see previous paragraphs of this introduction).

Many yield functions have been developed over the 
years to improve the constitutive model of Hill [24]. For 
instance, Karafillis and Boyce [30] derived a non-quadratic 
yield criterion to describe different states of material sym-
metry, including the case of the fully asymmetric material. 
The key feature of the model of Karafillis and Boyce [30] 
is a fourth order tensor employed as a linear multiplicative 
operator acting on the stress tensor to introduce material 
anisotropy. Following the work of Karafillis and Boyce [30], 
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the linear transformation-based anisotropic yield functions 
became increasingly popular because they allow tuning the 
number of anisotropy parameters to increase the accuracy of 
the yield criterion predictions, without this having an impact 
on the mathematical structure of the constitutive model. 
For instance, Barlat et al.  [10] formulated a plane stress 
yield function with 9 parameters to describe the mechanical 
response of aluminum sheets using two linear transforma-
tions of the stress tensor. Bron and Besson  [12] extended 
the models of Barlat et al. [10] and Karafillis and Boyce [30] 
using two linear transformations to obtain a 3D yield func-
tion with 16 parameters which provided accurate description 
of the mechanical behavior of different aluminum sheets. 
Two linear transformations were also used by Barlat et al. 
[9] to formulate the so-called Yld2004-13p and Yld2004-
18p yield functions, that were derived from different iso-
tropic yield functions, and contain 13 and 18 anisotropic 
parameters, respectively. Two and three linear transforma-
tions were used by Aretz and Barlat [4] to obtain the so-
called Yld2011-18p and Yld2011-27p yield functions, which 
are defined by 18 and 27 parameters, respectively. Moreo-
ver, Cazacu and Barlat [14] formulated a yield criterion to 
describe both the asymmetry and anisotropy in yielding of 
magnesium and magnesium alloys using the generalized 
invariants approach developed by Cazacu and Barlat [13]. 
The yield function of Cazacu and Barlat [14] is a homoge-
neous function of degree three in stresses and includes 18 
material parameters. Additional yield criteria to model the 
anisotropy and strength differential effect of various metal-
lic materials have been proposed, for instance, by Kondori 
et al. [32], Lee et al. [34], Nixon et al. [41], Park et al. [45] 
and Raemy et al. [49].

In this paper we have developed a linear stability analy-
sis and a nonlinear two-zone model to construct forming 
limit diagrams for elastic-plastic materials with yielding 
described by the CPB06 criterion [15]. This constitutive 
model accounts for both plastic anisotropy and yielding 
asymmetry, and describes the change of the shape of the 
yield surface during monotonic loading through the evolu-
tion with the plastic deformation of the material parameters 
involved in the expression of the yield function. The predic-
tions obtained with the analytical models have been com-
pared with finite element simulations and with experimental 
data obtained from the literature for magnesium, titanium 
and copper [6, 36, 60, 62], and reasonable agreement has 
been obtained for a wide range of loading rates varying from 
quasi-static loading to strain rates up to 40000 s− 1, and for 
loading paths ranging from plane strain to near equibiaxial 
stretching. To the authors’ knowledge, there are no other 
publications in the open literature with analytical models 
predicting the dynamic formability of metal sheets show-
ing evolving plastic anisotropy and tension-compression 
asymmetry.

Constitutive framework

The mechanical behavior of the materials investigated is 
described with an elastic-plastic constitutive model with 
yielding defined by the orthotropic and asymmetric CPB06 
criterion [15] which includes specific features to consider the 
evolution of plastic anisotropy and strength differential effect 
with accumulated plastic deformation [48]. The formulation 
of the constitutive model is outlined in Section “Formulation”, 
and the values of the constitutive parameters of the materials 
investigated are provided in Section “Materials investigated”.

Formulation

The rate of deformation tensor d is the sum of an elastic part 
de and a plastic part dp:

where the relationship between the elastic part and the 
rate of the stress is:

where 
▿

� is an objective derivative of the Cauchy stress ten-
sor, and C is the fourth-order isotropic elastic tensor defined 
as:

with 1 being the unit second-order tensor and �′ the unit 
deviatoric fourth-order tensor. Moreover G and K are the 
shear and bulk moduli, respectively.

Assuming an associated plastic flow rule, the plastic part 
of the rate of deformation tensor is defined as:

where 𝜆̇ is the rate of the plastic multiplier and 𝜎̄ is the 
effective stress [15] given by:

where k is the tension-compression asymmetry parameter, 
see Eq. 10a, and Σi (i = 1,...,3) are the principal values of the 
transformed stress tensor Σ defined as:

with L being an orthotropic, deviatoric, and symmetric 
fourth-order tensor, and s the deviatoric part of the Cauchy 
stress tensor σ. In the Cartesian coordinate system (X1,X2,X3) 
associated to the orthotropy axes of the material, the devi-
atoric part of the Cauchy stress tensor is represented by a 
6-dimensional vector s = (s11,s22,s33,s12,s23,s13) and the fourth-
order orthotropic tensor L is represented by a 6 × 6 matrix:

(1)� = �e + �p

(2)▿

� = � ∶ �e

(3)� = 2G�� + K�⊗ �

(4)�
p
= 𝜆̇

𝜕𝜎

𝜕�

(5)𝜎̄ = m̃
√
(�Σ1� − kΣ1)

2 + (�Σ2� − kΣ2)
2 + (�Σ3� − kΣ3)

2

(6)� = � ∶ �
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with the components of L being the anisotropy coeffi-
cients, see Eq. 10b. Moreover, the parameter m̃ in Eq. 5 is 
defined as:

with Φi (i = 1,...,3) expressed as follows:

The evolution of plastic anisotropy and tension-compres-
sion asymmetry with accumulated plastic strain is modeled 
using the methodology developed by Plunkett et al. [48]. 
Firstly, the values of the parameters k and Lij (i,j = 1,...,6), see 
Eqs. 5 and 7, are identified for selected levels of effective plas-
tic strain 𝜀̄p,1 < 𝜀̄p,2 < ... < 𝜀̄p,m . Secondly, a linear interpola-
tion is used to obtain the values of the tension-compression 
and anisotropy coefficients corresponding to any given level 
of effective plastic strain 𝜀̄p,n < 𝜀̄p < 𝜀̄p,n+1 (n = 1,...,m − 1):

where the interpolation parameter α is:

such that 𝛼(𝜀̄p,n) = 1 and 𝛼
(
𝜀̄p,n+1

)
= 0.

The yield function is defined as:

where σY is the tensile yield stress in the rolling direction 
of the material X1, given in the present work by the follow-
ing relationship:

with A0, A1 and A2 being material parameters. Notice 
that viscous and thermal effects on the yield stress evolu-
tion are neglected. Moreover, the effective plastic strain is 
𝜀̄p = ∫ t

0
̇̄𝜀pd𝜏 , where t refers to time, and ̇̄𝜀p is the effective 

plastic strain rate given by:

(7)� =

⎡⎢⎢⎢⎢⎢⎢⎣

L11 L12 L13 0 0 0

L12 L22 L23 0 0 0

L13 L23 L33 0 0 0

0 0 0 L44 0 0

0 0 0 0 L55 0

0 0 0 0 0 L66

⎤⎥⎥⎥⎥⎥⎥⎦

(8)m̃ =
1√

(�𝛷
1
�−k𝛷

1
)2+(�𝛷

2
�−k𝛷

2
)2+(�𝛷

3
�−k𝛷

3
)2

(9)

�
1
=

2

3
L
11
−

1

3
L
12
−

1

3
L
13

�
2
=

2

3
L
12
−

1

3
L
22
−

1

3
L
23

�
3
=

2

3
L
13
−

1

3
L
23
−

1

3
L
33

(10a)k(𝜀̄p) = 𝛼(𝜀̄p)k(𝜀̄p,n) + (1 − 𝛼(𝜀̄p))k
(
𝜀̄p,n+1

)

(10b)Lij(𝜀̄
p) = 𝛼(𝜀̄p)Lij(𝜀̄

p,n) + (1 − 𝛼(𝜀̄p))Lij
(
𝜀̄p,n+1

)

(11)𝛼(𝜀̄p) =
𝜀̄p,n+1−𝜀̄p

𝜀̄p,n+1−𝜀̄p,n

(12)f = 𝜎̄ − 𝜎Y

(13)𝜎Y = A0 − A1 exp
−A2𝜀̄

p

where |�| =
√

b2
1
+ b2

2
+ b2

3
 , and b1, b2 and b3 are the 

principal values of the transformed rate of deformation ten-
sor defined as:

where � ∶ � = �� with � = � ∶ ��.
Moreover, the work conjugacy relation:

yields:

The formulation of the constitutive behaviour is com-
pleted with the Kuhn–Tucker loading–unloading conditions:

and the consistency condition during plastic loading:

Materials investigated

We investigate 3 materials widely used in different industrial 
sectors and engineering applications in the form of plates 
and shells: AZ31-Mg alloy, high purity α-titanium and 
OFHC copper. Sheet products of these materials are often 
subjected to dynamic forming operations to produce com-
plex metal parts, see the introduction to this paper (Section 
“Introduction”). In addition, the three materials display very 
different yielding behaviour, see Fig. 1, increasing the scope 
of the analysis carried out in Section “Analysis and results”.

Table 1 shows the values of the initial density, the elastic 
constants and the parameters of the yield stress in the rolling 
direction [50]. We are aware that using a Voce-type harden-
ing relation Eq. 13 to describe the yield stress of the materi-
als investigated may be a crude assumption, particularly at 
high strain rates, when viscous and thermal effects –due to 
adiabatic heating– are known to affect dynamic formability 
limits [27, 29, 42]. Nevertheless, using a simple constitutive 

(14)

̇̄𝜀p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

m̃(1−k)

�
b2
1
+ b2

2
+
�

3k2−10k+3

3k2+2k+3

�
b2
3

if
b3

��� ≤
−(3k2+2k+3)√
6(k2+3)(3k2+1)

1

m̃(1+k)

�
b2
1
+ b2

2
+
�

3k2+10k+3

3k2−2k+3

�
b2
3

if
b3

��� ≥
3k2−2k+3√

6(k2+3)(3k2+1)

1

m̃(1−k)

��
3k2−10k+3

3k2+2k+3

�
b2
1
+ b2

2
+ b2

3
if

b1

��� ≤
−(3k2+2k+3)√
6(k2+3)(3k2+1)

1

m̃(1+k)

��
3k2+10k+3

3k2−2k+3

�
b2
1
+ b2

2
+ b2

3
if

b1

��� ≥
3k2−2k+3√

6(k2+3)(3k2+1)

1

m̃(1−k)

�
b2
1
+
�

3k2−10k+3

3k2+2k+3

�
b2
2
+ b2

3
if

b2

��� ≤
−(3k2+2k+3)√
6(k2+3)(3k2+1)

1

m̃(1+k)

�
b2
1
+
�

3k2+10k+3

3k2−2k+3

�
b2
2
+ b2

3
if

b2

��� ≥
3k2−2k+3√

6(k2+3)(3k2+1)

(15)� = � ∶ �p

(16)� ∶ �p = 𝜎̄ ̇̄𝜀p

(17)𝜆̇ = ̇̄𝜀p

(18)̇̄𝜀p ⩾ 0, f ⩽ 0, ̇̄𝜀pf = 0

(19)ḟ = 0
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relation reduces the number of material parameters, which 
helps in the identification of the effects of anisotropy and 
tension-compression asymmetry on dynamic formability.

The values of the anisotropy coefficients Lij (i,j = 1,...,6) 
and the tension-compression asymmetry parameter k for the 
initial yielding and for several individual levels of effective 
plastic strain are given in Table 2. Data are taken from Revil-
Baudard et al.  [50] and Cazacu et al. [16]. Recall from Sec-
tion “Formulation” that the values of Lij and k for effective 
plastic strains within the intervals reported in Table 2 are 
calculated using a linear interpolation function, see Eq. 10a. 
Moreover, in absence of additional data, we consider that 
Lij and k do not evolve for effective plastic strains outside 
the range of values included in Table 2, so that for larger 
strains the values of Lij and k for AZ31-Mg alloy, high purity 
α-titanium and OFHC copper are the same employed for 
𝜀̄p = 0.1 , 0.3 and 0.12, respectively. Moreover, notice that, 
while OFHC copper is considered to be isotropic, high 

purity α-titanium and AZ31-Mg alloy display both evolv-
ing anisotropy and tension-compression asymmetry.

Figure 1 pictures plane stress theoretical yield loci for 
biaxial loading conditions, σI versus σII, where σI and σII are 
the components of the Cauchy stress tensor in the rolling and 
transverse directions, respectively. Results are shown for the 
three materials investigated in this work and different levels 
of effective plastic strain. In the case of AZ31-Mg alloy, 
Fig. 1a, the yield locus evolves from an triangular shape for 
low values of effective plastic strain (the triangular shape is 
caused by very pronounced tension-compression asymme-
try) to an elliptical shape at large strains. On the other hand, 
notice that the evolution of the yield locus with the plastic 
strain is different for high purity α-titanium, see Fig. 1b, 
such that yield locus is initially ellipsoidal and it becomes 
triangular at large strains (increasing strength differential 
effect with plastic straining). Moreover, notice that both 
AZ31-Mg alloy and high purity α-titanium display plas-
tic anisotropy so that the yield stress in the rolling and the 

Table 1   Numerical values of 
the initial density, the elastic 
constants and the parameters 
of the yield stress in the rolling 
direction for AZ31-Mg alloy, 
high purity α-titanium and 
OFHC copper. Data taken 
from Revil-Baudard et al.  [50]

Symbol Property and units AZ31-Mg alloy High purity 
α-titanium

OFHC copper

ρ0 Initial density (kg/m3) 1800 4500 8900
G Elastic shear modulus (GPa) 17.31 42.31 46.64
K Bulk modulus (GPa) 37.5 91.67 130.2
A0 Material constant (MPa) 315.4 341 253.8
A1 Material constant (MPa) 140.6 170 224.3
A2 Material constant 16.3 7.03 10.92

Table 2   Numerical values of the anisotropy coefficients Lij and 
the tension-compression asymmetry parameter k for different val-
ues of the effective plastic strain 𝜀̄p for AZ31-Mg alloy, high purity 

α-titanium and OFHC copper. Data taken from Revil-Baudard et al.  
[50] and  Cazacu et al. [16]

Anisotropy and tension-compression asymmetry parameters

Material  𝜀̄p L11 L22 L33 L12 L13 L23 L44 L55 L66 k

AZ31-Mg alloy 0 1 1.090 3.342 − 0.168 0.098 0.243 0.730 7.30 7.74 − 0.625
0.05 1 1.090 3.342 − 0.168 0.098 0.243 0.730 7.30 7.74 − 0.625
0.06 1 1.072 2.905 − 0.595 − 0.279 − 0.096 1.039 10.2 11.02 − 0.520
0.08 1 1.099 1.432 − 0.817 − 0.516 − 0.350 1.128 11.21 11.94 − 0.215
0.10 1 1.082 0.885 − 0.762 − 0.657 − 0.509 1.058 10.12 11.21 − 0.169

High purity α-titanium 0 1 0.850 0.836 0.281 0.381 0.439 0.476 0.527 0.639 − 0.024
0.025 1 0.981 1.013 0.847 0.885 0.904 0.128 0.120 0.154 − 0.070
0.05 1 0.971 1.013 0.750 0.801 0.824 0.218 0.206 0.259 − 0.061
0.075 1 0.917 0.985 0.374 0.478 0.516 0.555 0.528 0.657 − 0.084
0.2 1 1 0.9 − 0.018 0.034 0.052 1.050 0.986 1.285 − 0.392
0.3 1 1.03 0.9 − 0.024 0.001 0.010 1.161 1.063 1.436 − 0.650

OFHC copper 0 1 1 1 0 0 0 1 1 1 0
0.03 1 1 1 0 0 0 1 1 1 − 0.084
0.06 1 1 1 0 0 0 1 1 1 − 0.127
0.09 1 1 1 0 0 0 1 1 1 − 0.137
0.12 1 1 1 0 0 0 1 1 1 − 0.137
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transverse directions is different. Moreover, for OFHC cop-
per, Fig. 1c, the predicted yield loci have an elliptical type 
shape, with the yield stress in compression being slightly 
greater than in tension (mild strength differential effect so 
that the yield loci do not become triangular). Recall that 
this material is taken to be isotropic and therefore the yield 

stress in the rolling and the transverse directions is the same. 
Appendix A provides a comparison with the plane stress 
yield loci calculated with von Mises [39] criterion, which 
illustrates the effect of anisotropy and tension-compression 
asymmetry on the mechanical behavior of AZ31-Mg alloy, 
high purity α-titanium and OFHC copper.

Fig. 1   Plane stress theoretical yield loci calculated with CPB06 criterion for biaxial loading conditions, σI versus σII, for different values of the 
effective plastic strain: (a) AZ31-Mg alloy, (b) high purity α-titanium and (c) OFHC copper
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Problem statement

The problem addressed is that of a thin plate of initial thick-
ness h0 and edges of initial length L0, modeled with the 
constitutive framework described in Section “Constitutive 
framework”, and subjected to constant and opposed stretch-
ing velocities on opposed sides, see Fig. 2. The applied 
velocities are Vx = ±𝜀̇0

xx
L0∕2 and Vy = ±𝜀̇0

yy
L0∕2 , with 𝜀̇0

xx
 

and 𝜀̇0
yy

 being the imposed initial strain rates. The loading 
condition is determined by the ratio 𝜒 = 𝜀̇0

yy
∕𝜀̇0

xx
 , which 

is varied between 0 (plane strain stretching) and ≈ 1 (near 
equibiaxial stretching) in the calculations presented in this 
paper. Hereinafter, 𝜀̇0

xx
 and 𝜀̇0

yy
 will be referred to as imposed 

initial major and minor strain rates, respectively, and χ as 
loading path. The Lagrangian Cartesian coordinate sys-
tem associated to the applied velocity field is denoted by 
(X, Y , Z) , while 

(
X1,X2,X3

)
 is a Lagrangian Cartesian frame 

defined by an angle ψ between X and X1, with X1, X2 and X3 
being the rolling, the transverse and the through-thickness 
orthotropy directions of the material, respectively (recall that 
the OFHC copper is taken to be isotropic so that for this 
material there is no need to define material axes). Herein-
after the angle ψ is referred to as material orientation (for 
OFHC copper there is no need to define the angle ψ). We 
consider the cases for which the orthotropy axes and the 
loading axes are co-directional (� = 0◦ or 90◦) , so that the 

principal directions of stress and strain are parallel (this is 
always the case for OFHC copper). Note that the direction 
perpendicular to the major stretching direction X is the ori-
entation naturally selected by the material to trigger a neck 
for the loading paths (0 ≤ χ ≤ 1) and material orientations 
(� = 0◦ or 90◦) investigated in this work. The origin of both 
Lagrangian coordinate systems is located at the center of 
mass of the plate. Note that the out-of-plane direction is 
assumed of plane stress.

The problem is approached using a three-pronged meth-
odology which includes a linear stability analysis, a nonlin-
ear two-zone model and unit-cell finite element calculations. 
The main novelty is to extend the recent work of N’souglo 
et al.  [42] –which investigated materials described with 
the orthotropic yield criterion of Hill [24]– to consider the 
orthotropic and tension-compression asymmetric yield crite-
rion with distortional hardening described in Section “Con-
stitutive framework”. A brief note on the three approaches 
is provided next, while the reader is referred to the papers 
of N’souglo et al.  [42] and Jacques [29] to obtain details on 
the basic features of the mathematical derivation of stability 
analysis and non-linear two-zone model, respectively, and to 
the papers of Rodríguez-Martínez et al. [52] and N’souglo 
et al.  [42] for a complete description of the finite element 
model (with the difference that in this paper we consider 
the constitutive framework presented in Section “Constitu-
tive framework”). In addition, in Supplementary material 
we provide a link to download all the codes developed for 
the implementation of the linear stability analysis and the 
nonlinear two-zone model in Wolfram Mathematica with 
specific instructions for reproducing the theoretical predic-
tions reported in Section “Analysis and results”.

Linear stability analysis

This technique is based on the superposition of a small per-
turbation on the homogeneous solution of the problem, so 
that if the perturbation grows faster than the background 
solution, the plastic flow is unstable and a non-homogene-
ous, neck-like deformation field can develop. We have used 
the same 2D approach employed in [43, 51, 63] so that the 
stress multiaxiality effects that develop inside the necked 
section have been approximated using Bridgman [11] cor-
rection. The fundamental solution of the problem is com-
posed of 16 equations which are nondimensionalized, per-
turbed using the frozen coefficients method and linearized 
(note that in the case of N’souglo et al.  [42] the number of 
equations was 17 because the energy balance was taken into 
account). Imposing that the determinant of the matrix of 
coefficients of the resulting system of dimensionless linear 
algebraic equations is equal to zero leads to a third order 
polynomial for the instantaneous growth rate of the pertur-
bation η which depends on the fundamental solution and on 

Fig. 2   Schematic representation of the geometry and boundary condi-
tions of the problem addressed: a thin plate of initial thickness h0 and 
edges of initial length L0 subjected to constant and opposed stretch-
ing velocities Vx = ±𝜀̇0

xx
L0∕2 and Vy = ±𝜀̇0

yy
L0∕2 on opposed sides. 

The Lagrangian Cartesian coordinate system associated to the applied 
velocity field is denoted by (X,Y ,Z) , while 

(
X1,X2,X3

)
 is a Lagran-

gian Cartesian frame defined by an angle ψ between X and X1, with 
X1, X2 and X3 being the rolling, the transverse and the through-thick-
ness orthotropy directions of the material, respectively. The origin of 
both Lagrangian coordinate systems is located at the center of mass 
of the plate. The out-of-plane direction is assumed of plane stress
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the perturbation wavenumber ξ. The root of the polynomial 
with physical meaning is the one with the greatest positive 
real part [19], hereinafter denoted by η+. The wavenum-
ber is related to the normalized perturbation wavelength 
L̄ = L0∕h0 as L̄ =

2𝜋𝜉−1

h0
 . Hereinafter, L̄ will be also referred 

to as necking wavelength. On the other hand, the instantane-
ous growth rate is used to compute the cumulative instability 
index Ī = ∫ t

0
𝜂+d𝜏 which tracks the history of the instanta-

neous grow rate of all the growing modes. Assuming that 
a perturbation mode turns into a necking mode when the 
cumulative instability index reaches a critical value which 
depends on the loading path and the strain rate, the linear 
stability analysis is used to construct forming limit diagrams 
which are compared with nonlinear two-zone model predic-
tions and unit-cell finite element simulations. The procedure 
for calibration of the linear stability analysis is detailed in 
Appendix B, and the influence of the calibration procedure 
in the stability analysis predictions is shown in Appendix C.

Nonlinear two‑zone model

The non-linear two-zone model [29] is an extension of the 
classical analysis of localized necking proposed by Mar-
ciniak and Kuczyński [37] to account for inertia effects. 
The model considers an imperfection in the form of a band 
of reduced thickness, perpendicular to the main straining 
direction, at the center of a unit-cell of length L0 (see Fig. 4 
in N’souglo et al.  [42]). Note that L0 also corresponds to 
the neck spacing. The initial thickness in the imperfection 
zone is hA,0 = h0(1 −Δ), Δ being the normalized imperfec-
tion amplitude. The ratio between the initial length of the 
imperfection LA,0

x
 and the initial unit-cell length is denoted 

by R = LA,0
x

∕L0 . In the present work, the value of this param-
eter was set to R = 0.28. This value was identified in the 
case of isotropic material [29] and was found to remain 
appropriate for orthotropic materials obeying the Hill [24] 
yield criterion [42]. The methodology to obtain necking 
strains with the two-zone model is described in Section 2.5 
of Jacques [29]. Computations have been carried out for sev-
eral normalized cell sizes, 0.5 ≤ L̄ ≤ 6 with L̄ =

L0

h0
 and h0 

= 2 mm, in order to identify the critical neck spacing and 
the corresponding necking strains (critical necking strains). 
The results presented in Section “Analysis and results” have 
been obtained with a normalized imperfection amplitude Δ 
= 0.2%. This value has been chosen arbitrarily. It would have 
been probably possible to improve the agreement with the 
experimental results (see Section “The influence of mate-
rial behavior”) by adjusting the value of Δ for each material 
investigated. However, in order to illustrate the influence of 
the material behavior on formability, we have preferred to 
keep the same value of Δ for all calculations.

Unit‑cell finite element calculations

The simulations consider a unit cell with a sinusoidal spatial 
imperfection defined as h = h0 − �

(
1 + cos

(
2�X

L0

))
 , where 

δ is the amplitude of the imperfection. Exploiting the sym-
metry of the model, only one eight of the plate has been 
analyzed, with reference configuration (imperfection-free) 
defined by the domain 0 ≤ X ≤ L0

2
 , 0 ≤ Y ≤ L0

2
 and 

0 ≤ Z ≤ h0

2
 . Recall that the origin of coordinates of the 

Lagrangian Cartesian coordinate system (X, Y , Z) is located 
at the center of mass of the whole cell. As in the two-zone 
model calculations, we consider several normalized cell 
sizes 0.5 ≤ L̄ ≤ 6 with L̄ =

L0

h0
 and h0 = 2 mm fixed, and the 

normalized imperfection amplitude is Δ =
2�

h0
= 0.2% . Note 

that the normalized cell size L̄ will be also called necking 
wavelength, to be consistent with the notation employed in 
the stability analysis and the two-zone model. The finite ele-
ment calculations are performed with the finite element soft-
ware ABAQUS under the initial and boundary conditions 
defined in equations (45) and (46) of N’souglo et al.  [42], 
which are consistent with the stability analysis and the two-
zone model. The unit-cell calculations have been carried out 
for selected loading paths χ = 0, 0.125, 0.25, 0.375, 0.5, 
0.625 and 0.75. The major stretching direction coincides 
with the X axis. The finite element model is meshed with 
eight-node solid elements, with reduced integration and 
hourglass control (C3D8R in ABAQUS notation), with 
dimensions ≈ 25 × 25 × 50 μm3 (elements are initially 
shorter along the loading directions). The constitutive model 
presented in Section “Constitutive framework” has been 
implemented in  ABAQUS/Standard [2] and  ABAQUS/
Explicit [1] via UMAT and VUMAT user subroutines, 
respectively, using the stress-update algorithm based on the 
numerical approximation of the yield function gradients 
developed by Hosseini and Rodríguez-Martínez [25]. The 
UMAT [2] has been used to obtain the low strain rate finite 
element results, 0.0001 s− 1 and 100 s− 1, reported in Figs. 3 
and 13, and the VUMAT [1] has been used to obtain all the 
other finite element calculations reported in this paper for 
higher strain rates. Note that both ABAQUS/Standard and 
Explicit simulations take inertia effets into account. The dif-
ference is that the time integration of the equations of motion 
is based on the central difference scheme in ABAQUS/
Explicit [1] and on the Hilbert-Hughes-Taylor (HHT) 
method in ABAQUS/Standard [2]. The use of the implicit 
HHT scheme leads to smaller computation times for low or 
moderate loading rates, while the explicit scheme is more 
efficient for highly dynamic loading conditions. Note also 
that ABAQUS/Explicit uses the Green-Naghdi rate to com-
pute the objective derivative of the stress (see Eq. 2), while 
the stress rate in ABAQUS/Standard corresponds to the Jau-
mann derivative.
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Fig. 3   Quasi-static forming limit diagrams obtained with unit-cell 
calculations (FEM), linear stability analysis (LSA) and two-zone 
model (2ZM) for: (a) AZ31-Mg alloy with material orientations ψ 
= 0∘ and ψ = 90∘, (b) high purity α-titanium with material orientations 
ψ = 0∘ and ψ = 90∘ and (c) OFHC copper. Comparison with calcula-
tions in which the material behavior is modeled with von Mises plas-
ticity (i.e. imposing on the CPB06 criterion k = 1 and Lij = δij, with i,j 

= 1,...,6 and δij being the Kronecker unit delta) and the same values of 
initial density, elastic constants and parameters of the yield stress (see 
Table  1). The experimental data corresponding to AZ31-Mg, high 
purity α-titanium and OFHC copper are taken from  Choi et al. [17], 
Stachowicz [57] and Melander [38], respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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Analysis and results

Calculations have been performed with the three approaches 
outlined in previous section (stability analysis, two-zone 
model and unit-cell finite element model) for loading paths 

varying from plane strain tension to near equibiaxial tension 
(0 ≤ χ ≤ 1, see Section “Problem statement”) and differ-
ent loading rates varying from quasi-static loading up to 
𝜀̇0
xx
= 40000 s−1 . Note that this value is larger than the strain 

rate generally attained in dynamic forming processes (e.g. 

Fig. 4   Forming limit diagrams obtained with unit-cell calcula-
tions (FEM), linear stability analysis (LSA) and two-zone model 
(2ZM) for AZ31-Mg alloy and different initial major strain rates: 
(a) 𝜀̇0

xx
= 5000 s−1 , (b) 𝜀̇0

xx
= 10000 s−1 , (c) 𝜀̇0

xx
= 20000 s−1 and (d) 

𝜀̇0
xx
= 40000 s−1 . Comparison with calculations in which the material 

behavior is modeled with von Mises plasticity (i.e. imposing on the 
CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the 
Kronecker unit delta) and the same values of initial density, elastic 
constants and parameters of the yield stress (see Table 1)
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see Dariani et al. [18], Golovashchenko et al. [23] and Li 
et al. [35], among others), but allows a further exploration 
of inertia effects. Recall that formulation of linear stability 
analysis and nonlinear two-zone model for materials with 
complex mechanical behavior including evolving anisotropy 
and tension-compression asymmetry is the main method-
ological contribution of this work. Results are shown for 
AZ31-Mg alloy, high purity α-titanium and OFHC copper, 
with material parameters reported in Tables 1 and 2. For 
AZ31-Mg alloy and high purity α-titanium, which unlike 
OFHC copper display plastic anisotropy, calculations are 
carried out for two material orientations ψ = 0∘ and ψ = 90∘ 
(see Section “Problem statement”). Note that all the results 
obtained in this section using the two-zone model and the 
stability analysis for the materials modeled with the CPB06 
criterion are predictions, as the two-zone model does not 
need prior calibration (see Section “Problem statement”), 
and the stability analysis is calibrated using finite element 
simulations different from those presented below (see 
Appendix B). In Section “The influence of material behav-
ior”, quasi-static forming limit diagrams obtained for the 
three materials are systematically compared with experimen-
tal results available in the literature and with calculations 
in which the material behavior is modeled with von Mises 
plasticity (i.e. imposing on the CPB06 criterion k = 1 and 
Lij = δij, with i,j = 1,...,6 and δij being the Kronecker unit 
delta) and the same values of initial density, elastic constants 
and parameters of the yield stress (see Table 1). In Section 
“The influence of loading rate”, calculations performed for 
different loading rates are compared to identify the effect 
of inertia on the necking formability of the materials inves-
tigated. Recall that in Supplementary material we provide 
access to the codes developed for the implementation of the 
stability analysis and the two-zone model, so that the inter-
ested reader can reproduce the results reported in this paper.

The influence of material behavior

Figure 3 displays forming limit diagrams (critical major 
necking strain �c

xx
 versus critical minor necking strain �c

yy
 ) 

predicted by the stability analysis, the nonlinear two-zone 
model and the unit-cell finite element calculations. The criti-
cal major necking strain is the logarithmic strain in the major 
loading direction when necking occurs and it is determined as 
in N’souglo et al.  [42], so that the reader is referred to Sec-
tion 6.1 therein for the procedure to obtain �c

xx
 , and no addi-

tional details are provided here for the sake of brevity. The 
critical minor necking strain �c

yy
 is the logarithmic strain in 

the minor loading direction when �c
xx

 is measured. The results 
correspond to AZ31-Mg alloy with material orientations ψ 
= 0∘ and 90∘, see Fig. 3a, high purity α-titanium with ψ = 0∘ 
and 90∘, see Fig. 3b, and OFHC copper, see Fig. 3c. A com-
parison is performed with calculations in which the material 

behavior is modeled with von Mises plasticity (i.e. imposing 
on the CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 
and δij being the Kronecker unit delta) and the same values of 
initial density, elastic constants and parameters of the yield 
stress (see Table 1). The results are obtained for an imposed 
strain rate of 𝜀̇0

xx
= 100 s−1 , that for all purposes can be con-

sidered quasi-static loading for the calculations performed in 
this work, as for this loading rate the effect of inertia on the 
necking formability of the three materials is negligible (for 
the specimen thickness considered), see Appendix D.

The �c
xx
− �c

yy
 curves display a concave-downward shape, 

with the formability increasing as the loading path moves 
away from plane strain tension. The results obtained with 
the stability analysis and the nonlinear two-zone model are 
in qualitative agreement with the finite element calculations 
–which are considered as the reference approach to validate 
the theoretical models– for the three materials investigated. 
For AZ31-Mg, see Fig. 3a, the formability for the von Mises 
material (black lines and markers) becomes greater than the 
results obtained with the CPB06 criterion as the loading 
path moves away from plane strain; the values of �c

xx
 being 

slightly larger for ψ = 0∘ (red lines and markers) than for ψ 
= 90∘ (green lines and markers). By analogy with the results 
of N’souglo et al.  [42] for materials modeled with Hill [24] 
criterion, the relative order of the �c

xx
− �c

yy
 curves obtained 

with von Mises and CPB06 models depends on the Lankford 
coefficient when the material is considered anisotropic, the 
general trend being that if the Lankford coefficient is greater 
than 1 (as it is the case of AZ31-Mg for ψ = 0∘ and 90∘, such 
that r0◦ = 1.40 and r90◦ = 1.88 for 𝜀̄p ≥ 0.1 , see equation 
(17) in Cazacu et al. [15]) the von Mises material displays 
greater formability. In addition, Appendix A shows that the 
CPB06 criterion predicts greater curvature of the yield locus 
near equibiaxial tension than von Mises, which is assumed 
to decrease the material formability. The experimental form-
ability results reported by Choi et al. [17] (orange markers) 
for AZ31B sheets obtained using the limiting dome height test 
(see Fig. 3b therein) are also included in Fig. 3a. Near plane 
strain tension, the experimental data are in good quantitative 
agreement with the finite element predictions, however, as the 
loading path moves away from plane strain, the agreement 
gets slightly worse. On the other hand, both stability analysis 
and two-zone model predictions overestimate the experimen-
tal results with the differences increasing as the loading path 
moves away from plane strain. Fig. 3b pictures the results 
corresponding to high purity α-titanium. As in the case of 
AZ31-Mg alloy, the calculations using von Mises criterion 
yield greater values for the critical major necking strain as 
the loading path moves away from plane strain tension, and 
the lower formability corresponds to the CPB06 criterion 
with orientation ψ = 90∘. As mentioned before, this can be 
attributed to the fact that the anisotropic material displays a 
Lankford coefficient greater than 1 for ψ = 0∘ and 90∘ (namely, 
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r0◦ = 1.09 and r90◦ = 1.11 for 𝜀̄p ≥ 0.3 ), and also because the 
curvature of the yield locus near equibiaxial tension is greater 
than for the von Mises material, see Appendix A. In Fig. 3b 
the experimental data reported in Fig. 7 of Stachowicz [57] for 
high purity α-titanium sheets are included. The finite element 
predictions are in very good agreement with the experiments. 
The two-zone model slightly underestimates the experimental 
data for all the loading paths and the linear stability analy-
sis slightly underestimates/overestimates the experimental 
data for loading paths near plane strain/equibiaxial tension. 
We have also included in Fig. 3c the experiments reported 
in Fig. 10 of Melander [38] for OFHC copper sheets. The 
numerical simulations and analytical models show good over-
all qualitative agreement with the experimental results. More-
over, note that for OFHC copper both theoretical models and 
the finite element calculations show that the predictions using 
von Mises plasticity are above the results obtained for CPB06 
as the loading path moves away from plane strain stretching 
and approaches equibiaxial tension. We have checked that 
taking k positive (see Table 2) the trend is reversed (results 
are not shown for the sake of brevity), and the critical major 
necking strain is smaller using von Mises plasticity, suggest-
ing that for an imposed value of the initial major strain rate, 
the formability increases for a material that displays a larger 
yield stress in uniaxial tension than in uniaxial compression.

These results make apparent the influence of the yield 
criterion on the materials formability (for the same elastic 

constants and yield stress parameters), and the capacity of 
both stability analysis and two-zone model to provide pre-
dictions which are in good accord with experiments and 
consistent with finite element results.

The influence of loading rate

Figure 4 shows forming limit diagrams obtained with unit-
cell calculations, linear stability analysis and two-zone 
model for AZ31-Mg alloy and different initial major strain 
rates (5000 s− 1, 10000 s− 1, 20000 s− 1 and 40000 s− 1) for 
which the effect of inertia on the formability of the mate-
rial is noticeable. The agreement between the predictions 
obtained with the analytical models and the finite element 
calculations is reasonably good for all loading paths and 
strain rates. Notice that, as the value of 𝜀̇0

xx
 increases, the 

�c
xx
− �c

yy
 curves are shifted upwards. Moreover, as the load-

ing path moves away from plane strain tension, the von 
Mises criterion predicts greater formability than the CPB06 
model (as in the results shown in Fig. 3a).

The evolution of the critical major necking strain with the 
imposed initial major strain rate for χ = 0 (plane strain tension) 
and χ = 0.5 is shown in Fig. 5. The 𝜀c

xx
− 𝜀̇0

xx
 curves display a 

concave-upward shape, so that the necking strain is roughly 
constant for strain rates lower than ≈ 1000 s− 1 (negligible iner-
tia effects, see Appendix D), and then increases nonlinearly for 
greater strain rates. For plane strain tension, the unit cell finite 

Fig. 5   Critical major necking strain �c
xx

 versus imposed initial major 
strain rate 𝜀̇0

xx
 obtained with unit-cell calculations (FEM), linear sta-

bility analysis (LSA) and two-zone model (2ZM) for AZ31-Mg alloy. 
The loading path is: (a) χ = 0 (plane strain stretching) and (b) χ = 0.5. 
Comparison with calculations in which the material behavior is mod-

eled with von Mises plasticity (i.e. imposing on the CPB06 criterion 
k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the Kronecker unit 
delta) and the same values of initial density, elastic constants and 
parameters of the yield stress (see Table 1)
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element calculations predict that the increase of the necking 
strain is Δ�c

xx
|40000 s−1

100 s−1
=

�c
xx
|40000 s−1−�

c
xx
|100 s−1

�c
xx
|100 s−1

= 223% for the von 
Mises criterion, and 247% and 239% for the CPB06 criterion 
with orientations ψ = 0∘ and 90∘, respectively. Similar quantita-
tive results are obtained with the stability analysis and the 

two-zone model. For χ = 0.5, the 𝜀c
xx
− 𝜀̇0

xx
 curves are shifted 

upwards since necking is delayed as the loading path moves 
away from plane strain. The increase of the necking strain with 
the strain rate is Δ�c

xx
|40000 s−1

100 s−1
= 88% for the finite element 

calculations carried out with von Mises criterion, and 214% 

Fig. 6   Forming limit diagrams obtained with unit-cell calculations 
(FEM), linear stability analysis (LSA) and two-zone model (2ZM) 
for high purity α-titanium and different initial major strain rates: 
(a) 𝜀̇0

xx
= 5000 s−1 , (b) 𝜀̇0

xx
= 10000 s−1 , (c) 𝜀̇0

xx
= 20000 s−1 and (d) 

𝜀̇0
xx
= 40000 s−1 . Comparison with calculations in which the material 

behavior is modeled with von Mises plasticity (i.e. imposing on the 
CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the 
Kronecker unit delta) and the same values of initial density, elastic 
constants and parameters of the yield stress (see Table 1)
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and 241% for the calculations performed with CPB06 criterion 
with ψ = 0∘ and 90∘, respectively. This shows that the influence 
of strain rate on necking strains is strongly dependent on the 
yield criteria considered. The results presented in Fig. 5 indi-
cate that the stabilizing effect of inertia at high strain rates is 
enhanced for materials having low formability. The increase 
of the necking strain with the strain rate computed with the 
CPB06 model is of the same order as in the experiments of Xu 
et al. [62] (see Section “Introduction”). Moreover, note that for 
von Mises the finite element calculations show that the stabi-
lizing effect of inertia strongly decreases as the loading path 
moves away from plane strain (the same trend was obtained in 
the unit-cell calculations performed by Rodríguez-Martínez 
et al. [52] and N’souglo et al.  [42] for materials modeled with 
von Mises [39] and Hill [24] criteria); however, this trend is 
less evident for the calculations performed with CPB06, show-
ing that the effect of inertia on neck retardation depends on the 
yield criterion.

Figure 6 shows the forming limit diagrams for high purity 
α-titanium and the same strain rates considered in the calcu-
lations performed for AZ31-Mg alloy, i.e. 5000 s− 1, 10000 
s− 1, 20000 s− 1 and 40000 s− 1. The relative order of the 
�c
xx
− �c

yy
 curves is independent of the strain rate, with the 

von Mises material displaying greater formability, being the 
results obtained with the CPB06 criterion for ψ = 0∘ and 90∘ 
very similar (see Section “The influence of material behav-
ior”). While both theoretical models predictions find good 

correlation with the finite element results, the stability analy-
sis generally overestimates the limit strains obtained from 
the unit-cell calculations, and the opposite trend is obtained 
with the two-zone model.

The results for the evolution of the critical major necking 
strain with the imposed initial major strain rate shown in 
Fig. 7 for χ = 0 and 0.5 display the ability of both theoretical 
models to capture the effect of inertia on neck retardation 
for high purity α-titanium (differences between theoreti-
cal model predictions and finite element calculations being 
less than 10%). For plane strain tension, the increase of the 
necking strain with the strain rate is Δ�c

xx
|40000 s−1

100 s−1
= 245% 

for von Mises criterion, and 212% and 255% for the finite 
element calculations performed with CPB06 model with ψ 
= 0∘ and 90∘, respectively. For χ = 0.5, the effect of inertia 
is significantly less, and the increases become 94% for von 
Mises, and 127% and 153% for CPB06 with ψ = 0∘ and 90∘, 
respectively. These results reinforce the idea that the stabi-
lizing effect of inertia depends on both the loading path and 
the yield criterion.

Figure 8 shows forming limit diagrams for OFHC cop-
per and the same values of the initial major strain rate con-
sidered in Figs. 4 and 6, i.e., 5000 s− 1, 10000 s− 1, 20000 
s− 1 and 40000 s− 1. Recall from Section “The influence of 
material behavior” that as the loading path moves away from 
plane strain the critical major necking strains corresponding 
to von Mises criterion are above the results obtained with 

Fig. 7   Critical major necking strain �c
xx

 versus imposed initial major 
strain rate 𝜀̇0

xx
 obtained with unit-cell calculations (FEM), linear sta-

bility analysis (LSA) and two-zone model (2ZM) for high purity 
α-titanium. The loading path is: (a) χ = 0 (plane strain stretching) 
and (b) χ = 0.5. Comparison with calculations in which the material 

behavior is modeled with von Mises plasticity (i.e. imposing on the 
CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the 
Kronecker unit delta) and the same values of initial density, elastic 
constants and parameters of the yield stress (see Table 1)
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CPB06 model because the yield stress in uniaxial compres-
sion is greater than in uniaxial tension (i.e. because k < 0, 
see Table 2). We have checked that, for the whole range 
of strain rates investigated, considering the same absolute 
values of the tension-compression parameter k, yet positive, 
yields critical major necking strains above the von Mises 

predictions. The reader is referred to the paper of N’souglo 
et al. [43] for specific analysis and discussion on the effect of 
the strength differential effect on the dynamic necking form-
ability of ductile sheets subjected to plane strain stretching. 
The electrohydraulic forming experiments reported by Bal-
anethiram and Daehn [6] for OFHC copper sheets tested 

Fig. 8   Forming limit diagrams obtained with unit-cell calcula-
tions (FEM), linear stability analysis (LSA) and two-zone model 
(2ZM) for OFHC copper and different initial major strain rates: (a) 
𝜀̇0
xx
= 5000 s−1 , (b) 𝜀̇0

xx
= 10000 s−1 , (c) 𝜀̇0

xx
= 20000 s−1 and (d) 

𝜀̇0
xx
= 40000 s−1 . Comparison with calculations in which the material 

behavior is modeled with von Mises plasticity (i.e. imposing on the 
CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the 
Kronecker unit delta) and the same values of initial density, elastic 
constants and parameters of the yield stress (see Table 1). The experi-
mental data are taken from Balanethiram and Daehn [6]
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at strain rates that were estimated to be ≈ 500 s− 1 –this is 
a lower bound estimate obtained from a simple analytical 
model. Subsequently, more refined analyses of the deforma-
tion during conical-die electrohydraulic forming based on 
finite element computations revealed that strain rates larger 
than 10000 s− 1 are achieved in some parts of the specimen 
[28]– are compared in Fig. 8c with the results obtained using 
both analytical approaches and the finite element calcula-
tions. The agreement between experimental data, two-zone 
model and finite element calculations is satisfactory, how-
ever, the stability analysis underestimates the formability 
obtained with the finite elements near plane strain tension 
for 40000 s− 1. The evolution of the critical major necking 
strain with the imposed initial major strain rate for χ = 0 and 
0.5 is pictured in Fig. 9a and b, respectively. These graphs 
make apparent the underestimation by the stability analy-
sis of the stabilizing effect of inertia at high strain rates. A 
reason for this disagreement is that the stability analysis 
has been calibrated using the physical constants and yield 
stress parameters corresponding to AZ31-Mg, which has 
a mass density ≈ 5 times smaller than copper (see Table 1), 
so that the dependence of the critical instability index with 
the strain rate underestimates the effect that inertia has on 
necking in copper (we have checked that calibrating the set 
of coefficients of the critical instability index using the initial 
density, elastic constants and parameters of the yield stress 
corresponding to OFHC copper, see Table 3, the stability 

analysis predicts greater stabilizing effect of inertia at high 
strain rates; see also the results in Fig. 12 where the cali-
bration with OFHC copper yields slightly greater values 
of critical major necking strain). Moreover, the increase 
of the necking strain with the strain rate computed with 
the finite element calculations for plane strain tension is 
�c
xx
|40000 s−1

100 s−1
= 352% and 308% for the von Mises criterion 

and the CPB06 model, respectively. These values are simi-
lar to the experimental data reported by Balanethiram and 
Daehn [6] (see Table 1 therein) and they are greater than for 
AZ31-Mg alloy and high purity α-titanium (see the para-
graphs above), which makes apparent that the contribution 
of inertia to neck retardation depends on the material. For χ 
= 0.5, the increase of the necking strain with the strain rate 
for both von Mises and CPB06 yield criteria is 126% and 
191%; i.e., smaller than for plane strain tension.

Recall from Section “Materials investigated” that we have 
not considered viscous and thermal effects on the behav-
ior of the materials. For specific insights into the role that 
thermal softening and strain rate sensitivity have on form-
ing limit diagrams of anisotropic materials, the reader is 
referred to Section 6.4 of N’souglo et al.  [42]. The general 
trend is that, while thermal softening promotes early necking 
localization, the strain rate sensitivity increases the form-
ability of ductile metals. Furthermore, additional results are 
presented in Appendix E to shed light on the specific influ-
ence of tension-compression asymmetry on the formability.

Fig. 9   Critical major necking strain �c
xx

 versus imposed initial major 
strain rate 𝜀̇0

xx
 obtained with unit-cell calculations (FEM), linear sta-

bility analysis (LSA) and two-zone model (2ZM) for OFHC copper. 
The loading path is: (a) χ = 0 (plane strain stretching) and (b) χ = 0.5. 
Comparison with calculations in which the material behavior is mod-

eled with von Mises plasticity (i.e. imposing on the CPB06 criterion 
k = 1 and Lij = δij, with i,j = 1,...,6 and δij being the Kronecker unit 
delta) and the same values of initial density, elastic constants and 
parameters of the yield stress (see Table 1)
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Concluding remarks

In this work, we have used a linear stability analysis, a non-
linear two-zone model and unit-cell finite element calcula-
tions to investigate the necking formability of anisotropic and 
tension-compression asymmetric metallic sheets subjected to 
in-plane loading for different paths ranging from plane strain 
tension to near equibiaxial tension, and loading rates varying 
from quasi-static loading to strain rates up to 40000 s− 1. We 
have studied three different materials –AZ31-Mg alloy, high 
purity α-titanium and OFHC copper– whose mechanical behav-
ior is described with an elastic-plastic constitutive model with 
yielding defined by the orthotropic and asymmetric CPB06 
criterion [15] which includes specific features to consider the 
evolution of plastic anisotropy and strength differential effect 
with accumulated plastic deformation [48]. AZ31-Mg alloy 
and high purity α-titanium display both plastic anisotropy and 
tension-compression asymmetry while OFHC copper displays 
only tension-compression asymmetry. The main novelty of this 
contribution is the extension of the recent work of N’souglo 
et al.  [42] —which investigated materials described with the 
orthotropic yield criterion of Hill [24]– to consider anisotropic 
and tension-compression asymmetric materials with distor-
tional hardening. The predictions obtained with the analytical 
models have been compared with the unit-cell finite element 
simulations and experimental data obtained from the litera-
ture. The linear stability has been calibrated using finite ele-
ment calculations, assuming that a perturbation mode turns into 
a necking mode when the cumulative index reaches a critical 
value that depends on the loading path and the strain rate. As 
in the work of N’souglo et al.  [42], the formability depends on 
the Lankford coefficient for AZ31-Mg alloy and high purity 
α-titanium which exhibit anisotropy, the general trend being 
that greater Lankford coefficient leads to lower formability. For 
OFHC copper, our results suggest that the formability increases 
for a material that displays a larger yield stress in uniaxial ten-
sion than in uniaxial compression. Furthermore, all the three 
approaches revealed that the effect of inertia on neck retarda-
tion depends on both the loading path and the yield criterion 
and that the stabilizing effect of inertia at high strain rates is 
enhanced for materials having low formability. The results 
obtained with the analytical models are in good accord with 
the experiments and consistent with the finite element results, 
for all loading paths and strain rates investigated. The nonlinear 
two-zone model, unlike the linear stability analysis, does not 
need prior calibration and yields accurate predictions that rarely 
deviate more than 10% from the results obtained with the unit-
cell calculations. All in all, the theoretical tools developed in 
this paper capture the mechanisms which control necking form-
ability of metallic materials with complex mechanical response, 
providing guidelines and predictions for the application of low 
formability metals in high energy forming operations.

Appendix A: Comparison of von Mises 
and CPB06 yield criteria

Figure 10 provides a comparison of plane stress yield loci 
calculated with von Mises and CPB06 criteria for AZ31-Mg 
alloy, high purity α-titanium and OFHC copper. The yel-
low markers indicate the tensile plane strain and equibiaxial 
tension stress states (the loading paths investigated in this 
work lie within the yellow markers). For the three materi-
als, the yield locus calculated with CPB06 is exterior to the 
von Mises ellipsoid, such that the curvature of the yield loci 
near equibiaxial tension is greater when the anisotropy and 
tension-compression asymmetry of the material is taken into 
account. Sowerby and Duncan [56], Parmar and Mellor [46] 
and N’souglo et al.  [42], among others, have reported that 
for materials modeled with Hill [24] criterion, the form-
ability decreases as the yield locus stretches out (i.e., as the 
maximum curvature of the yield locus increases compared 
to a von Mises material), and this trend seems to be con-
sistent with the results obtained in this work with CPB06 
criterion, see Section “Analysis and results”. The greatest 
differences between CPB06 and von Mises yield loci cor-
respond to AZ31-Mg alloy and high purity α-titanium, while 
for OFHC copper the differences are less, as in the forming 
limit diagrams reported in Section “Analysis and results”.

Appendix B: Calibration of the linear 
stability analysis

The calibration of the linear stability analysis has been per-
formed following the procedure proposed in Section 3.1 
of Kumar et al.  [33]. As stated in Section “Problem state-
ment”, we consider that the stability analysis predicts the 
formation of a neck when the cumulative instability index 
reaches a critical value Ic which depends on the imposed 
initial major strain rate and on the loading path (note that 
in N’souglo et al. [42, 43] the critical instability index lead-
ing to necking formation was considered to be constant):

where a, b, c, d and e are calibration coefficients to be 
determined. For that purpose, we use a sequential procedure 
consisting of two-steps in which the results of the stabil-
ity analysis for the evolution of the major necking strain 
�neck
xx

 with the necking wavelength L̄ are fitted to unit-cell 
finite element simulations in which the material behaviour 
is modelled with von Mises plasticity (i.e. imposing on the 
CPB06 criterion k = 1 and Lij = δij, with i,j = 1,..., 6 and δij 
being the Kronecker unit delta) and with values of initial 
density, elastic constants and parameters of the yield stress 
corresponding to AZ31-Mg alloy (see Table 1).

(B.1)Ic
(
𝜀̇0
xx
,𝜒

)
= a + b𝜒 + c𝜀̇0

xx
+ d𝜒2 + e

(
𝜀̇0
xx

)2
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1.	 For plane strain tension χ = 0 and initial major strain 
rates 𝜀̇0

xx
= 100 s−1 , 5000 s− 1 and 20000 s− 1, the best fit-

ting between stability analysis and finite element results 
is obtained for Ic = 2.5, 2.7 and 3.2, see Fig. 11a, leading 
to the values of a, c and e reported in Table 3.

2.	 For imposed initial major strain rate 𝜀̇0
xx
= 5000 s−1 and 

loading paths χ = 0.5 and 0.75, the best fitting between 

stability analysis and finite element results is obtained 
for Ic = 4 and 4.4, see Fig. 11b, leading to the values of 
b and d reported in Table 3.

On the other hand, the value of the critical instability 
index coefficients depends on the mechanical behavior of the 
material used for the calibration. Namely, using the initial 

Fig. 10   Comparison of plane stress theoretical yield loci for biax-
ial loading conditions, σI versus σII, calculated with von Mises and 
CPB06 criteria: (a) AZ31-Mg alloy, (b) high purity α-titanium and 
(c) OFHC copper. The yellow markers indicate the tensile plane 

strain and equibiaxial tension stress states. (For interpretation of the 
references to color in this figure legend, the reader is referred to the 
web version of this article.)
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density, elastic constants and parameters of the yield stress 
corresponding to high purity α-titanium and OFHC cop-
per, see Table 1, different values of a,...,e are obtained, see 
Table 3. While all the stability analysis results presented in 
Section “Analysis and results” are computed with the cali-
bration coefficients obtained with the material parameters 
corresponding to AZ31-Mg alloy; we have checked that the 
same qualitative results –same trends and conclusions– are 
obtained calibrating the stability analysis with the material 
parameters corresponding to high purity α-titanium and 
OFHC copper, see Appendix C.

Appendix C: The influence of the stability 
analysis calibration procedure

Figure 12 compares forming limit diagrams, �c
xx

 versus �c
yy

 , 
predicted by the linear stability analysis using the three sets 
of critical instability index coefficients reported in Table 3. 
Results correspond AZ31-Mg alloy with ψ = 0∘ and 90∘, see 
Fig. 12a, high purity α-titanium with ψ = 0∘ and 90∘, see 
Fig. 12b, and OFHC copper, see Fig. 12c. A comparison is 
performed with calculations in which the material behavior 

is modeled with von Mises plasticity and the same values 
of initial density, elastic constants and parameters of the 
yield stress (see Table 1). The initial major strain rate is 
𝜀̇0
xx
= 20000 s−1.

The predictions of the stability analysis are quantitatively 
different for the three sets of critical instability index coef-
ficients. Namely, the calibration with the material param-
eters corresponding to OFHC copper yields limit strains 
slightly larger than the results obtained with the parameters 
of AZ31-Mg alloy and high purity α-titanium (which are 
very similar), the differences increasing near equibiaxial ten-
sion. On the other hand, note that the relative order of the 
�c
xx
− �c

yy
 curves obtained with CPB06 and von Mises yield 

criteria is the same for the three sets of coefficients. For 
instance, in Fig. 12a, for the three sets of critical instability 
index coefficients, the greater critical major necking strain 
corresponds to the von Mises material, and the smaller to 
the CPB06 material with ψ = 90∘. Similar analysis can be 
performed for the results reported in Fig. 12b and c, which 
shows that the trends and conclusions obtained in this paper 
with the stability analysis calculations are independent of 
the set of critical instability index coefficients employed.

Fig. 11   Calibration of the linear stability analysis (LSA) with unit-
cell finite element calculations (FEM). Major necking strain �neck

xx
 

versus necking wavelength L̄ for von Mises material with values of 
initial density, elastic constants and parameters of the yield stress cor-
responding to AZ31-Mg alloy. (a) Results are shown for χ = 0 (plane 

strain tension) and three different imposed initial major strain rates 
𝜀̇0
xx
= 100 , 5000 and 20000 s− 1. (b) Results are shown for an imposed 

initial major strain rate of 𝜀̇0
xx
= 5000 s−1 and two different loading 

paths χ = 0.5 and 0.75
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Appendix D: The effect of inertia at low 
strain rates

Figure 13 shows forming limit diagrams, �c
xx

 versus �c
yy

 , cal-
culated with unit-cell finite element simulations for two dif-
ferent values of the initial major strain rate, 𝜀̇0

xx
= 0.0001 s−1 

and 100 s− 1. The results correspond to AZ31-Mg alloy with 
ψ = 0∘, see Fig. 13a, high purity α-titanium with ψ = 0∘, see 
Fig. 13b, and OFHC copper, see Fig. 13c. A comparison is 
performed with calculations in which the material behavior 
is modeled with von Mises plasticity and the same values 
of initial density, elastic constants and parameters of the 
yield stress (see Table 1). Note that the differences between 
the results obtained for 𝜀̇0

xx
= 0.0001 s−1 (black lines) and 

𝜀̇0
xx
= 100 s−1 (red markers) are negligible, which makes 

apparent that the effect of inertia on necking formability for 
the materials investigated is very small for 𝜀̇0

xx
= 100 s−1 (i.e. 

this strain rate can be considered quasi-static loading for the 
calculations reported in this paper).

Table 3   Numerical values of the critical instability index coefficients 
obtained using for the calibration von Mises plasticity and values of 
initial density, elastic constants and parameters of the yield stress cor-
responding to AZ31-Mg alloy, high purity α-titanium and OFHC cop-
per

Calibration 
coefficient

AZ31-Mg alloy High purity 
α-titanium

OFHC copper

a 2.50 3.00 3.00
b 3.67 2.27 1.73
c 4.17 ⋅ 10− 5 s 1.83 ⋅ 10− 5 s 6.58 ⋅ 10− 5 s 
d − 1.33 − 0.53 0.53
e − 3.33 ⋅ 10− 10 s2 3.33 ⋅ 10− 10 s2 − 1.17 ⋅ 10− 9 s2 
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Fig. 12   Comparison between forming limit diagrams obtained cali-
brating the stability analysis with values of initial density, elastic con-
stants and parameters of the yield stress corresponding to AZ31-Mg 

alloy, high purity α-titanium and OFHC copper. Results for CPB06 
and von Mises criteria: (a) AZ31-Mg alloy, (b) high purity α-titanium 
and (c) OFHC copper. The initial major strain rate is 𝜀̇0

xx
= 20000 s−1
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Fig. 13   Forming limit diagrams obtained with unit-cell finite 
element calculations for two different initial major strain rates 
𝜀̇0
xx
= 0.0001 s−1 and 𝜀̇0

xx
= 100 s−1 . Results corresponding to: (a) 

AZ31-Mg alloy for ψ = 0∘, (b) high purity α-titanium for ψ = 0∘ and 
(c) OFHC copper. Comparison with calculations in which the mate-
rial behavior is modeled with von Mises plasticity (i.e. imposing on 

the CPB06 criterion k = 1 and Lij = δij, with i,j = 1,...,6 and δij being 
the Kronecker unit delta) and the same values of initial density, elas-
tic constants and parameters of the yield stress (see Table  1). (For 
interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Page 23 of 26    51International Journal of Material Forming (2022) 15: 51



1 3

Appendix E: Influence 
of tension‑compression asymmetry 
on the formability

Figure 14 shows AZ31-Mg alloy plane stress theoretical 
yield loci calculated with CPB06 criterion for biaxial load-
ing conditions, σI versus σII, for two different values of the 
effective plastic strain, 𝜀̄p = 0.05 and 𝜀̄p = 0.1 . The case 
where both evolving anisotropy and tension-compression 
asymmetry is considered and the case where only evolving 
anisotropy is considered (k = 0) are compared. Note that 
the value of the tension-compression asymmetry parameter 
affects the shape of the yield locus predicted by the CPB06 
criterion in all the four quadrants. The change is shape in the 
first quadrant is intrinsic to the mathematical construction of 
the model. The influence of the tension-compression asym-
metry parameter in the material formability is illustrated in 
Fig. 15. The figure shows the forming limit diagrams for 
AZ31-Mg alloy for the case where both evolving anisotropy 
and tension-compression asymmetry is considered and for 
the case where only evolving anisotropy is considered. It is 
evident that although all the loading paths investigated lie 

within the first quadrant, the tension-compression asymme-
try affects the formability limit.
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Fig. 14   Plane stress theoretical yield loci calculated with CPB06 cri-
terion for biaxial loading conditions, σI versus σII, for two different 
values of the effective plastic strain, 𝜀̄p = 0.05 and 𝜀̄p = 0.1 . Material 
parameters corresponding to AZ31-Mg alloy. Comparison between 
the case where both evolving anisotropy and tension-compression 
asymmetry is considered and the case where only evolving anisotropy 
is considered (k = 0)

Fig. 15   Forming limit diagrams obtained with two-zone 
model (2ZM) for AZ31-Mg alloy and initial major strain rate 
𝜀̇0
xx
= 20000 s−1 . Material parameters corresponding to AZ31-Mg 

alloy. Comparison between the case where both evolving anisot-
ropy and tension-compression asymmetry is considered and the case 
where only evolving anisotropy is considered (k = 0). Results are only 
shown for ψ = 0∘
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