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Abstract
Modern production systems have numerous sensors that produce large amounts of data. This data can be exploited in
many ways, from providing insight into the manufacturing process to facilitating automated decision making. These
opportunities are still underexploited in the metal forming industry, due to the complexity of these processes. In this work,
a probabilistic framework is proposed for simultaneous model improvement and state estimation in metal forming mass
production. Recursive Bayesian estimation is used to simultaneously track the evolution of process state and to estimate the
deviation between the physics-based model and the real process. A sheet bending mass production process is used to test the
proposed framework. A metamodel of the process is built using proper orthogonal decomposition and radial basis function
interpolation. The model is extended with a deviation model in order to account for the difference between model and real
process. Particle filtering is used to track the state evolution and to estimate the deviation model parameters simultaneously.
The approach is tested and analysed using a large number of simulations, based on pseudo-data obtained from a numerical
sheet bending model.

Keywords Metal forming · State estimation · Hybrid modelling · Sheet bending · Mass production · Bayesian inference

Introduction

The metal forming industry is continuously challenged
to develop processes with high throughput and precision,
while minimizing costs and time-to-market. Process design
in metal forming is knowledge-intensive and strongly
dependent the designer’s experience. Iterations between the
design team and the press shop should be limited in order
to minimize development time, but it is often inevitable to
return to the drawing table when observations from the press
shop do not match with the design team’s predictions. The
common response is to increase model complexity in order
to reduce the discrepancy between model and reality. This
is a labour intensive process that leads to only incremental
progress.
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The Fourth Industrial Revolution (4IR) creates the
opportunity for a paradigm shift in metal forming, by
opening a direct connection between process design and
the press shop. The connection is two-sided, as press shop
observations can be used for model improvement, and
models can be used for real-time interpretation of these
observations. Data from the press shop can be employed to
identify and characterize the deviations between model and
reality, that originate either from deliberate simplification
or ignorance of the actual physics [1]. Advanced process
models which incorporate both data from physics-based
models as well as production data can be used for process
monitoring, predictive maintenance and real-time process
control, potentially leading to unprecedented improvements
in production accuracy and efficiency.

In this work, we propose a probabilistic framework for
simultaneous model improvement and state estimation in
metal forming mass production. The deviation between
model and reality and the evolution of the process state
will be estimated at the same time using recursive Bayesian
estimation. The approach efficiently exploits data, as it
serves two purposes at the same time. However, these
objectives cannot be seen apart from each other, as state
estimation requires accurate models and building accurate
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models is based upon processing large data streams from the
manufacturing line.

The development of hybrid models that combine physics-
based models with real production data has the potential
to tremendously impact general engineering [1] and the
metal forming industry [2]. Although it is still difficult to
find fully developed case studies of real-time data-driven
modelling in metal forming, many researchers are already
making significant steps towards this future prospect. The
primary component is the development of data acquisition
systems that collect production data on a product-to-product
basis. Few examples are machine vision systems for ring
rolling [3, 4], deepdrawing [5] and sheet rolling [6];
integrated sensors for local force measurement [7]; and tool-
integrated distance measurement [8] and skid line detection
[9] for stamping of car body parts. The development of such
industrial metrology systems has led to the publication of
several large metal forming datasets [8–11].

The key step to be taken is to determine a robust and accu-
rate procedure for merging data from physics-based models
with production data. Chinesta et al. [1] review several data
aggregation techniques, for the development of so-called
‘Hybrid Twins’. They focus on the combination with model
order reduction, as real-time feedback for process control is
a main application area for these models. They consider x(t)
to be the system state (e.g., deformations and stresses) as a
function of time t . The system behaviour can be described in
rate form as ẋ(t, θ), with constant parameters θ (e.g., mate-
rial and lubrication properties).1 The physics-based model
is then given by ẋ(t, θ) = Ã(x, t, θ) and can be determined
by offline computations. They define a deviation model (or
bias model) �A in additive form as function of system state
and time, which has to be identified through data:

ẋ(t, θ) = Ã(x, t, θ) + �A(x, t) (1)

Strano et al. [12] propose a similar idea and demonstrate
an offline method for fusion of Finite Element (FE) and
experimental data for air bending. They define a model
in the measurement space instead of the state space. This
model has a scalar output z (the angle after bending) and
parametric input θ (material and process parameters). An
additive deviation model is then defined in the parameter
space and determined through experiments:

z(θ) = Ã(θ) + �A(θ) (2)

1Some factors may be classified both as state or as parameters in
different cases. Material properties can be considered as parameters in
some cases, or as a system state when accounting for varying material
properties during production.

These approaches for hybrid modelling are based on
the assumption that the available datasets are complete;
that is, each measurement contains a complete set of input
and output values. However, such data may not always
be available. In this work, we consider a metal forming
production system where state x(t) varies over time. For
instance, state variables may be material properties and/or
lubrication properties. There may be unknown system
parameters as well, such as machine compliance. During
production, measurements z(x, θ) are taken (e.g., process
forces). A measurement model z̃(x, θ) can be computed
offline, but a measurement deviation model cannot be
directly computed based on measurements from production,
as the input values (x, θ) that correspond to a specific
measurement are unknown. As a first step to alleviate
this problem, it can be assumed that the deviation model
is independent of x and θ , and can be written as a
mapping from modelled measurement to real measurement:
z = g(z̃, θd), with a set of deviation parameters
θd .

A single measurement z is insufficient to determine the
deviation parameters θd , as different combinations of x, θ

and θd may result in the same measurement. Alternatively,
one may exploit a series of measurements, such as the
force measurements for multiple products within the mass
production line. After each measurement, a set of the
most probable deviation parameters and process states can
be determined and propagated as input for the following
measurement. By doing so, the problem is redefined in
probabilistic terms. Probabilistic methods are hardly used in
metal forming research (except for a few recent studies
about material characterization [13, 14]), but widely
used in many other areas (e.g., Kalman filtering for
control systems). In this work, we present a framework
for probabilistic state estimation in metal forming mass
production. We aim at merging the predictive power of
physics-based models and of real-time measurement data
in order to maximize the quality of predictions during
production. These predictions may be used to achieve
improved performance of process monitoring and control
systems.

The framework for real-time state estimation and model
improvement in metal forming mass production is presented
in Section “Recursive Bayesian state estimation”. Mod-
elling of a sheet bending case study is discussed in Section
“Modelling”. Results are presented in Section “Results”,
based on simulation runs with numerical pseudo-data. The
effects of the quality of physics-based process models and
of statistical assumptions on the algorithm performance
are analysed in detail. A discussion follows in Section
“Discussion”.
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Recursive Bayesian state estimation

Industrial metal forming processes are subject to the
influence of many factors that change over time, such as
material, lubrication and process properties [15]. In this
work, we refer to these properties as being the state x of the
process. Variability of these properties has a strong effect
on the final product properties [16]. Therefore, it is valuable
to keep track of these properties during production. It is
infeasible to directly measure the full process state during
production, but valuable information about the state of the
process can be obtained from indirect measurements such
as process forces [11]. The value of the measurement data is
determined by the sensitivity of the measurement to the state
variables. Selection of appropriate measurement systems
should therefore be based on the state variables of interest:
force measurements may be sufficient to estimate the yield
stress, whereas electromagnetic sensors may be required if
estimation of the material microstructure is targeted.

In this work, we present a framework to infer a prob-
abilistic estimate of the process state based on indi-
rect measurements. The development of hybrid proba-
bilistic models for state estimation will be discussed in
Section “Process modelling”. Subsequently, the framework
for recursive Bayesian state estimation will be explained in
Section “Recursive Bayesian estimation”, and the numeri-
cal approach for solving the state estimation equations will
be discussed in Section “Particle filtering”.

Process modelling

A probabilistic framework requires probabilistic models,
whereas metal forming models are typically deterministic.
A partial probabilistic perspective in metal forming
modelling is taken in the context of robust optimization,
by optimizing the statistics of product properties given
probabilistic assumptions about process variations [17].
A twofold extension of this probabilistic viewpoint is
required for Bayesian state estimation: a probabilistic
evolution mechanism for the process state as function of
time (Section “State evolution model”) and a probabilistic
relation between process state and process measurement
(Section “Measurement model”) have to be defined. These
models require estimates of process statistics and of model
uncertainties. In Section “Deviation model”, it is discussed
how a deviation model can be used to aggregate data from
physics-based models with production data.

State evolution model

In the context of mass production, the process state is
discretized from product to product, with xi being the state

of the i-th product. The state evolution is the change in
process state from product i − 1 to the following product i .
The evolution of the process state is assumed to be a Markov
process, and is represented by the following discrete-time
stochastic model:

xi = f(xi−1, vi−1) (3)

where vi−1 is a stochastic variable. Note that this
assumption does not imply that the state of product i is
independent of its own deformation history, what would be
incorrect when dealing with plasticity. The dependency of
the state of product i on the states of previous products can
be extended by replacing (3) with a higher order Markov
chain model.

Statistical characterization of material property varia-
tions is usually limited to obtaining mean values and
standard deviations [18, e.g.,]. Some authors investigated
the correlation between different material parameters [19,
20]. It is known that variations within material batches
are smaller than variations between material batches [21],
but little has been investigated about the autocorrelation of
material properties in time. Therefore, we propose a simple
model where each state variable is autocorrelated as:

xj
i =

(
1 − ρj

)
μj + ρj xj

i−1 + vj

i−1 (4)

vj

i−1 ∼ N
(

0, (1 − (ρj )2)(σ j )2
)

(5)

with μj , σ j and ρj being the mean value, standard deviation
and correlation factor of the j -th state variable, respectively.
The set of statistical parameters is θ s = {μ, σ , ρ}. The
value of ρj can be 0 ≤ ρj ≤ 1, with a larger value
indicating stronger autocorrelation, i.e. slower changes in
process state.

Measurement model

In Bayesian state estimation, the relation between process
state xi and process measurement zi is given by a
probabilistic measurement model:

zi = h(xi , θ ,wi ) (6)

with θ being the constant model parameters and wi

being a stochastic variable that accounts for measurement
uncertainty. Usually, measurement uncertainty is mostly
related to sensor accuracy. In metal forming, however,
model uncertainty is typically larger than measurement
uncertainty. For example, process forces can be measured
accurately, but the uncertainties in the models that relate
these forces with the process state are much larger than the
sensor inaccuracy itself.

The probabilistic approach requires a stochastic model
for the measurement uncertainty. Quantification of model
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uncertainty is an open question in metal forming research.
In this work, a simple estimate for the statistics of the
measurement uncertainty wi is made by determining the
covariance of a numerical measurement dataset, which is
built using Monte Carlo sampling and the prior statistics
from the state variables and the constant parameters. The
measurement uncertainty is assumed to be a fraction of this
covariance.

Deviation model

Highly accurate models are required for interpreting small
changes in measurement data in order to identify small
changes in process state. Nowadays, detailed FE models
are commonly used in metal forming. Although computer
speed continuously increased in recent decades, model
complexity and refinement have increased as well, and
therefore, solution times for metal forming models remain
high [22]. The problem of computational time can be
circumvented through interpolation of a large set of offline
model evaluations using metamodelling techniques [23],
but the problem of limited accuracy remains due to
modelling assumptions, as discussed in the introduction.
Model accuracy may improve considerably by merging
numerical data with data from process measurements. We
propose to define a deviation model z = g(z̃, θd) that relates
the modelled measurement z̃ with the actual measurement
z based on a set of deviation model parameters θd . The
Bayesian state estimation procedure is suitable for hybrid
modelling, as it allows for simultaneous estimation of
unknown model parameters. The balance between model
flexibility and estimation cost must be taken into account
when defining a deviation model. A flexible deviation
model is more likely to be able to map the actual deviation
between model and reality, but will affect the efficiency
of the state estimation procedure, as it will also require
estimation of a larger set of parameters θd .

Recursive Bayesian estimation

In this work, the book by Ristic et al. [24] is used as
reference on recursive Bayesian estimation and particle
filtering (Section “Particle filtering”). It is assumed that
the process state is continuous in space and discrete in
time (each product is a sampling point in time). The
measurements Zi � {zk}ik=1 are the observations from a
hidden Markov model, with unobserved true states x. Given
the Markov process assumption, the probability density
function (PDF) p(xi |Zi ) of the current state xi given all
the process observations Zi can be obtained recursively in
two steps. First, use the PDF p(xi−1|Zi−1) of previous time

point to obtain the predicted PDF of the current state given
the past measurements as:

p(xi |Zi−1) =
∫

p(xi |xi−1) p(xi−1|Zi−1)dxi−1 (7)

where p(xi |xi−1) is defined by the process model (3). Next,
using the new measurement zi , the PDF can be updated (via
Bayes theorem) to:

p(xi |Zi ) ∝ p(zi |xi ) p(xi |Zi−1) (8)

where p(zi |xi ) is defined by the measurement model (6).
Equation 8 is given in proportional form, because it can be
normalized using

∫
p(x) dx = 1.

Particle filtering

In recursive Bayesian estimation, Eqs. 7 and 8 must be
solved after each measurement. In case of linear systems
and Gaussian noise, the Kalman Filter provides the optimal
solution. In case of nonlinearity, suboptimal filters such as
the Extended Kalman Filter or the Unscented Kalman Filter
may be used to approximate the solution analytically. A
different approach, which is especially useful for nonlinear
models, is to use numerical methods to integrate the PDF’s.
Grid based methods integrate the full state space, but
become extremely expensive for high-dimensional state
spaces. Therefore, we use the particle filtering algorithm,
which uses sequential Monte Carlo integration. The
algorithm uses an importance sampling and a resampling
step to concentrate the particles in the region of interest,
neglecting the regions of low probability and reducing
the curse of dimensionality. We use a standard particle
filtering algorithm: the Sampling Importance Resampling
(SIR) filter [25].

In the algorithm, the PDF’s are approximated using N
support points xk

i and importance weights wk
i :

p(xi |Zi ) ≈
N∑

k=1

wk
i δ(xi − xk

i ) (9)

The particle set {xk
i , w

k
i }Nk=1 is determined using the

particle set from the previous iteration {xk
i−1, w

k
i−1}Nk=1,

the new measurement zi , the process model (3) and
the measurement model (6). The procedure is given in
Algorithm 1. In SIR, the process model is used for
importance sampling (drawing a set of particles at each
iteration), but many other importance sampling strategies
have been proposed in literature as well. After sampling,
the particle weights wk

i are updated using the measurement
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model. Then, the weights are normalised, as
∫

p(x) dx = 1.
Finally, the particles are redistributed to the region of higher
probability through resampling, eliminating the particles
with negligible probability.

As discussed in the introduction, the state x, constant
parameters θ and deviation model parameters θd are
estimated simultaneously. Towards that goal, the state space
is augmented with the parameters. Thus, although different
in nature, parameters θ and θd are treated as part of an
extended state in the particle filtering algorithm. To avoid
that the filter gets trapped in a wrong estimate of the
parameters, a small variation (over time) is allowed in each
parameter as follows [26]:

θ
j
i = θ

j

i−1 + u
j
i (10)

where the perturbations uj are independently sampled from
N (0, (α(θ

j
max − θ

j

min))
2), with α typically in the order of

0.01.

Modelling

The state estimation procedure is tested using data from
a multistage mass production process. In this work, we
focus on the flaps in the bottom of a demonstrator product
(Fig. 2a), which are bent in two stages (Fig. 2b). The
movement of contact areas during bending makes the
process highly nonlinear. The bending force (Fig. 1) is
measured during the first stage, and used to identify the
process state. After the second bending stage, an image
of one of the flaps is taken to determine the final angle
(Fig. 2c). The used material is a 0.3 mm thick stainless steel
sheet. Further information about the process can be found in
Havinga et al. [11].

The FE model and metamodel of the process are pre-
sented in Sections “Finite element model” and “Meta-
model”, respectively. The deviation model that is used to
identify the difference between the model and the real
process is given in Section “Deviation model”. The state

Fig. 1 Typical force during first bending stage, with effects of
deviation parameters θd . The punch is at its lowest position at time = 0

evolution model parameters are given in Section “State
evolution model”. Section “Simulation runs” provides an
overview of all particle filtering simulations that have been
performed.

Finite elementmodel

The bending process is modelled in 2D using MSC.Marc.
The tooling is modelled with 5370 elastic elements. A total
of 3600 quadrilateral linear plane strain elements are used
for the sheet (full integration with assumed strain option
to avoid locking), with 15 elements through thickness. A
Von Mises yield locus is used, with a tabulated hardening
curve σ0 (ε). Strain rate dependency is modelled using the
Cowper-Symonds equation [27]:

σ (ε, ε̇) =
(

1 +
(

ε̇

ε̇0

)q)
σ0 (ε) (11)

The FE model has ten parameters that are shown in
Fig. 3 and Table 1 (x and θ ). These parameters are related
to material, friction and tooling properties. A MATLAB
procedure is used to automate the evaluation of large
Designs of Experiments (DOE’s). Model results are the
force during first bending stage and the angles after both
bending stages. The model evaluation time is approximately
ten minutes.

Metamodel

The FE model solution time is too large for use in real-time
applications. Therefore, a metamodel is built, which is a fast
representation of the FE model. A large DOE is constructed,
by combining a 2-level full factorial design (210 = 1024
points) with a latin hypercube design (6000 points). A
small number of simulations crashed, and the remaining
6953 simulation results are interpolated using radial basis
function interpolation [17]. Separate metamodels are built
for the angles after both bending stages. Proper Orthogonal
Decomposition (POD) is used to reduce the result space of
the force curves to a set of 40 modes, that are interpolated
independently [23]. The final interpolation model has an
evaluation time of approximately 10 ms.

667Int J Mater Form (2020) 13:663–673



Fig. 2 Demonstrator process [11]

The chosen offline metamodeling procedure is suitable
for the studied case, as only product-to-product variation is
considered, and no evolution of the state (e.g. deformation
or plastic strain) is being tracked during forming of a single
product. Furthermore, the dimensionality of the problem
is moderate. Therefore, it is feasible to characterize the
process behavior throughout the full state space using
offline computations. In other cases, it may be required
to solve constitutive equations almost in real-time. Several
methods are being developed that allow to solve nonlinear
state evolution equations simultaneously with identification
of unknown model parameters. These methods are based
on model order reduction techniques such as Proper
Generalized Decomposition (PGD), and are specifically
suitable for high-dimensional problems [28, 29].

Deviationmodel

A key objective of this work is to construct a ‘Hybrid Twin’,
by mapping the modelled force measurement z̃ to the actual
force measurement z, in order to reduce the gap between the
process metamodel and reality. The mapping z = g(z̃, θd)

is defined by a set of deviation parameters θd , and is
assumed to be independent of the input space x. A mapping
function g must be chosen such that it is sufficiently flexible
to capture the difference between model and reality, but

Fig. 3 FE model parameters

without too many parameters to be identified. In this work,
θd is a set of scaling factors for both force and punch
speed. The scaling parameters are defined at four evenly
spaced points between the minimum (–80ms) and maximum
(20ms) simulation time, with linear interpolation in between
in order to ensure continuity of the force curves. The effect
of these scaling parameters is illustrated in Fig. 1: speed
scaling stretches or compresses the force curve in time, and
force scaling increases or decreases the magnitude of the
force. In that way, a consistently incorrect prediction in a
particular part of the force curve can be corrected by the
deviation model.

State evolutionmodel

The state evolution is modelled using Eq. 4. The values
for standard deviations σ and correlation parameters ρ

are listed in Table 1. Different datasets have been used
for the simulation runs (see Section “Simulation runs”),
and different values of μ have been used in each dataset.
These values for μ are randomly sampled from a uniform
distribution between μmin and μmax (Table 1).

Simulation runs

The state estimation procedure is tested using simulation
runs with pseudo-data. An advantage of using pseudo-data,
is that the estimation errors can be determined exactly, as the
‘real’ state x and parameters θ are fully known. Six different
series of particle filtering simulations are performed, in
order to obtain understanding about the applicability of
particle filtering for state estimation in metal forming mass
production. These simulation series are chosen such that
the effects of different error sources (i.e. measurement
model accuracy and process model accuracy) can be studied
separately.

The six simulation series are performed with different
measurement datasets and particle filter settings (see Fig. 4).
Five different realizations of the input data

({xi}1000
i=1 , θ , θd

)
are used for all simulation series. The 5 realizations of
the state evolution {xi}1000

i=1 are generated using Eq. 4, by
considering 5 different sets of statistical parameter θ s-
values. All parameter values (θ , θd , θ s) are drawn from
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Table 1 Model parameters

θ s

Unit Min Max μmin μmax σ ρ

x
yield stress Mpa 275 336 291 321 6 0.8
mat. param. log (ε̇0) log (1/s) 1.5 2.5 2 2.4 0.05 0.8
material param. q – 0.4 1.0 0.7 0.9 0.05 0.8
sheet thickness μm 295 305 298 302 1 0.7
fric. coeff. tool-tool – 0.1 0.5 0.2 0.3 0.05 0.95
fric. coeff. tool-flap – 0.01 0.3 0.1 0.2 0.02 0.95
punch end distance μm 310 410 340 380 10 0.9

θ

horizontal alignment μm –5 20
vertical alignment μm –20 0
press stiffness kN/mm 5 40

θd

force scaling % –20 20
speed scaling % –20 20

uniform distributions within the bounds given in Table 1
(with μmin ≤ μ ≤ μmax). For each combination
of simulation series and dataset realization, the particle
filtering simulation is repeated 5 times, as the algorithm
involves random sampling, leading to different results for
each simulation with exactly the same data and settings.
Hence, a total of 6 simulation series × 5 dataset realizations
× 5 repetitions = 150 particle filtering simulations are
performed.

The differences between the 6 simulation series are
listed in Fig. 4. These series use different measurement
datasets or particle filter settings. The measurement datasets
are either directly obtained from the metamodel (z̃MM)
or from the FE model (z̃FE), or they are altered using
the deviation model (g(z̃MM, θd) or g(z̃FE, θd)). Similarly,
the metamodel that is used by the particle filter may or
may not include the deviation model (g(MM(x, θ), θd) or
MM(x, θ), respectively). The statistical parameters θ s are
exactly known by the particle filter, except for series 4 and
6, where the value of μ is assumed to be (μmin + μmax)/2.2

The assumption for the measurement uncertainty w (6)
is computed offline, based on a measurement dataset ZMC

of 104 products obtained by Monte Carlo sampling of the
combined state x and parameter θ space, using the prior
statistics, with ρ = 0. In case of the simulation series
with unknown statistics, μ is again assumed to be (μmin +
μmax)/2. The 104 points are evaluated using the metamodel.
The covariance of ZMC is KMC . The covariance of the
measurement uncertainty w is assumed to be ( 1

2 )2KMC

2The value (max − min)/
√

6 is the expected value of the RMSE for a
random estimator with uniform PDF.

(i.e. the standard deviation of measurement uncertainty
w is assumed to be half of the standard deviation of
KMC). As the trial dataset covariance KMC is determined
in the result space without model deviation, the reverse
deviation is applied to the measurement, before comparing
the measurement with the model prediction. The full
measurement model becomes:

g−1 (z, θd) ∼ N
(
z̃(x, θ) , ( 1

2 )2KMC

)
(12)

The number of particles N in the particle filter is set to
500. The angles after first and second bending stage are not
used by the particle filter to estimate the process state x and
parameters θ and θd . Hence, the process state is estimated
based on only process forces. However, the estimates of x
and θ are used to predict the angles as well, which are then
compared with the real angles in the pseudo-dataset.

Results

The estimated state/parameter value E [xi] and the standard
deviation si for the i-th product are determined with:

E [xi] =
N∑

k=1

wk
i x

k
i (13)

si =
√√√√ N∑

k=1

wk
i

(
xk
i − E [xi]

)2
(14)

The Root-Mean-Square Error (RMSE) between the ac-
tual and the predicted state/parameter values are calculated
for all simulation series and normalized for comparison
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Fig. 4 Average RMSE per state variable and parameter, calculated
over the last 500 products of each simulation and averaged over all
datasets. The RMSE values per dataset (averaged over five repetitions)
are indicated with diamonds. The RMSE values are normalized by σ

(Table 1) for the state variables, by (max − min)/
√

6 for the constant

parameters2, and by the standard deviation of the real angles for the
angles. A RMSE larger than 1 indicates that the prediction error is
larger than the variation in the data (for the state x and the angles)
or that the estimator performs worse than a random estimator with
uniform PDF (for the constant parameters θ )

purposes (normalization is explained in the caption of
Fig. 4). The reference is series 1, where the metamodel
without deviation model is used both to generate the data
as well as for estimation. In other words, the particle filter
has a ‘perfect’ model of the real process. The RMSE values
for series 1 give an indication about the observability of the
state x and parameters θ based on force measurements. The
average RMSE values for all series are shown in Fig. 4.
It can be seen for series 1 that the estimation accuracy
differs per parameter: punch end distance and the constant
parameters can be estimated with high accuracy, whereas
the material parameters and thickness are harder to estimate.
This can also be seen in Fig. 5, where the actual values and
estimates are shown for the last 200 products for one of
the simulations from series 1. The state x and parameter θ

estimates are used to predict the angle after first and second
bending, which have an average normalized RMSE of 0.11
and 0.24 respectively. It can be concluded that the force
measurements contain sufficient information to obtain a
good estimate of the state x, parameters θ and angles. It must
be noted that these results will be affected by the chosen
statistical parameters θ s , as small variations in process state
are harder to identify than large variations.

The worst case reference is series 2, which is performed
using dataset g(z̃MM, θd) (i.e., with simulated deviation
between ‘real’ data and process model), but estimated using
a model that does not account for the deviation. As the
model used by the particle filter is incorrect, it is unable
to find a correct estimate for any of the state variables or
parameters (Fig. 4). However, this does not mean that the
model is entirely wrong, as the used dataset is obtained from
the same metamodel (but transformed with the deviation
model afterwards). The problem for the state estimation
procedure is that the measured data does not map correctly

to the model. This is similar to the case where real data from
the press shop is used for state estimation: the model may
be ‘correct’ in the sense that it correctly predicts the major

Fig. 5 Predicted (grey) and actual (black) state/parameter values for
a simulation from simulation series 1, i.e. with ‘perfect’ particle filter
model. The prediction bands are plotted with E [xi ] ± 3si (99.7%
confidence interval)
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part of the underlying physics, but it is not usable for state
estimation as long as the gap between model and reality
leads to incorrect mapping of model data to the real data.

Through this work, we hypothesize that the difference
between the process model and reality can be estimated
simultaneously with the process state through probabilistic
methods. This is done in series 3, again using dataset
g(z̃MM, θd), but now with simultaneous estimation of the
eight deviation parameters θd . A reasonable estimate of the
process state and the angles after bending is obtained in
this simulation series. This is indicative for the potential of
simultaneous model improvement and state estimation. It
must be, however, noted that the actual deviation between
model and real data for series 3 is known to be present in
the deviation parameter space (as the data from series 3 is
generated using exactly the same deviation model). This is
not known a priori when working with real process data.
As with any fitting problem, it is the challenge to choose a
model that is sufficiently flexible to describe the behaviour
of the data, without being too flexible, making it expensive
to fit and prone to overfitting.

The accuracy of the statistical models also has a signifi-
cant effect on estimation performance. The only difference
between series 4 and reference series 1 is that the particle fil-
ter in series 4 uses incorrect values for μ (4). The estimate is
therefore biased towards the incorrect mean, leading larger
errors. Obviously, a larger deviation between modelled
statistics and actual statistics will increase the prediction
error. As discussed in Section “State evolution model”, little
is known about statistics in metal forming, making it is
difficult to calibrate statistical models. A possible solution
is to treat the statistical parameters as hyperparameters to be
identified during the estimation procedure as well [30].

The final two simulation series are performed with data
that is obtained directly from the FE model, instead of from
the metamodel. Series 5 is performed without deviation in
the data, isolating the effect of the difference between FE
model and metamodel. The prediction accuracy is lower
than for the reference series, but it is still possible to obtain
a reasonable estimate of state x, parameters θ and angles.
The final series (nr. 6) gives the most complete comparison
with reality: the model (MM) and the real process (FE)
are different, a deviation model is used to increase the gap
between model and reality, and statistical parameters are
partly unknown. In Fig. 4 it can be seen that the prediction
error is much larger than for the perfect reference series,
but still sufficiently accurate to be able to identify part of
the variations in the process. Fig. 6 gives a detailed view
of the estimation for the last 200 products from one of the
simulations from series 6. The prediction errors are larger
than in the reference series (Fig. 5). However, it can be
seen that trends in the state evolution are still detected, even
though the estimated values are incorrect. Such estimates

Fig. 6 Predicted (grey) and actual (black) state/parameter values for
a simulation from series 6, i.e. with g(MM(x, θ), θd ) model being
used to estimate g(z̃FE, θd ) data. The prediction bands are plotted with
E [xi ] ± 3si (99.7% confidence interval)

of trends in the process state are still highly valuable when
used for process monitoring and control. In conclusion, the
proposed approach shows clear potential for added value
in industrial metal forming mass production, but it still has
many factors that need to be improved before reaching a
sufficient level of maturity for industrial applicability.

Discussion

An approach for simultaneous model improvement and state
estimation for metal forming mass production is proposed
in this work. Recursive Bayesian methods are widely used
in many application areas, but not yet in metal forming.
The 4IR opens the opportunity for the development of
systems that are dependent on real-time acquisition and
processing of manufacturing data. We foresee that metal
forming research will develop towards a hybrid approach,
where knowledge is obtained both from detailed physics-
based models as well as from large manufacturing data
streams. The proposed approach is indicative of this route,
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by combining traditional modelling with learning from
process data.

The recursive Bayesian estimation procedure is tested
using pseudo-data from a very nonlinear bending mass
production process. The results illustrate the potential of the
approach. However, several challenges for further research
are faced, being:

Deviation model Hybrid models that merge data from
physics-based models with real data will be a key
component of future smart manufacturing systems. The
development of deviation models for very nonlinear
metal forming processes is extremely challenging, as they
must capture what physics-based models fail to capture.
This research will be fuelled by the increasing interest
from metal forming researchers in machine learning
methods.

Measurement uncertainty In this work, a simple mea-
surement uncertainty model is used, even while per-
forming the analysis with pseudo-data. Understanding
about the nature of model uncertainty and measurement
accuracy in metal forming is an open research question,
that becomes highly relevant when using probabilistic
methods.

Process evolution The process evolution model is a key
component of the state estimation procedure. However,
little is known about variability of metal forming
processes, both regarding appropriate models as well
as statistics thereof. Increasingly available data from
manufacturing lines will enable the development of better
process evolution models.

Algorithm development An established particle filter
algorithm is used in this work, without optimization for
the specific application. The applicability of different
algorithms must be investigated in order to develop fast,
robust and accurate algorithms that are tailor-made for
metal forming applications.

Learning from data and interpreting data in real-time are
two key promises of the 4IR. We propose a probabilistic
framework that connects these objectives and enables the
inclusion of knowledge from physics-based models into
the manufacturing line. Several challenges still have to be
addressed, in order to move towards the use of truly smart
models in modern factories.
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7. Groche P, Hohmann J, Übelacker D (2019) Overview and
comparison of different sensor positions and measuring methods
for the process force measurement in stamping operations.
Measurement 135:122–130

8. Maier S, Liebig A, Kautz T, Volk W (2017) Tool-integrated spring
back measuring system for automotive press shops. Prod Eng
11(3):307–313

9. Maier S, Schmerbeck T, Liebig A, Kautz T, Volk W (2017)
Potentials for the use of tool-integrated in-line data acquisition
systems in press shops. J Phys Con Series 896:012033

10. Purr S, Wendt A, Meinhardt J, Moelzl K, Werner A, Hagenah
H, Merklein M (2016) Data-driven inline optimization of the
manufacturing process of car body parts. In: Proceedings of the
IDDRG 2016 conference, pp 200–209

11. Havinga J, van den Boogaard T, Dallinger F, Hora P (2018) Feed-
forward control of sheet bending based on force measurements. J
Manuf Process 31:260–272

12. Strano M, Iorio L, Semeraro Q, Sofia R (2017) Fusion
metamodeling of the bend deduction in air bending. In: AIP
Conference proceedings, Author(s), vol 1896, p 100003

13. Asaadi E, Heyns PS (2017) A computational framework for
bayesian inference in plasticity models characterisation. Comput
Methods Appl Mech Eng 321:455–481

14. Cornaggia A, Cocchetti G, Maier G, Buljak V (2018) Inverse
structural analyses on small punch tests, with model reduction and
stochastic approach. In: 2018 IEEE International conference on
environment and electrical engineering and 2018 IEEE industrial
and commercial power systems Europe (EEEIC / I&CPS Europe).
IEEE

15. Col A (2003) Investigation on press forming scatter origin. In:
Proceedings of the sixth international ESAFORM conference on
material forming, pp 183–186

16. Hazra S, Williams D, Roy R, Aylmore R, Smith A (2011) Effect of
material and process variability on the formability of aluminium
alloys. J Mater Process Technol 211(9):1516–1526

672 Int J Mater Form (2020) 13:663–673

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


17. Havinga J, van den Boogaard AH, Klaseboer G (2016) Sequential
improvement for robust optimization using an uncertainty measure
for radial basis functions. Struct Multidiscip Optim 55(4):1345–
1363

18. Hess PE, Bruchman D, Assakkaf IA, Ayyub BM (2002)
Uncertainties in material and geometric strength and load
variables. Nav Eng J 114(2):139–166

19. Aspenberg D, Larsson R, Nilsson L (2012) An evaluation of
the statistics of steel material model parameters. J Mater Process
Technol 212(6):1288–1297

20. Wiebenga J, Atzema E, An Y, Vegter H, van den Boogaard
A (2014) Effect of material scatter on the plastic behavior and
stretchability in sheet metal forming. J Mater Process Technol
214(2):238–252
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