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Abstract The constitutive modelling of the strongly
textured aluminium alloys AA6063-T6 and AA7003-T6 is
studied. The materials were delivered in the form of flat
extruded profiles. Plane-strain tension and shear tests in the
plane of the flat profiles are performed. The tests are then
used to evaluate a constitutive model including an
anisotropic yield function, the associated flow rule and a
nonlinear isotropic work-hardening rule. The parameters of
the yield criterion and the work-hardening rule were
identified primarily from uniaxial tension tests in different
in-plane directions. It is suggested how analytical consid-
erations and the results from the plane-strain tension and
shear tests may be used to obtain a more accurate
calibration of the anisotropic yield criterion. To further
assess the constitutive model, finite element simulations of
the plane-strain tension and shear tests are carried out and
the results compared with the experimental force-elongation
curves. Significant deviations in the experimental and
predicted results are disclosed, and attributed partly to the
parameter identification, primarily based on uniaxial tension
tests, and partly to the assumption of isotropic work-

hardening. Polycrystal plasticity calculations are carried out
for simple shear of the AA7003-T6 material, indicating that
texture evolution plays an important role in determining the
response in this test already at moderate strains.

Keywords Aluminium alloys . Plastic anisotropy . Yield
function . Polycrystal plasticity calculations

Introduction

Within the automotive industry, safety, environmental
concerns, economy and structural reliability are constant
driving forces for innovation of new products and processes.
At the same time economy forces the industry to reduce their
product cycles, which in turn reduces time for design and
development. In order to meet these challenges, large-scale
Finite Element (FE) simulations are systematically used in the
product development to obtain cost efficient and optimized
solutions. Even though non-linear FE codes are routinely used
and considered as indispensable tools, it is a well-known fact
that the predictive capability of these codes depends strongly
on the accuracy of the constitutive models used to describe the
material behaviour. Full-scale analyses, either of a forming
operation or a crash event, require large FE models and
simulations involving large plastic deformations. Hence, it is
important that the constitutive model is not only accurate but
also efficient and robust. Since the models are to be used in an
industrial context, parameter identification through simple
tests is also important.

Extruded aluminium alloys exhibit strong anisotropy in
the plastic properties due to the extrusion process [1–8].
The anisotropy differs between recrystallized alloys and
fibrous, non-recrystallized alloys, owing to the differences
in microstructure [7]. For structural analysis of extruded
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aluminium alloy components, e.g. in FE simulation of
formability, plastic forming and crashworthiness, constitu-
tive models accounting for the plastic anisotropy have been
used in several studies [9–14]. Over the years, many
phenomenological yield criteria have been proposed,
attempting to represent the plastic anisotropy observed in
metals and alloys, e.g. [15–24]. In a previous study by
some of the authors [25], the behaviour of the extruded
aluminium alloys AA7003-T6 and AA6063-T6 under
proportional and non-proportional strain paths was studied.
Uniaxial tension tests in different in-plane directions were
carried out for as-received profiles and profiles pre-strained
in uniaxial tension. Both alloys were found to be strongly
anisotropic with respect to strength, plastic flow and
elongation. The plastic anisotropy differs between the two
alloys owing to the different grain morphology and
crystallographic texture. Two linear transformation-based
anisotropic yield functions were evaluated for the alloys. It
was found that the Yld2004-18p yield function proposed by
Barlat et al. [24] accurately represented the experimental
data for both alloys.

In this paper, the constitutive model for the extruded
aluminium alloys AA7003-T6 and AA6063-T6 (as estab-
lished by Achani et al. [25]) is evaluated by means of
plane-strain tension and shear tests. The chosen tests are
simple and inexpensive to perform in a standard test
machine, but they do not provide neither ideal nor
homogeneous stress states. Direct use of such experimental
data for parameter identification purposes may thus be
inaccurate. Therefore we do not aim to identify stress-strain
characteristics from these tests. Instead we search for the
force-deformation characteristics, and qualitative information
about the relative directional strength under these test
conditions. The force-deformation curves are utilised for FE-
based evaluation of the constitutive equations and parameters,
while we explore how the relative directional strengths may
be used in the parameter identification process. In addition to
the anisotropic yield function Yld2004-18p, the constitutive
model assumes the associated flow rule and a nonlinear
isotropic work-hardening rule. The plane-strain tension and
shear tests are carried out for three orientations with respect to
the extrusion directions to reveal the plastic anisotropy in
strength, work-hardening and elongation. It is suggested how
analytical considerations together with the results from the
plane-strain tension and shear tests may be used to obtain a
more accurate calibration of the anisotropic yield criterion.
The possible use of plane-strain tension and shear tests to
characterize the stress-strain behaviour of metallic materials
and to identify the parameters of elastic-plastic constitutive
equations has been proposed in several studies, e.g. [26–29].
To further evaluate the constitutive model for the extruded
aluminium alloys, finite element simulations of the plane-
strain tension and shear tests are carried out and the results

compared with the experimental force-elongation curves. To
investigate the influence of texture evolution on the obtained
results, polycrystal plasticity calculations were conducted.

Experimental

Materials

The materials were received as flat extruded profiles in
temper T6, which is the peak hardness condition. The
extruded profiles had a rectangular cross section of 2 mm
thickness and 200 mm width (nominal values). Temper T6
is obtained by solution heat treatment after extrusion and
then artificial aging at elevated temperatures for time
periods specific to each alloy. The chemical composition
and grain structures of the investigated materials are
presented by Achani et al. [25]. The AA7003-T6 material
has a non-recrystallized and fibrous grain structure, whereas
the grain structure of AA6063-T6 is recrystallized and
equiaxed.

The crystallographic texture of the two Al alloys were
measured by means of electron back-scatter diffraction
(EBSD) and used to calculate the three-dimensional
orientation distribution function (ODF) f (g) [30]. In both
alloys, EBSD maps were recorded in the longitudinal
section in order to integrate texture over all thickness
layers. The ODF calculations were performed under the
assumption of orthotropic sample symmetry—given by the
extrusion direction (ED), the transverse direction (TD) and
the normal direction (ND) of the profiles—such that Euler
angles are in the domain 0° ≤ {ϕ1, Ф, ϕ2} ≤ 90°. The texture
of alloy AA7003-T6 is characterized by a strong Bs-
orientation {011} <211> which is found in the ODF at
{ϕ1, Ф, ϕ2} = {35°, 45°, 0°/90°} , see Fig. 1 (left). This is
consistent with the observation of a fibrous, non-
recrystallized microstructure in this material. The ODF of
alloy AA6063-T6 displays a quite sharp cube texture with
pronounced scatter about the ED, see Fig. 1 (right), which is
typical of recrystallized material (e.g. [7]).

Plane-strain tension tests

The geometry of the plane-strain tension specimen should
be such that the specimen subjected to tension should yield
with zero contraction in the width direction. In practice, this
is difficult to obtain. Here the geometry shown in Fig. 2
(top) is chosen. Since the experimental data will be
compared with finite element simulations, the actual value
of the transverse strain is of little importance as long as the
stress state obtained is sufficiently different from uniaxial
tension. The specimens were clamped at each end and
tested in an MTS 110 uniaxial testing machine at a
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displacement velocity of 1 mm/min. An extensometer with
a 25 mm gauge length was attached to measure the
longitudinal deformation of the centre region. The force
and the elongation of the extensometer gauge were
continuously recorded during testing.

Duplicate tests were performed in the 0°, 45° and 90°
directions for both materials. Fig. 3 (left) and Fig. 4 (left)
present in turn the results for AA7003-T6 and AA6063-T6
as nominal stress s ¼ F=A0 versus elongation ΔLg, where F
is the applied force, A0 is the initial area of the minimum
cross section in the gauge area and ΔLg is the elongation
within the extensometer gauge length. With one exception,
the scatter in the experimental data is insignificant. The
exception was the 0° direction for AA6063-T6 where some
scatter was observed [31].

As with the uniaxial tensile tests, reported by Achani et
al. [25], these tests also demonstrate the strong anisotropy
of the materials. It is noted that for plane-strain tension, the
force is highest in the 90° direction and lowest in the ED
for both the investigated materials. The ultimate force in
these tests corresponds to the onset of necking. It is evident
that the elongation at ultimate force depends upon
orientation. In particular, the 90° specimens demonstrate
less elongation at ultimate force than the other directions.

In-plane shear tests

The specimen proposed by Lademo et al. [32] and
schematically depicted in Fig. 2 (bottom) is adopted for
the shear testing. The geometry of the shear specimen is
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Fig. 2 Geometry of test specimens (measures in mm): plane-strain
tension (top) and in-plane shear (bottom)

Fig. 1 Orientation distribution function (ODF) for AA7003-T6 (left) and AA6063-T6 (right)
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designed to have a small and concentrated shear-zone with
a gauge length of 5 mm and upon loading the gauge section
will be subjected to pre-dominant shear deformation. The
specimen further consists of two notches in 60° angle
having a small radius. Each end section of the specimen is
designed with a hole to facilitate loading through a bolt.
The horizontal axis of these holes lies along the central
longitudinal axis of the specimen. The specimens can,
alternatively, be clamped by the hydraulic grips of the test
machine.

The tests were performed under quasi-static conditions
in an Instron (8500/8800) testing machine with a 10 kN
load cell. To get a well defined deformation measurement
across the shear-zone, an extensometer with a 75 mm gauge
length was attached to the specimen. For the duration of the

test, the applied force and the elongation of the extensometer
gauge along the loading axis were continuously recorded. For
all specimens, the crosshead displacement rate was set to 0.6
mm/min.

Three parallel tests were performed in three directions
for each of the materials AA7003-T6 and AA6063-T6. For
AA7003-T6 the tests were performed in the 0°, 45° and 90°
directions, while for AA6063-T6 the orientations of the
tests were 0°, 22.5° and 45° with respect to the ED. The
results are presented in Fig. 3 (right) and Fig. 4 (right) for
the two alloys. The figures show curves of the nominal
stress s ¼ F=A0 versus the elongation ΔLg, where F is the
applied force, A0 is the initial area of the minimum load-
carrying cross section within the shear-zone, and ΔLg is the
elongation of the extensometer gauge. The parallel tests

Fig. 4 Nominal stress versus elongation of extensometer gauge in plane-strain tension tests (left) and shear tests (right) of AA6063-T6

Fig. 3 Nominal stress versus elongation of extensometer gauge in plane-strain tension tests (left) and shear tests (right) of AA7003-T6
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showed insignificant scatter, and a representative test from
each orientation is presented. Also in this loading mode, a
strongly anisotropic response is observed. The AA7003-T6
material demonstrates the highest strength in tests machined
from the 45° direction. Note that the tests taken from the 0°
and 90° directions yield at the same level, but the force-
elongation curves deviate for large deformation. For
AA6063-T6 the 0° direction shows the highest yield
strength followed by the 22.5° and 45° directions.

The ultimate force in these tests corresponds either to
severely localized plastic deformation or, for some combi-
nations of material and specimen orientation, to material
fracture. The elongation at ultimate force is also seen to
depend markedly upon orientation. For both materials, we
observe that high yield strength is correlated with low
elongation at ultimate force. In particular, the directions
showing the lowest yield strength also show the highest
specimen elongation. These observations are discussed in
more detail in conjunction with the FE analyses in
“Discussion”.

Constitutive model

Constitutive model

The ingredients of the constitutive model are the anisotropic
yield criterion, the associated flow rule and the nonlinear
isotropic work-hardening rule. The constitutive model applied
in this study is similar to that presented by Lademo et al. [12],
but the anisotropic yield criterion is different. Thus, only a
brief summary is given here, focusing on the yield function.
The model is formulated for small elastic strains while
plastic strains and rotations may be finite. To fulfil the
principle of material frame indifference, a corotational stress
formulation is adopted (e.g. [33]). Orthotropic anisotropy is
assumed for the extruded aluminium profiles and thus there
exist three mutually orthogonal planes of symmetry at each
material point. The intersections of these planes are called
the axes of orthotropy (or the principal axes of anisotropy),
and these axes are chosen as the reference axes. In extruded
aluminium profiles, the axes of orthotropy are the extrusion
direction (ED), the transverse direction (TD) and the normal
direction (ND) of the profiles, here chosen as x-axis, y-axis
and z-axis, respectively.

The yield function f, which defines the elastic domain in
stress space, is expressed in the form

f σ; Rð Þ ¼ f ðσÞ � Y0 þ Rð Þ � 0 ð1Þ
where Y0 is the reference yield stress and R is the isotropic
work-hardening variable. In Eq. 1, s ¼ f ðσÞ is the effective
stress and sY ¼ Y0 þ R is the flow stress, representing the
strength of the material.

Achani et al. [25] evaluated yield criteria for the two alloys
based on uniaxial tensile tests data from seven in-plane
directions and disc compression tests in the ND of the profile.
The yield function Yld2004-18p of Barlat et al. [24] was
selected, since it was found to give an accurate representation
of the test data. This yield function is defined by

f ðσÞ¼ a

ffiffiffiffiffiffi
1

4
f

r
ð2Þ

where

f ¼ S01 � S001j ja þ S01 � S002j ja þ S01 � S003j ja þ S02 � S001j ja
þ S02 � S002j ja þ S02 � S003j ja þ S03 � S001j ja þ S03 � S002j ja
þ S03 � S003j ja

ð3Þ
The exponent a is set to 8 for the aluminium alloys. In

Eq. 3, S0i and S00j ði; j ¼ 1; 2; 3Þ are the principal values of
two linear transformations of the stress tensor: s0 ¼ C0 :
s ¼ C0 : T : σ and s00 ¼ C00 : s ¼ C00 : T : σ, where s = T :
σ is the stress deviator. The fourth-order tensors C0 and C00

contain the anisotropy constants, and in Voigt notation they
are expressed as

C0 ¼

0 �c012 �c013 0 0 0
�c021 0 �c023 0 0 0
�c031 �c032 0 0 0 0
0 0 0 c044 0 0
0 0 0 0 c055 0
0 0 0 0 0 c066

2
6666664

3
7777775
;

C00 ¼

0 �c0012 �c0013 0 0 0
�c0021 0 �c0023 0 0 0
�c0031 �c0032 0 0 0 0
0 0 0 c0044 0 0
0 0 0 0 c0055 0
0 0 0 0 0 c0066

2
6666664

3
7777775

ð4Þ

The two linear transformations provide 18 coefficients
that can be used to describe the plastic anisotropy of the
material. The yield function reduces to Hershey’s isotropic
yield function [34] when all coefficients are equal to one.
The reader is referred to Barlat et al. [24] for more details
about the Yld2004-18p criterion.

An often assumed nonlinear isotropic work-hardening
rule reads as (e.g. [35])

R "ð Þ ¼
X2
i¼1

QRi 1� exp �CRi"ð Þð Þ ð5Þ

where " is the accumulated plastic strain and QRi and CRi

are isotropic work-hardening constants. The rate form of
the isotropic work-hardening rule is

�R ¼ HR "ð Þ �" ð6Þ
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where the work-hardening modulus is defined as

HR "ð Þ ¼
X2
i¼1

CRiQRi exp �CRi"ð Þ ð7Þ

It is seen from Eq. 5 that the work-hardening saturates,
since R ! P

QRi when " ! 1. This is not always
confirmed by experiments, where nearly linear work-
hardening is often exhibited at large strains. To account
for this, the work-hardening rule applied in this study is
defined by

�R¼ HR "ð Þ�" for HR "ð Þ � HR;min

HR;min
�
" for HR "ð Þ < HR;min

�
ð8Þ

where HR is defined by Eq. 7 and HR,min is the minimum
work-hardening rate reached at large strains. The initial
value R (0) = 0 is assumed herein. It follows that Eqs. 5 and
6 are only valid until an accumulated plastic strain "

»

implicitly defined by

HR;min ¼ HR "
»

� �
¼

X2
i¼1

CRiQRi exp �CRi"
»

� �
ð9Þ

The adopted work-hardening rule is a simple extension
of the Voce rule, using two exponential terms instead of one
and with the possibility of a constant work-hardening rate at
large plastic strains.

The constitutive model has been implemented as a user-
defined material model in LS-DYNA [36] for use with shell
and brick elements. In this study, brick elements are used in
all simulations.

Parameters and analytical model predictions

Achani et al. [25] used 15 measured dimensionless
quantities to determine the parameters of the yield function:
the flow stress ratios rα and the strain ratios Rα from
uniaxial tension tests in seven in-plane directions α and the
equibiaxial strain ratio Rb from a disc compression test in
the ND of the flat profile. The flow stress ratio rα was
defined as

ra ¼ sa

s0

����
Wp

ð10Þ

where σα is the flow stress in the α direction and σ0 is the
flow stress in the ED (α=0°) at given specific plastic work
Wp. An average value of rα defined for plastic strains up to
incipient necking was then used in the calibration of the
yield criterion. The strain ratio for the α direction was
calculated as

Ra ¼ "pW
"pT

¼ ln w w0=ð Þ
ln t t0=ð Þ ð11Þ

where "
p
W and "

p
T are the plastic strains in width and

thickness direction of the tensile specimen, w0 and t0 are the
width and thickness of the gauge area before testing, while
w and t are the same values after testing (measured on the
unloaded specimen). In the disc compression tests, the
diameters both parallel and perpendicular to the ED as well
as the thickness of the disc were measured prior to and after
the deformation. The measured dimensions were then used
to calculate the logarithmic plastic strains "px , "

p
y and "pz in

ED, TD and ND, respectively. The equibiaxial strain ratio
Rb was then defined as [20]

Rb ¼
"py
"px

ð12Þ

The parameters of the yield function were found by
minimizing a sum of squared residuals that measures the
error in the calculated dimensionless quantities compared to
the experimental ones. There is no unique way of defining
such a sum of squared residuals, since different weight has
to be put on the various dimensionless quantities to obtain
equally good representation of the anisotropy in strength
and plastic flow. Achani et al. [25] defined the sum of
squared residuals S as

S ¼ P
a

rexpa � rmod
a

� �2 þ 1� rmod
b

� �2

þP
a
w Rexp

a

� � 1
a�1 � Rmod

a

� � 1
a�1

	 
2

þ w Rexp
b

� � 1
a�1 � Rmod

b

� � 1
a�1

	 
2

ð13Þ
where w is a weight applied to the strain ratios and rb is the
ratio between the yield stress in equibiaxial tension and the
yield stress in uniaxial tension in the ED. Owing to lack of
experimental data rb was assumed equal to unity. The
parameters of the yield function were then obtained by
minimizing the sum of squared residuals S, by using the
solver function of Microsoft Excel. Since these experiments
provide no information about the out-of-plane yield stresses
in tension and shear, these quantities were set equal to their
isotropic values, as proposed by Barlat et al. [24].

Fig. 5 presents experimental and fitted values of the flow
stress ratio rα and the strain ratio Rα with respect to angle
of tension for AA7003-T6. Fits with w equal to 1, 0.5 and
0.2 are included. Fig. 6 presents similar plots for AA6063-
T6. Yld2004-18p gives an almost perfect fit for the
recrystallized alloy AA6063-T6 independently of the weight
w, while the results for the fibrous, non-recrystallized alloy
AA7003-T6 are slightly less accurate. Figs. 7 and 8 present
contour plots of the yield surfaces obtained by Yld2004-18p
using w equal 0.5 for AA7003-T6 and AA6063-T6,
respectively, as represented in the space of the stress
components σx, σy and σxy. The figures clearly demonstrate
the influence of the different textures of the two alloys on the
shape of the yield surface.
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Valuable information on the predictive quality of the
yield function for loading in plane-strain tension and shear
is obtained by defining two additional stress ratios

rpsta ¼ sa

s0
; rsa ¼ sab

s0
ð14Þ

where σα is the major normal stress in plane-strain tension
in the α direction, σαβ is the shear stress for the specimen
oriented in the α direction, and σ0 is the stress in uniaxial
tension in the ED. All stresses are taken at incipient
yielding. The stress states in the plane-strain tension and
shear tests are transformed from the specimen frame to the
principal axes of anisotropy by

sx

sy

sxy

8<
:

9=
; ¼

cos2a sin2a �2 sin a cos a
sin2a cos2a 2 sin a cos a

sinacosa �sinacosa cos2a � sin2a

2
4

3
5 sa

sb

sab

8<
:

9=
;

ð15Þ
where σα, σβ and σαβ are the stress components in the
specimen frame for a specimen oriented in the direction α

with respect to the ED. For the plane-strain tension test in
the α direction it is assumed that the minor normal stress is
given by sb ¼ nsa at incipient yielding where v is
Poisson’s ratio. The shear stress at yielding is assumed to
be zero. For the shear test in the α direction the only non-
zero stress component is assumed to be the shear stress σαβ.
Using the yield function, Eq. 1, we obtain the variation of
the stress ratios with the orientation α of the test specimen
as

rpsta ¼ 1

f ðcos2 a þ nsin2 a; sin2 a þ ncos2 a; 0; 0; 0; ð1� nÞsinacosaÞ
rsa ¼ 1

f ð�2 sin a cos a; 2 sin a cos a; 0; 0; 0; cos2 a � sin2 aÞ
ð16Þ

where the Voigt notation is used and thus f ðσÞ ¼
f ðsx; sy; sz; szx; szy; sxyÞ. Note that the analytical cal-
culations assume idealized and homogeneous stress states
and are only valid at incipient yielding. The actual tests do
not necessarily produce these conditions. The calculated
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stress ratios rpsta and rsa are provided in Figs. 9 and 10 for
the AA7003-T6 and AA6063-T6 materials, respectively.

For plane-strain tension the calibrated yield criterion
predicts the highest strength in the 90° direction for both
materials, which is in accordance with the experimental results.
For the AA7003-T6 material and w equal to 0.5 and 0.2, the
yield criterion predicts somewhat lower strength in the 45°
direction than for the 0° direction. In the experiments, the
opposite trend is observed. For the AA6063-T6 material the
yield criterion predicts about the same strength for the 0° and
45° directions, while the experiments demonstrate higher
strength in the 45° direction than in the 0° direction.

Shear tests oriented in the 0° and 90° directions should
theoretically produce identical results for small strains.
Indeed, the experimental tests done in these directions, i.e.
for the AA7003-T6 material, result in identical yield
strengths. Note, however, that the experimental curves for
these tests separate after some deformation, i.e. the test in

the 90° direction seems to work-harden more than the test
in the 0° direction. There are two possible explanations for
this observation. (a) The shear test specimen may produce
stress states somewhere in between pure and simple shear,
causing secondary stress components that would have
different orientation for the two tests. (b) The other
explanation is related to different texture evolution for the
two orientations of the specimen. These issues are
discussed in more detail below based on non-linear FE
analyses and polycrystal plasticity calculations. We further
see that the model represents much higher shear strength in
the 45° direction as compared to the other directions. This
is also in accordance with the experimental results, as
presented in Fig. 3. For the AA6063-T6 material the shear
tests display highest yield strength in the 0° direction
followed by the 22.5° and 45° directions. The predictions
obtained with the calibrated yield criterion are in good
accordance with these experimental results.
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Finite element simulations

Modelling and simulation procedures

To enable a proper evaluation of the constitutive model,
non-linear Finite Element analyses were performed using
the explicit solver of the general-purpose program LS-
DYNA. The FE models of the plane-strain tension and
shear test specimens are shown in Figs. 11 and 12,
respectively. Eight node hexahedrons with reduced integra-
tion and stiffness-based hourglass control were used to
discretize the specimens.

The plane-strain tension specimen was modelled with
18,120 elements in the deformable central part, giving a
characteristic element size of 0.8×0.8×0.4 mm3. The
smallest dimension was in the ND, and as a result there
were five elements through the thickness of the specimen.
With reference to Fig. 11, the lower rigid part of the
specimen was fixed, while a velocity-time history with
smooth ramp-up was prescribed for the upper rigid part. An
explicit solver requires small time steps for numerical

stability reasons. To keep the number of time steps within a
reasonable value, the simulation time was set to 3 ms.

The shear specimen was discretized using 43,335 solid
elements, out of which two thirds were located in the
vicinity of the shear zone of the specimen. The characteristic
element size in the shear zone was 0.1×0.1×0.2 mm3. Here
the largest dimension was in the ND, giving 10 elements
through the thickness of the specimen. With reference to Fig.
12, the lower rigid bolt was fixed, while a velocity-time
history with smooth ramp-up was prescribed for the upper
rigid bolt. The simulation time was 10 ms.

Since the simulation times are several orders of
magnitude smaller than the duration of the experiments, it
was carefully checked that the kinetic energy of the
specimen was always a small fraction of the internal
energy, so that the simulations could be considered to be
quasi-static.

The present study does not aim at describing the post-
localization response of the test specimens. In particular,
the FE model of the plane-strain tension test is rather coarse
and may not provide a converged solution in the post-

α [deg] α [deg]

0.9

1

1.1

1.2

rα
pst

w = 1.0
w = 0.5
w = 0.2

0 30 60 30 6090 0 90
0.4

0.5

0.6

0.7

r α
s

w = 1.0
w = 0.5
w = 0.2

Fig. 9 Predicted stress ratios in
plane-strain tension (left) and
shear (right) for AA7003-T6
based on Yld2004-18p and
weights w=0.2, 0.5, 1.0

α [deg]

0.9

1

1.1

1.2

rα
pst

w = 1.0
w = 0.5
w = 0.2

0 30 60 90 0 30 60 90

α [deg]

0.4

0.5

0.6

0.7

r α
s

w = 1.0
w = 0.5
w = 0.2

Fig. 10 Predicted stress ratios
in plane-strain tension (left) and
shear (right) for AA6063-T6
based on Yld2004-18p and
weights w=0.2, 0.5, 1.0

Int J Mater Form (2011) 4:227–241 235



necking region. The FE mesh of the shear test specimen is
neither guaranteed to represent all possible localization
modes. Despite the dense mesh, the strain localization
might occur in bands narrower than the characteristic length
scale of the mesh. To conclude on these issues, measurements
of the strain field within the shear zone of the specimen are
required. Such field measurements were not performed for the
actual test series.

Results and comparison with experiments

Figs. 13 and 14 show the experimental and predicted
nominal stress versus elongation for the AA7003-T6 and
AA6063-T6 materials, respectively. We note that the
qualitative trends revealed by the stress ratios rpsta and rsa
for plane-strain tension and shear, respectively, correlate
well with the strength anisotropy predicted by the FE

Fig. 11 Finite element mesh of
the plane-strain tension speci-
men (left) and enlarged view of
gauge section (right)

Fig. 12 FE mesh of shear spec-
imen (left), including enlarged
view of shear zone (right)
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simulations. This means that the plane-strain tension and
shear tests could have been used to improve the parameter
identification, e.g. with respect to the value of the weight
w for the AA7003-T6 materials, prior to the execution of
the FE simulations. For instance, for plane-strain tension,
Fig. 9 (left) demonstrates that the choice w=0.5 represents a
lower strength in the 45° direction than in the 0° direction,
while the opposite is observed in the experiments. Similarly,
for the AA6063-T6 material, Fig. 10 (left) shows that the
model represents the same strength in 0° and 45° directions,
while the experimental data show that the strength in the 45°
direction is significantly higher. A slight modification of the
parameters would facilitate a qualitatively correct represen-
tation. In particular, it is suggested that the stress ratios rpsta

and rsa could be used to pin-point critical test directions in
plane-strain tension and shear based on the uniaxial tension
test. In this way, the test programme in plane-strain tension
and shear could be planned to provide the best possible
support for the parameter identification and/or the evaluation
of the yield criterion. For instance, from Fig. 9 (left) we
conclude that plane-strain tension tests in the directions ~30°
and ~48° could possibly provide information about extremal
points in the directional yield strength in plane-strain tension.

The ultimate force in the plane-strain tension test
corresponds to the onset of necking. For both materials it
is seen that the assumption of isotropic work-hardening is
unable to capture the lower elongation at necking in the 90°
direction. It was found by Achani [31] that also in uniaxial

Fig. 13 Nominal stress versus elongation of extensometer gauge in plane-strain tension tests (left) and shear tests (right) of AA7003-T6

Fig. 14 Nominal stress versus elongation of extensometer gauge in plane-strain tension tests (left) and shear tests (right) of AA6063-T6
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tension the isotropic work-hardening rule was not capable
of properly representing the variation in elongation at
necking with varying tensile direction.

For the shear tests of the AA7003-T6 material the yield
strength prediction is correct, but the model is unable to
predict the more rapid work-hardening in the 90° direction
compared to the 0° direction. Furthermore, the predicted
work-hardening in these directions is too low. The predicted
response for the 45° direction deviates from the experi-
mental one for ΔLg greater than approximately 0.5 mm. It is
believed that the ultimate force of this test is governed by
the formation of a localized shear band within the central
gauge section that is not aligned with the specimen
orientation. This localization is not predicted by the FE
model. For the AA6063-T6 material the directional variation
of the yield strength is captured with reasonable accuracy. The
model properly represents the highly different responses of
the 0° and 45° tests. For the high-strength 0° direction a
localized shear band was formed for ΔLg greater than
approximately 0.5 mm, which corresponds to the ultimate
force in the test. In the 45° direction, exhibiting the lowest
shear strength, the strain in the shear zone is less localized.
The model does not capture the ultimate strength of the
experiment in the 22.5° direction.

Discussion

It has previously been demonstrated by Achani et al. [25]
that the yield surface Yld2004-18p, in combination with the
associated flow rule, is able to represent the highly complex
directional variations of the flow stress ratios rα and plastic
strain ratios Rα exhibited in uniaxial tensile tests on the
extruded aluminium alloys AA6063-T6 and AA7003-T6.
Plane-strain tension and shear tests are considered to be
suitable for assessing the accuracy of the anisotropic yield
criterion and the isotropic work-hardening rule for stress states
other than those realized in uniaxial tensile tests. It is suggested
to select critical directions for plane-strain tension and shear
testing from an evaluation of the stress ratios rpsta and rsa that
can be determined analytically as soon as the anisotropic
yield criterion has been calibrated based on uniaxial tension
tests in several material directions. The results from the plane-
strain tension and shear tests may then be used to determine
an improved parameter set for the anisotropic yield criterion.

The specimen geometries adopted in the plane-strain
tension and shear tests are simple to make from sheets,
plates or flat profiles, but they do not provide ideal and
homogeneous stress states, as assumed in the analytical
calculation of the stress ratios rpsta and rsa. Non-linear FE
analyses were therefore required to evaluate the calculated
stress ratios in plane-strain tension and shear and to further
interpret the experimental results. The qualitative trends

revealed by the stress ratios rpsta and rsa correlate well with the
predicted directional variation of the yield strength in FE
simulations of the plane-strain tension and shear tests. This
result supports the use of plane-strain tension and shear tests
and the analytical stress ratios rpsta and rsa as a supplement to
uniaxial tension tests in the parameter identification of the
anisotropic yield criterion. The FE simulations are further
used to confirm that the actual specimen geometries provide
strain and stress states sufficiently close to the ideal plane
strain and shear conditions.

The yield function with parameters identified from the
uniaxial tensile test data offers a reasonably accurate
representation of the yield strength anisotropy observed in
plane-strain tension and shear. The largest deviations are
seen for the plane-strain tension tests in the 45° and 90°
directions for the AA6063-T6 material. As already pro-
posed, the data from the plane-strain tension tests and/or the
shear tests may be used to find new parameter sets giving
an improved representation of all available experimental
data. An example comparing the original calibration of the
anisotropic yield criterion with a new calibration taking into
account the additional experimental data from the plane-
strain tension tests is provided in Fig. 15. As seen, the new
set of parameters gives higher values of the stress ratio rpsta

in the 45° and 90° directions, as suggested by these
experiments, while maintaining nearly the same directional
variations of the stress ratio ra and plastic strain ratio Ra in
uniaxial tension and the stress ratio rsa in shear. It thus
seems that the Yld2004-18p yield function is sufficiently
flexible for accurate representation of the plastic anisotropy
exhibited by these highly textured aluminium alloys.

It has previously been shown by Achani [31] that the
assumption of isotropic work-hardening is not in agreement
with the directional dependency of the uniform elongation
(or strain to diffuse necking) in uniaxial tension. In this
study, we find that with isotropic work-hardening, the
prediction of the directional variation of the elongation at
necking in plane-strain tension is not reliable. In particular,
non-conservative estimates of the elongation at necking in
the 90° direction are obtained for both materials. It is
further seen that the FE model predicts comparable
response in the shear tests in the 0° and 90° directions,
which is not in accordance with the experiments. Since the
secondary stress components occurring in the shear test
should be accounted for in the FE model, this deviation
might be attributed to significant texture evolution in the
shear test already at moderate strain levels. Again this
observation discredits the assumption of isotropic work-
hardening, since significant texture evolution would change
the shape of the yield surface with plastic straining.

The influence of texture evolution in the shear test was
investigated by conducting polycrystal plasticity calcula-
tions using the Visco-Plastic Self Consistent (VPSC)
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formulation developed by Lebensohn and Tomé [37]. The
VPSC formulation is a very versatile polycrystal plasticity
approach which accounts for anisotropic properties of both
the individual crystals and the aggregate as a whole and, as
such, allows tackling of non-isotropic work-hardening due
to texture changes. In order to cut down computation time
for the polycrystal-plasticity calculations, 1,000 individual
orientations were taken at random from the full EBSD data

sets (see Ref. [38]). Note that for a consideration of the full
polycrystal properties orthotropic sample symmetry must
not be applied, i.e. 0° ≤ ϕ1 ≤ 360°.

In VPSC polycrystal-plasticity simulations of forming
operations, the deformation is simulated by imposing
successive deformation increments; at each deformation
step a set of boundary conditions (either strain rates or a
combination of strain rates and stress components) is
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imposed to the (discrete) sheet texture, and the stresses and
strain rates in each grain are calculated. The shear rates are
used to determine changes in crystallographic orientation
and to update grain shape and yield stresses in the
individual grains. The overall (macroscopic) stresses and
strains follow from averaging over the corresponding grain
components. In the present case, the work-hardening
parameters of alloy AA7003-T6 were derived by fitting
the uniaxial tensile tests in the 0° direction. The resulting
microscopic, i.e. grain-level, work-hardening parameters
were then used to simulate shear tests under 0°, 45° and 90°
to the extrusion direction.

For the sake of simplicity, the comparison is performed
for simple shear in the plane of the flat profile without any
constraints in the ND. The assumption of simple shear
implies that secondary normal stresses will develop with
straining. Analyses were performed for the directions
investigated in the experimental shear tests. Since this
deformation condition gives rise to a multiaxial stress state,
the comparison is made in terms of equivalent values of the
stress and strain tensors. For practical reason, the von Mises
equivalent stress and strain are used. To address the effect
of texture changes, analyses were performed with and
without texture update. The results are provided in Fig. 16.
The simulation with texture update exhibits a marked
deviation in the equivalent stress for the 0° and 90°
orientations with straining, in qualitative agreement with
the experimental results from the shear tests for this alloy.
When the texture is not updated, which is the case in the FE
simulations using an anisotropic yield surface with isotropic
work-hardening, the two directions show identical behaviour.
These results indicate that texture evolution is, indeed, the
cause of the deviating response observed for the shear tests in
the 0° and 90° orientations for AA7003-T6, and further that
the assumption of isotropic work-hardening is insufficient to
represent the response of the directional shear tests.

Concluding remarks

The use of plane-strain tension and shear tests in the
parameter identification and assessment of constitutive
relations for aluminium alloys with strong crystallographic
texture has been investigated in this paper. It is found that
these tests provide additional information that is useful in
the parameter identification. By calibrating the anisotropic
yield criterion from uniaxial tension tests in several
directions, analytically defined directional stress ratios in
plane-strain tension and shear may be calculated. These
stress ratios are helpful in identifying an optimum exper-
imental design for the plane-strain tension and shear tests so
that these provide as much information as possible on the
directional dependence of the yielding in these stress states.

Significant deviations between the experimental and
predicted behaviour in plane-strain tension and shear were
revealed when using FE simulations and the anisotropic
yield criterion Yld2004-18p with isotropic work-hardening.
The calibration of the yield criterion and the work-
hardening rule was solely from uniaxial tension tests in
several in-plane directions and a disc compression test in
the ND of the flat profile. The deviations are partly caused
by the calibration procedure used to determine the
anisotropy coefficients and partly caused by the use of
isotropic work-hardening. It was indicated how a new and
presumably more accurate parameter set could be deter-
mined by including the results from the plane-strain tension
and shear tests in the identification procedure. The use of
isotropic work-hardening led to inaccuracies with respect to
the elongation at necking in the plane-strain tension tests
and failure to predict deviations in the response in shear
tests in the 0° and 90° orientations for AA7003-T6. It was
suggested by use of polycrystal plasticity calculations that
texture evolution is important, at least in shear, and thus the
assumption of isotropic work-hardening is not appropriate.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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