Skip to main content
Log in

High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Platelets undergo remarkable morphological changes during storage. Platelets change into different sizes and densities and differ in their biochemistry and functions. However, the correlation between structural heterogeneity and platelet autophagy is largely unknown. The aim of this study was to investigate the autophagy process in vitro, such as routine storage of platelets, and explore the role of reactive oxygen species (ROS) involved in the regulation of platelet autophagy. The ROS and autophagy levels of platelet concentrates from apheresis platelets were evaluated through flow cytometry. The expression levels of autophagy-associated proteins (LC3I, LC3II, Beclin1, Parkin, and PINK1) were measured via Western blot. All biomarkers were dynamically monitored for seven days. Moreover, the morphological characteristics of platelet morphology during storage were analyzed through transmission electron microscopy (TEM). Flow cytometry showed that the levels of total cell ROS and mitochondria ROS increased in the stored platelets. Together with the increase in mitochondrial ROS, the autophagy signal LC3 in the platelets was strongly amplified. The number of swollen platelets (large platelets) considerably increased, and that of autophagy signal LC3 was remarkably higher than that of the normal platelets. Western blot revealed that the expression levels of Beclin1 and LC3 II/LC3 I ratio were enhanced, whereas those of Parkin and PINK1 almost did not change during the seven days of storage. The existence of autophagosomes or autophagolysosomes in the platelets at the middle stage of platelet storage was observed via TEM. Our data demonstrated that the subpopulation of large (swollen) platelets exhibited different autophagy patterns. Furthermore, increased platelet autophagy was associated with mitochondrial ROS. These preliminary results suggest that swelling platelets have a higher autophagy pattern than normal platelets during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jurk K, Kehre BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31(4):381–392

    Article  CAS  PubMed  Google Scholar 

  2. Andrews RK, Berndt MC (2004) Platelet physiology and thrombosis. Thromb Res 114(5–6):447–453

    Article  CAS  PubMed  Google Scholar 

  3. Devine DV, Serrano K (2010) The platelet storage lesion. Clin Lab Med 30(2):475–487

    Article  PubMed  Google Scholar 

  4. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghasemzadeh M, Hosseini E (2017) Platelet granule release is associated with reactive oxygen species generation during platelet storage: a direct link between platelet pro-inflammatory and oxidation states. Thromb Res 156:101–104

    Article  CAS  PubMed  Google Scholar 

  6. Vucic M, Stanojkovic Z, Antic A, Vucic J, Pavlovic V (2018) Evaluation of platelet activation in leukocyte-depleted platelet concentrates during storage. Bosn J Basic Med Sci 18(1):29–34

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng W, Chang C, Luo D, Su H, Yu S, Hua W, Chen Z, Hu H, Liu W (2014) Dissection of autophagy in human platelets. Autophagy 10(4):642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohto H, Nollet KE (2011) Overview on platelet preservation: better controls over storage lesion. Transfus Apher Sci 44(3):321–325

    Article  PubMed  Google Scholar 

  9. Ouseph MM, Huang Y, Banerjee M, Joshi S, MacDonald L, Zhong Y, Liu H, Li X, Xiang B, Zhang G, Komatsu M, Yue Z, Li Z, Storrie B, Whiteheart SW, Wang QJ (2015) Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood 126(10):1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao Y, Cai J, Zhang S, Yuan N, Li X, Fang Y, Song L, Shang M, Liu S, Zhao W, Hu S, Wang J (2015) Loss of autophagy leads to failure in megakaryopoiesis, megakaryocyte differentiation, and thrombopoiesis in mice. Exp Hematol 43:488–494

    Article  PubMed  Google Scholar 

  11. Lee SH, Du J, Stitham J, Atteya G, Lee S, Xiang Y, Wang D, Jin Y, Leslie K, Spollett G, Srivastava A, Mannam P, Ostriker A, Martin KA, Tang WH, Hwa J (2016) Inducing mitophagy in diabetic platelets protects against severe oxidative stress. EMBO Mol Med 8(7):779–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88

    Article  CAS  PubMed  Google Scholar 

  13. Tran S, Fairlie WD, Lee EF (2021) BECLIN1: protein structure, function and regulation. Cells 10(6):1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Wang Q, Li S, Li XJ, Yang W (2022) Mitochondrial-dependent and independent functions of PINK1. Front Cell Dev Biol 10:954536

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mangalpally KK, Siqueiros-Garcia A, Vaduganathan M, Dong JF, Kleiman NS, Guthikonda S (2010) Platelet activation patterns in platelet size sub-populations: differential responses to aspirin in vitro. J Thromb Thrombolysis 30(3):251–262

    Article  CAS  PubMed  Google Scholar 

  16. Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM (2010) A novel quantitative flow cytometry-based assay for autophagy. Autophagy 6(5):634–641

    Article  CAS  PubMed  Google Scholar 

  17. Neumüller J, Meisslitzer-Ruppitsch C, Ellinger A, Pavelkaa M, Jungbauerb C, Renzb R, Leitnerc G, Wagner T (2013) Monitoring of platelet activation in platelet concentrates using transmission electron microscopy. Transfus Med Hemother 40(2):101–107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540

    Article  CAS  PubMed  Google Scholar 

  19. Luo XL, Jiang JY, Huang Z, Chen LX (2019) Autophagic regulation of platelet biology. J Cell Physiol 234(9):14483–14488

    Article  CAS  PubMed  Google Scholar 

  20. Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, Arena G, Lasorsa L, Bennett A, Grange T, El Messaoudi S, Mazard T, Prevostel C, Thierry AR (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34(3):3616–3630

    Article  CAS  PubMed  Google Scholar 

  21. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63(4):e12438

    Article  Google Scholar 

  22. Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D, Wang J, Liu L, Li W, Ma Q, Du L, Zheng M, Zhang C, Liu J, Chen Q (2016) Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife 5:e21407

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Portal-Núñez S, Esbrit P, Alcaraz MJ, Largo R (2016) Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol 108:1–10

    Article  PubMed  Google Scholar 

  25. Tang H, Gao M, Fu Y, Gui R, Ma X (2020) The effect of autophagic activity on the function of apheresis platelets and on the efficacy of clinical platelet transfusion. Transfus Med Hemother 47(4):302–313

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C, Pan H (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344(2):174–179

    Article  CAS  PubMed  Google Scholar 

  27. Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, Nguyen JV, Jin Y, Ellisman MH, Marsh-Armstrong N (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111(26):9633–9638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107

    Article  PubMed  PubMed Central  Google Scholar 

  29. McWilliams TG, Barini E, Pohjolan-Pirhonen R, Brooks SP, Singh F, Burel S, Balk K, Kumar A, Montava-Garriga L, Prescott AR, Hassoun SM, Mouton-Liger F, Ball G, Hills R, Knebel A, Ulusoy A, Di Monte DA, Tamjar J, Antico O, Fears K, Smith L, Brambilla R, Palin E, Valori M, Eerola-Rautio J, Tienari P, Corti O, Dunnett SB, Ganley IG, Suomalainen A, Muqit MMK (2018) Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol 8(11):180108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, Shiba-Fukushima K, Sato S, Shimizu H, Fukunaga Y, Taniguchi H, Komatsu M, Hattori N, Mihara K, Tanaka K, Matsuda N (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 3:1016

    Article  PubMed  Google Scholar 

  31. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, Li X, Sho T, Wang X, Li Y, Wu YT, Wei YH, Hu X, Yu L (2021) Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184(11):2896–2910

    Article  CAS  PubMed  Google Scholar 

  33. Marcoux G, Duchez AC, Rousseau M, Lévesque T, Boudreau LH, Thibault L, Boilard E (2017) Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 28(3):272–280

    Article  CAS  PubMed  Google Scholar 

  34. Lesyk G, Jurasz P (2019) Advances in platelet subpopulation research. Front Cardiovasc Med 6:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghasemzadeh M, Hosseini E, Roudsari O, Zadkhak P (2018) Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: does endogenous ROS generation downregulate platelet adhesive function? Thromb Res 163:153–161

    Article  CAS  PubMed  Google Scholar 

  36. Hosseini E, Hojjati S, Afzalniaye Gashti S, Ghasemzadeh M (2020) Collagen-dependent platelet dysfunction and its relevance to either mitochondrial ROS or cytosolic superoxide generation: a question about the quality and functional competence of long-stored platelets. Thromb J 18(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tyagi T, Jain K, Gu S, Qiu M, Gu V, Melchinger H, Rinder H, Martin K, Gardiner E, Lee A, Tang W, Hwa J (2022) A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. Nat Cardiovasc Res 1:223–237

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vučetić D, Ilić V, Vojvodić D, Subota V, Todorović M, Balint B (2018) Flow cytometry analysis of platelet populations: usefulness for monitoring the storage lesion in pooled buffy-coat platelet concentrates. Blood Transfus 16(1):83–92

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

We thank Yan Wang and Huihui Feng for contribution to serve the blood donors and PCs collection. This work was supported by grants from Natural Science Foundation of Ningbo (No.2019A610273 and No.2019A610268); Ningbo Public welfare science and technology project (No.2019C50083); Natural Science Foundation of Zhejiang Province (No.LY20H290006); Open Foundation of key laboratory of blood safety research of zhejiang province (No.2018KF010).

Author information

Authors and Affiliations

Authors

Contributions

GD and QL conceived and designed the experiments; LY, SY and YH performed the experiments and evaluated the results; LY and QL wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Yu, S., He, Y. et al. High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage. Indian J Hematol Blood Transfus 39, 670–678 (2023). https://doi.org/10.1007/s12288-023-01638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-023-01638-1

Keywords

Navigation