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Abstract OsSUT?2 encodes a putative sucrose transporter
containing 12 transmembrane domains in rice plants.
Subcellular localization of the OsSUT2::GFP fusion protein
indicated that OsSUT2 is a cell membrane protein. In
embryos of germinating seeds, the expression of OsSUT2
gradually increased during the early germinating stage. The
developmental regulations of OsSUT? in germinating
embryos could be mediated by sugars transported from
endosperms. OsSUT2 expression was up-regulated by
glucose through a hexokinase-independent pathway. Exoge-
nous sucrose was sensed by a sensor localized on the plasma
membrane and functioned as an enhancer to promote OsSUT?2
expression. Based on OsSUT?2 promoter::GUS expression in
germinating seeds of transgenic rice, OsSUT2 was signifi-
cantly expressed in the embryos and aleurone layers. In
embryos, strong GUS expression was detected in the
scutellum and vascular bundle tissues. Developmental
stage- and sugar-dependent OsSUT2 expression was sug-
gested to be controlled by transcriptional regulation of the
promoter region.
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Abbreviations

DAI Days after imbibition
Glc Glucose

GUS [3-Glucuronidase
Man Mannitol
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MU 4-Methylumbelliferone

3-OMG 3-O-Methylglucose

Pal Palatinose

QRT-PCR  Quantitative real-time reverse transcriptase
polymerase chain reaction

Sc Scutellum cells

Suc Sucrose

SUT Sucrose transporter

Ubi Ubiquitin

\% Vascular bundle

Introduction

In plants, carbohydrates translocate from the source to
sink tissues through symplastic and apoplastic pathways.
Sugar transport between cells in symplasts is mediated
by plasmodesmata. In apoplasts, sugar translocators are
responsible for carbohydrate uptake into cells. Because
sucrose is the major transported form of carbohydrate
between plant tissues, sucrose transporter (SUT) plays
an important role in long-distance disaccharide transport.
SUTI in sugarcane functions to partition sucrose between the
vascular bundle and storage cells (Rae et al. 2005). Maize
SUT, ZmSUT1, is responsible for sugar uptake into phloem
in source tissues and sugar unloading from phloem into cells
in sink tissues (Carpaneto et al. 2005). Changes in
carbohydrate allocation and the inhibition of photosynthesis
have been observed in transgenic plants with reduced SUT
activity due to antisense SUT genes; thus, SUT has been
indicated to play an important role in carbohydrate partition-
ing and physiological processing (Kiihn et al. 1996; Biirkle
et al. 1998).
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To date, SUT genes have been identified from several
plants, most belonging to gene families (Lemoine 2000;
Lalonde et al. 2004). The SUT gene families of dicot and
monocot species were classified into five sequence-based
groups by Braun and Slewinski (2009). In rice, the SUT
gene family consists of five genes, OsSUTI to OsSUTS
(Aoki et al. 2003). OsSUTI and 3 were classified into
group 1. The group 1 SUT family is composed of several
Poaceae SUT members; so far, no dicot SUTs have been
found in group 1. OsSUT2 was classified with Arabidopsis
SUT4 (AtSUT4) in group 2. AtSUT4 has been demonstrated
to be responsible for the low-affinity/high-capacity trans-
port system (reviewed by Lalonde et al. 2004). OsSUT4 and
OsSUTS5 were classified into group 3 and 5, respectively.

During plant development from seed germination to seed
establishment and seedling growth, starch reserved in the
seed is the primary carbon and energy source for sprouting
and early seedling establishment, and then the sugar
sources for later stages of seedling growth come from the
photosynthetic shoots. In rice plants, carbohydrate transport
from germinating seeds to other developing sink tissues is a
fundamental process for plant development and growth.
Sugar derived from starch degradation exported to the
cytosol from storage organelles is the first step for long-
distance carbohydrate translocation. In cereal endosperms,
starch granules are attacked by o-amylase (Murata et al.
1968), and the maltose and linear/short-branch-chain
oligosaccharides are generated for further degradation by
«-glucosidase (Stanley et al. 2011). The hexoses produced
by starch degradation can be taken up by the scutellum cells
of the embryo. Hexoses have been suggested to be re-
synthesized into sucrose in the scutellum (Edelman et al.
1959; Nomura et al. 1969). Sucrose in the scutellum is
loaded into the vascular bundle, transported, and then
unloaded to growing tissues through apoplastic or sym-
plastic pathways (Aoki et al. 2006). In addition, it was also
suggested that sucrose transported from aleurone layers to
endosperm at early germination stage could be further
uptaked by scutellum (Aoki et al. 2006). Based on our
previous work (Liu et al. 2010), soluble sugar can also be
converted to starch in scutellum or the cells surrounding
vascular bundles at the post-germination stage, and the
amount of transitory starch in embryonic tissues was
dependent on the demand of growing sink tissues. Phloem
functions as an important pathway for carbon source
transport among various plant tissues. In rice germinating
seeds, OsSUT! was the first OsSUT family member
identified to have a tissue-specific expression pattern
(Hirose et al. 1997; Scofield et al. 2007). Developmental
expression and regulation of OsSUT! has been observed in
germinating seeds (Chen et al. 2010). However, the
regulation of other members of the OsSUT gene family
still needs to be established.
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In the present study, we identified the subcellular
localization of OsSUTZ2. The expression of OsSUT2 in
germinating embryos was detected by real-time quantitative
RT-PCR. The spatial and temporal transcriptional activities
of the OsSUT?2 promoter were detected in the germinating
seeds of transgenic rice plants carrying the OsSUT?2
promoter::GUS fusion gene. Furthermore, the signal trans-
duction of sugars for regulating OsSUT2 expression was
examined and discussed.

Materials and methods
Plant materials and treatment

Rice (Oryza sativa L. cv. Tainung 67) seeds were obtained
from the Hualien District Agricultural Research and
Extension Station in Taiwan. For germination, seeds were
sterilized in 2.5% sodium hypochlorite with Tween 20 for
20 min and subsequently washed with distilled H,O four
times. Seeds were then germinated at 37°C in the dark for
3 days and then moved to the phytotron for growing at 30/
25°C under natural daylight. To analyze the sugar content
and OsSUT2 expression in embryos, the growing shoots
and roots were cut and the embryos isolated after 1- to 5-
day seed imbibition.

To isolate embryos from dry seeds, the grain hulls were
removed by machine and the embryos picked by razor
blade. The isolated embryos were sterilized in 0.25%
sodium hypochlorite for 10 min and subsequently washed
with distilled H,O four times (Matsukura et al. 2000). For
isolated embryo culturing, the embryos were placed on MS
medium and incubated at 28°C in dark or light. For sugar
and sugar analog treatments, the chemicals were added in
MS medium. The concentration of all sugars and sugar
analogs used in this study was 100 mM.

Homology analysis of amino acid sequences
and transmembrane domain prediction

Multiple sequence alignments of SUT amino acid sequen-
ces were carried out using SDSC Biology WorkBench 3.2
(http://workbench.sdsc.edu/). The transmembrane domains
on the OsSUT2 amino acid sequence were predicted
according to the Hidden Markov Models using TMMOD
software (Kahsay et al. 2005).

RNA extraction

Embryos isolated from ten seeds or harvested from medium
were ground in liquid nitrogen, homogenized in 1 mL Trizol
reagent (Invitrogen, Carlsbad, CA, USA), and centrifuged at
8,000xg. The supernatant was treated with 0.2 mL chloro-
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form, shaken for 15 s, and incubated at room temperature for
3 min. After centrifugation at 12,000%g for 15 min at 4°C,
the upper layer was transferred to a new tube. RNA was
precipitated with 0.5 mL isopropanol and incubated for
10 min at room temperature. After centrifugation, the pellet
was dissolved in 0.2 mL H,O. Before the gene expression
analysis, the total RNA extracted from the embryos was
treated with DNase to remove contaminating genomic DNA.

Quantitative real-time reverse transcriptase-PCR

Total RNA (200 ng) was used as the template for quantitative
real-time RT-PCR analysis using the Brilliant SYBR Green
QRT-PCR Master Mix (Stratagene, La Jolla, CA, USA), and
PCR reactions were performed using a Multiplex 3000P Real-
Time PCR System (Stratagene). The gene-specific RT-PCR
primers are listed on Table 1. RT-PCR was carried out as
follows: 50°C for 30 min and 95°C for 10 min, followed by
40 cycles of 95°C for 1 min, 58°C for 1 min, and 72°C for
1 min. To quantify relative gene expression levels accurately,
the Cr values of OsSUTI to 5 were normalized to the Ct
value of the ubiquitin (Ubi) gene. For all real-time RT-PCR
analyses, three independent experiments were carried out,
and the data are presented as mean+SD.

Sugar analysis

Ten embryos were ground to powder in liquid nitrogen and
extracted with 1 mL of 80% (v/v) ethanol at 80°C for 5 min
before centrifugation at 3,000xg. The supernatant was
analyzed for glucose and sucrose following the method
described by Spackman and Cobb (2002).

Subcellular location of OsSUT2

The coding region cDNA of OsSUT?2 was cloned from rice
embryos using RT-PCR. Total RNA was extracted from

embryos 5 days after imbibition (DAI) and RT-PCR was
performed using specific primers. The forward primer (5'-
TTCTAGAATGCCGCGGCGGCCTAGGCGG-3")
contained the Xbal cloning site sequence, the reverse
primer (5'-AGGATCCATCGGTGACCTCTCCTCCTTG-
3") contained the BamHI cloning site, and the stop codon
sequence was not included. OsSUT2 cDNA was cloned in-
frame with the N-terminus of the green fluorescent protein
(GFP) gene, driven by a CaM V35S promoter in a transient
expression vector. The OsSUT2-GFP fusion construct
was transiently expressed in barley aleurone layer cells
mediated by a He Biolistic particle delivery system (model
PDS-1000, Bio-Rad). Half-de-embryonated barley seeds were
sterilized before soaking in a shooting buffer (20 mM Na—
succinate and 20 mM CaCl,, pH 5.0) for 48 h at 24°C in the
dark (Mena et al. 2002). Next, the pericarp was removed
from the seeds and the aleurone layer exposed for bombard-
ment. After bombardment, the seeds were incubated with
shooting buffer for 24 h at 24°C. Finally, fluorescence
localization in the aleurone layer cells was observed using an
AXIO Imager M1 fluorescence microscope (Carl Zeiss,
Germany).

Promoter cloning

Rice genomic DNA was extracted from the leaf tissues with
plant DNA o reagent (Invitrogen). The OsSUT2 DNA
fragment upstream of the translation start site, located from
—830 to —1 bp, was amplified by PCR using specific
primers (forward primer with Sacl site: 5'-GAGCTCT
TAAGGAGCACCAA-3'; reverse primer with Smal site:
5'-CCCGGGCTTCTTCTCGTGTT-3'). Putative cis-ele-
ments on the OsSUT2 promoter sequence were character-
ized by searching for similar motifs in the Database of Plant
Cis-acting Regulatory DNA Elements (PLACE) (Higo et al.
1999). To generate the plasmid for the promoter activity
assay in transgenic rice plants, the OsSUT2 promoter

Table 1 Primer pairs for real-

Primer pair
(F: forward primer; R: reverse primer)

Amplicon size (bp)

time RT-PCR Gene Accession number
OsSUTI D87819
OsSUT2 AB091672
OsSUT3 ABO071809
OsSUT4 AB091673
OsSUTS AB091674

The nucleotide sequences used

for primer designing were pre- Ubi D12629

sented by their accession numbers

in GenBank

F: 5'-CTGTGATTTTCCTGTCCCTG-3' 136
R: 5'-AACACTGCTAGTGGACCAGT-3'

F: 5'-AGGAGGAGAGGTCACCGATAA-3' 240
R: 5'-CCAACATCCAATGTACAACAGCA-3’

F: 5'-GCCCAAGGTCTCCGTCC-3' 137
R: 5'-TGCTATAGTACCCGCTCTAA-3’

F: 5"-TTTGGCTGAGCAGAACACCA-3' 249
R: 5'-ATGTCATTCGGGCAGAGCTT-3’

F: 5'-CTAGTGCGAAACTCCATCAAA-3’ 249
R: 5'-AAAATATTTGGGTTTCCTGAGAT-3'

F: 5'-CGCAAGTACAACCAGGACAA-3' 101
R: 5'-TGGTTGCTGTGACCACACTT-3'
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(—830/—1) was inserted into the Sacl and Smal sites of the
pCHY 10 vector (a gift from Dr. Chwan-Yang Hong), which
contained the first intron of the Ubi gene fused to the f3-
glucuronidase (GUS) reporter gene. We used restriction
enzymes to isolate the DNA cassettes containing the
OsSUT2 promoter fragment with the Ubi intron and GUS
gene from the pCYH10 constructs. These cassettes were
then ligated into the Sacl and Hindlll sites of the
pCAMBIA1302 plasmid.

Generation of transgenic rice plants

To produce OsSUT?2 promoter.:GUS transgenic plants, the
constructed pCAMBIA1302 plasmid was transformed into
Agrobacterium tumefaciens EHA105. The cultured A.
tumefaciens harboring the constructed plasmids were used
to infect rice embryo-derived calli. The transformed calli
were selected on medium containing 50 pg/mL hygromycin
and 250 pg/mL cefotaxime. Finally, the transgenic rice
plants were regenerated from the transformed calli (Hiei et
al. 1994; Toki 1997).

Histochemical GUS assay

Histochemical GUS activity assays were performed as
described previously (Jefferson 1987). Half-cut germinated
seeds from transgenic plants were placed in a solution
containing 10 mM EDTA, 0.5 mM potassium ferricyanide,
0.5 mM potassium ferrocyanide, 1.0 mM 5-bromo-4-
chloro-3-indolyl-f3-D-glucuronide, 0.1% Triton X-100, and
0.1 M sodium phosphate buffer (pH 7.0) and incubated at
37°C for 4 h. The staining reaction was stopped by adding
75% ethanol.

Quantitative GUS activity assay

Developmental regulation of the OsSUT2 promoter was
analyzed in germinating embryos of transgenic rice seeds.
Seeds were germinated in water containing hygromycin,
and embryos were isolated from 3 and 5 DAI To assay the
effect of glucose on OsSUT2 promoter activity, the seeds
were imbibed in hygromycin-containing water for 3 days
and the germinated embryos were isolated from transgenic
seeds. The isolated embryos were cultured in MS medium
containing 100 mM glucose solution for 5 days at 28°C in
the dark. The protruding shoots and roots were excised and
discarded before the embryo proteins were extracted with
the buffer containing 100 mM sodium phosphate (pH 7.0),
5 mM dithiothreitol, 20 pg/ml leupeptin, and 20% (v/v)
glycerol. Next, 4-methylumbelliferyl (3-D-glucuronide was
added as a substrate and GUS activities were measured
fluorometrically in the embryos as described previously
(Jefferson 1987).
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Results
Subcellular localization of OsSUT2 protein

To characterize the protein structure and identify the
subcellular localization of OsSUT2 protein, the OsSUT?2
coding sequence was amplified by RT-PCR. The OsSUT2
cDNA (accession no. HQ875341) encodes a protein of 501
amino acids in length. According to membrane protein
topology prediction using Hidden Markov Models in
TMMOD software (Kahsay et al. 2005), the OsSUT2
protein contains 12 transmembrane domains (Fig. la, b).
The amino- and carboxyl-terminal sequence tails predicted
a cellular localization (Fig. 1b). Based on a previous
phylogenetic analysis of the SUT gene family by Braun
and Slewinski (2009), OsSUT2 was grouped with Arabi-
dopsis AtSUT4. Furthermore, Kiihn and Grof (2010)
showed that AtSUT4 is also classified with StSUT4 and
LeSUT4 in the same group. The amino acid identities
between OsSUT2 and StSUT4, LeSUT4, and AtSUT4 are
66%, 66%, and 64%, respectively. The significant differ-
ences within the above SUT genes are at the amino
terminus and central inside loop (Fig. 1a). In addition, the
central inside loop of OsSUT2 (35 amino acids in length) is
smaller than that of LeSUT2 (94 amino acid residues) and
AtSUT2 (87 amino acid residues), which belong to the
other SUT group (Fig. 1b). To determine the subcellular
localization of OsSUT?2 protein, the expression of OsSUT2-
GFP fusion protein was observed in the aleurone layer cells
of barley seeds. Fluorescence imaging showed that the
fusion protein was localized on the plasma membrane

(Fig. 2).

Developmental expression of OsSUT2 in embryos
during germination

To examine the expression of five OsSUT family genes in
the embryos of germinating seeds, rice seeds were
germinated in the dark for 3 days and then grown in
phytotron with natural sunlight. The expression levels of
OsSUT3 and 5 were lower than those of the other three
OsSUT genes at 1 and 5 DAI (Fig. 3a). Quantitative RT-
PCR showed that the OsSUT2 transcript level was
significantly higher than that of other OsSUT genes at 5
DAI (Fig. 3a). Among OsSUTI, 2, and 4, only the OsSUT2
mRNA of embryos was increased at 5 DAI compared to 1
DAI (Fig. 3a). Furthermore, the expression of OsSUT2 was
observed to gradually increase during the early germination
stage, and the transcript level at 5 DAI was 4.6-fold that of
dry seed embryos (Fig. 3b). In addition, the expression of
OsSUT2 in embryonic tissues increased with growth stage,
even seedlings continuously grew in the dark after
germination (Fig. 4a). However, the phenomenon of
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Fig. 1 Multiple amino acid
sequence alignment and trans-
membrane domain analysis of
SUT proteins. a Alignment of
amino acid sequences from
potato SUT4 (StSUT4; Genbank
accession AF237780), tomato
SUT4 (LeSUT4; AF176950),
Arabidopsis SUT4 (AtSUT4,
AY072092), and rice OsSUT2
(HQ875341). TM transmembrane
domain. b Comparison of SUT
protein structures. The inside and
outside membrane regions and
transmembrane domains of
OsSUT2, StSUT4, AtSUTA4,
LeSUT4, AtSUT2 (AK226970),
and LeSUT2 (AF166498) were
predicted using TMMOD
software.
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Fig. 2 Subcellular localization
of OsSUT2 by transient expres-
sion of OsSUT2-GFP fusion
proteins in barley aleurone layer
cells. a Bright field image.

b GFP fluorescence image.

¢ Merged field and fluorescence
image.

OsSUT?2 up-regulation during germination was not obvious
in dark-cultured isolated embryos (endosperm-free)
(Fig. 4c).

Expression of OsSUT?2 regulated by exogenous sugars

OsSUT?2 expression in germinating embryos was different
from those with and without endosperm status. It was
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Fig. 3 Developmental expression of rice OsSUT in the embryos of
germinating seeds. a Comparison of the expression of five OsSUT
genes in the embryos of 1-DAI and 5-DAI seeds. b Changes in
OsSUT?2 expression in embryos during seed germination. The data are
presented as mean+SD.
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considered whether the sugar transported from endosperm
during seed germination plays a role in the regulation of
OsSUT2 expression in embryos. To evaluate this possibil-
ity, the levels of glucose and sucrose were analyzed in the
embryos of germinating seeds from 0 to 5 DAIL Glucose
levels gradually increased with the days after imbibition,
but sucrose content fluctuated (Fig. 5). The changes in
glucose content corresponded to the expression pattern of
OsSUT?2 transcripts in embryos during seed germination
(Figs. 3b and 5). Even for seed germination in the dark,
changes in glucose content and OsSUT2 transcript levels
were consistent (Fig. 4a, b). In order to determine whether
sugars are the factors up-regulating OsSUTZ2 expression in
the embryos of germinating seeds, the embryos isolated
from dry seeds were cultured on sugar-containing MS
medium in the dark for 5 days. Although glucose (100 mM)
and sucrose (100 mM) slightly enhanced OsSUT2 mRNA
levels in 1-day sugar-treated embryo samples, the effect
was not significant (Fig. 6a). In 5-day cultured embryos, the
OsSUT?2 expression was obviously up-regulated by both
glucose and sucrose, but not by the same concentration of
mannitol (Fig. 6b).

Sugar analogs were applied to study the sugar-sensing
pathway for regulating OsSUT?2 expression. 3-O-Methylglu-
cose (3-OMG), a nonmetabolizable glucose analog, was
taken up by cells but was not phosphorylated by hexokinase
(Dixon and Webb 1979). The results showed that 3-OMG
(100 mM) had the same effect as glucose (100 mM) to
enhance OsSUT2 expression (Fig. 7a). Palatinose, a non-
metabolizable sucrose analog, cannot be imported into plant
cells (Bouteau et al. 1999). The effect of palatinose
(100 mM) on OsSUT2 gene expression was similar to that
of sucrose (100 mM) (Fig. 7b), suggesting that embryo cells
sense sucrose signals to regulate OsSUT?2 expression through
a membrane sensor.

OsSUT?2 promoter::GUS expression in embryos

Transgenic rice plants harboring the OsSUT2 promoter.:
GUS construct was used to investigate the spatial expres-
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Fig. 4 OsSUT2 expression and glucose content in embryonic cells
from light- and dark-grown seedlings. Rice seeds were germinated in
the dark for 3 days. Some germinated seeds were moved to a
phytotron with natural daylight for 2 days (labeled 3-day D/2-day L),
and some germinated seeds were kept in the dark (labeled 5-day D)
for growth. The seedlings were collected at 1 and 5 DAI, and the
embryos were isolated for OsSUT2 expression analysis (a) and to
measure glucose content (b). ¢ The OsSUT?2 expression in germinating
isolated embryos was analyzed. The embryos were dissected from dry
seeds and dark-grown in MS medium. OsSUT2 expression was
detected after 1, 3, and 5 days of culture. The data are presented as
mean+SD.

sion of OsSUT2 in rice embryos. Rice seeds of three
independent transgenic lines were germinated in water, and
GUS expression in germinating seeds was observed. GUS
activities were performed in aleurone layers and embryos.
In embryos, significant GUS staining was detected in the

0.6
0s k B Glc

O Suc

mmole/g DW

Dy 1 2 3 4 5
embryo

Days after imbibition

Fig. 5 Changes in the glucose and sucrose content of embryos during
seed germination. The data are presented as mean+SD. Glc glucose,
Suc sucrose.

vascular tissues and scutellum cells of embryos (Fig. 8). In
addition, the quantitative GUS activity assay showed that
the GUS activity in embryos from 5-DAI seeds was
significantly higher than that of 3-DAI seeds (Fig. 9a). To
identify the effect of glucose on OsSUT2 promoter activity,
the germinated embryos of transgenic rice seeds were
isolated and incubated in 100 mM glucose solution for
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Fig. 6 Effects of sugars on OsSUT2 expression. OsSUT2 transcript
levels were determined in isolated embryos cultured in medium
containing mannitol (Man), glucose (Glc), or sucrose (Suc) for 1 day
(a) and 5 days (b). The data are presented as mean+SD.
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Fig. 7 Sugar-sensing pathways for OsSUT2 gene regulation in
germinating embryos. a Effect of glucose analog 3-O-methylglucose
(3-OMG) on OsSUT?2 expression after 5 days of treatment. b Effect of
the sucrose analog palatinose (Pa/) on OsSUT2 expression after 5 days
of treatment. The data are presented as mean+SD.

Control

5 days. The OsSUT2 promoter activities were obviously
enhanced (Fig. 9b).

Discussion

SUT proteins are important carriers for transporting sucrose
across the plasma membrane or vacuolar membranes
(reviewed by Kiihn and Grof 2010). Arabidopsis SUT
protein has also been found on the chloroplast membrane
(Rolland et al. 2003). Rice OsSUT2 is classified in the
same group with Arabidopsis AtSUT4, tomato LeSUT4,
potato StSUT4, Lotus japonicus LjSUT4, and barley
HvSUT2 (Braun and Slewinski 2009; Kiihn and Grof
2010). Some of the above-mentioned SUTs, including
AtSUT4, StSUT4, and LjSUT4, have been identified as
low-affinity/high-capacity transporters (Weise et al. 2000;
Reinders et al. 2008). In addition, AtSUT4, LjSUT4, and
HvSUT?2 are vacuolar transporters according to a previous
analysis of transient SUT-GFP fusion protein expression
(Endler et al. 2006; Reinders et al. 2008). On the other
hand, LeSUT4 and StSUT4 are located on the plasma
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Line No. 13

Line No. 22

Line No. 32

Fig. 8 Histochemical localization of 3-glucuronidase activity in the
embryos of transgenic rice plants harboring the OsSUT2 promoter::
GUS constructs. The seeds of transgenic rice lines 13, 22, and 32 were
germinated in the dark for 3 days, and then the GUS activity was
analyzed in half-cut germinated seeds. Sc scutellum cells, V" vascular
bundle. Bar=1 mm.

membrane of sieve elements (Reinders et al. 2002).
OsSUT2 contains 12 transmembrane domains and was
localized on plasma membrane. Amino acid alignment
showed that the number of amino acids in the central inside
loops are similar among OsSUT2 and other SUTs in group
4 (according to the classification by Braun and Slewinski
2009) (Fig. 1); however, the length of the OsSUT2 central
loop is shorter than that of SUTs belonging to group 2, i.e.,
AtSUT2 and LeSUT2. LeSUT?2 is considered to function as
a putative sucrose sensor (Barker et al. 2000). The
conserved domains in the extended cytoplasmic loop of
LeSUT2 and AtSUT2 play an important role in signal
sensing and transduction (Barker et al. 2000). Because the
lengths and amino acid sequences of the central loops are
significantly different between OsSUT2 and LeSUT?2, the
regulatory mechanism and function of OsSUT2 might not
be completely identical to that of LeSUT2.

Carbohydrate transport from endosperms and embryos to
coleoptiles, shoots, and roots is an important process for
supplying developing tissues with a carbon source during
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Fig. 9 Developmental regulation and effect of glucose on OsSUT2
promoter activity. a GUS activity was quantitatively analyzed in the
embryos from germinating seeds of transgenic rice carrying the
OsSUT?2 promoter::GUS construct. b GUS activity was determined in
isolated embryos cultured in medium with or without glucose. MU 4-
methylumbelliferone. The data are presented as mean+SD, and
statistical significance is set at p<0.05 (asterisk).

seed germination and seedling establishment. The levels of
OsSUT2 mRNA gradually increased from 1 to 5 DAI
(Fig. 3b). However, our previous report showed that the
OsSUT] transcript significantly increased after 1 to 2 DAI
and then quickly decreased at 3 DAI (Chen et al. 2010).
The expression level of OsSUTI was the highest among
OsSUT members in embryos at early imbibition stages (i.e.,
DAI 1), but OsSUT?2 was the dominantly expressed OsSUT
member 5 DAI (Fig. 3a). Thus, the functions and
regulations of individual OsSUT genes are different in the
embryos of germinating seeds. As shown by the data in
Fig. 8, the expression levels of OsSUT?2 in scutellum and
vascular bundles were higher than in other embryo ground
cells, and the OsSUT2 promoter activity was also signifi-
cantly observed in aleurone layers. According to the
OsSUT?2 expression patterns in germinating seeds, it was
suggested that OsSUT2 play a role to release sucrose from
aleurone layers, transport sucrose into scutellum, and also
load sucrose into the phloem in germinating seeds. On the
other hand, OsSUT1 gene was expressed in the scutellar
vascular bundle of germinating embryos but not in the
scutellar epithelial cell layer. Therefore, it was suggested
that OsSUT1 functioned to load sucrose into phloem for

transport to developing shoot and roots but not play a role
to transport sucrose from endosperm to embryos (Scofield
et al. 2007).

The increased OsSUT?2 expression in isolated embryos
(without endosperms) during germination was not obvious
in dark conditions; however, the significant up-regulation of
OsSUT2 was observed in the embryos of germinating seeds
(with endosperms) in dark conditions. Thus, it was
suggested that the sugar transported from endosperm was
the key factor for promoting OsSUT2 expression. Sugars
not only act as nutrients and energy for supporting plant
growth but also function as signals controlling plant
development and the expression of various genes (reviewed
by Gibson 2005; Rolland et al. 2006). The data in Fig. 6
showed that the transcript levels of rice OsSUT?2 could be
slightly enhanced by glucose and sucrose after 1 day of
treatment and significantly enhanced after 5 days of
treatment. Moreover, since the OsSUT2 expression was
not affected by mannitol, the sugar-enhanced OsSUT2
expression was not caused by osmotic effect. Sugar-
enhanced expression has also been observed with OsSUT1
(Matsukura et al. 2000; Chen et al. 2010). However, the
positive effect of sugar on OsSUT! expression occurs after
5 days of treatment, and 1-day sugar treatment down-
regulates OsSUT1 expression (Chen et al. 2010). Thus, the
mechanisms of sugar-mediated regulation are different for
OsSUTI and OsSUT?2. Sucrose-induced signal transduction
for gene regulation could involve sucrose as a direct signal
that is sensed by a sensor located on the cell membrane or
an intracellular sensor. In addition, sucrose metabolites,
such as glucose, could be signals to trigger the downstream
transduction pathway (reviewed by Halford et al. 1999).
The nonmetabolizable sucrose analog palatinose had a
similar effect on OsSUT2 expression in rice embryos as
sucrose, suggesting that sucrose acts as a direct molecule
for triggering the up-regulation of OsSUT2 expression. In
addition, the sensor for sucrose signal transduction is
expected to be located on the cell membrane because of
the lack of palatinose transport into plant cells (Sinha et al.
2002; Rolland et al. 2006). Moreover, since there was no
effect of mannitol on OsSUT2 expressions (Fig. 6), it was
suggested that the up-regulation of OsSUT2 expressions by
palatinose was not caused by osmotic effect. Moreover, the
data showing that 3-OMG can also conduct the same
positive effect on OsSUT2 expression in germinating
embryos as glucose suggests that the glucose-induced
OsSUT2 expression was mediated by a hexokinase-
independent pathway. In contrast, glucose-regulated OsSUT1
expression in germinating embryos was via a hexokinase-
dependent pathway (Chen et al. 2010).

Changes in the transcriptional activity of the OsSUT2
promoter in embryos during germination correlated with the
mRNA levels. OsSUT2 promoter activity was also up-
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regulated by glucose in embryos. Thus, promoter regulation
was a key step for controlling OsSUT2 expression. The
predicted cis-acting elements on the OsSUT2 promoter
were searched in the PLACE database (Higo et al. 1999),
identifying a SUSIBA2 transcription factor-binding site
(WBOXHVISO1; W-box) 477 bp upstream of the ATG
translation start codon. SUSIBA2 is a sugar-inducible
WRKY protein that can bind the sugar-responsive element
on the barley isoamylase I promoter (Sun et al. 2003).
Further study is needed regarding whether the interaction of
SUSIBA2 and the W-box on the OsSUT2 promoter is a key
factor to controlling sugar-responsive OsSUT?2 expression.

In conclusion, we identified OsSUT2 as a plasma mem-
brane transporter. OsSUT2 expression in germinated embryos
correlates with the developmental stage, with regulation
depending on the sugar transported from endosperms. The
developmental regulation and signaling pathways of sugar-
responsive OsSUTZ2 expression in germinating embryos are
different from those of OsSUT!. Glucose-enhanced OsSUT2
expression was mediated by a hexokinase-independent
pathway, and sucrose is sensed by a sensor located on the
plasma membrane to up-regulate OsSUT2 expression. We
also found that promoter activity is the major factor
controlling the developmental stage- and sugar-dependent
mRNA accumulation of OsSUT?2 in the embryos of germi-
nating seeds. Future studies of the activity of the deleted
promoter element and finding the factors that interact with the
cis-acting element would be helpful for elucidating the
molecular mechanism of OsSUT2 expression in germinating
rice embryos.
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