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Abstract
The ollie is the base aerial human–board maneuver, foundational to most modern skateboarding tricks. We formulate and 
solve an optimal control problem of a two-dimensional simplified human model and a rigid body skateboard with the objec-
tive of maximizing the height of the ollie. Our solution simultaneously discovers realistic human-applied force trajectories 
and optimal board geometry. We accomplish this with a direct collocation formulation using a null seed initial guess by 
carefully modeling the discontinuous aspects of board–ground impact and foot–board friction. This leads to efficient and 
robust solutions that are 10 times more computationally efficient than prior work on similar problems. The solutions show 
that ollie height can increase 3% by decreasing the wheelbase and that a smaller board with a back-foot-dominated force 
strategy can give 12% higher ollies. Our model can be used to inform jump strategy and the effects of changes to the essential 
board geometry.

Keywords Skateboarding · Friction · Impact · Optimal control · Trajectory optimization · Parameter optimization · Direct 
collocation

1 Introduction

In 1978, Alan ‘Ollie’ Gelfand invented the ‘no-hand aerial’, 
by riding off an inclined surface and jumping in the air with 
a skateboard. Four years later, Rodney Mullen debuted the 
first ollie from flat ground. Because the skateboard is not 
tethered to the skater, an ollie requires a precise sequence of 
movements to keep the two together [12]. The maneuver can 
be deconstructed into the six distinct phases shown in Fig. 1.

From the early 1960s, new skateboarding pursuits and 
their differing performance requirements evolved a variety 
of skateboard shapes. For example, slalom demanded short 
boards for quick turns, downhill preferred longboards for 
stability, and pool skating resulted in wide, concave boards 
for maximum foothold. Artistic motives shaped impracti-
cal coffin- and fish-like boards [23]. The prevailing mod-
ern board shape for aerial maneuvers, used by all Olympic 
athletes, is the popsicle stick. The shape supports a variety 
of freestyle aerial tricks, where the ollie is the foundational 
aerial maneuver. A labeled diagram of a popsicle stick skate-
board is shown in Fig. 2 (the skateboard front and riding 
direction will always be in the positive x-direction).

Friction occurs between the feet and the board surface 
due to the normal force exerted by the feet together with 
sliding movement tangential to the board’s surface which 
is covered by griptape (sandpaper). This benefits ollie 
height because the resultant force (Fig. 1 t5 , blue arrow) 
is directed more vertically upwards than the normal force 
(Fig. 1t4 , green arrow), which results in less downward 
motion while leveling out the skateboard mid-air. The 
higher the coefficient of friction between the foot and the 
deck, the more upward the resultant force will be. That 

 * Jason K. Moore 
 j.k.moore@tudelft.nl

 Jan T. Heinen 
 janheinen97@gmail.com

 Samuel G. Brockie 
 s.g.brockie@tudelft.nl

 Raymund ten Broek 
 raymund@uspc.nl

 Eline van der Kruk 
 e.vanderkruk@tudelft.nl

1 Department of BioMechanical Engineering, Delft University 
of Technology, Mekelweg, 2628 CN Delft, The Netherlands

2 Urbansports Performance Centre, Veemstraat, 
5617 AG Eindhoven, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s12283-023-00448-y&domain=pdf
http://orcid.org/0000-0002-8698-6143


 J. T. Heinen et al.    8  Page 2 of 12

is why griptape on the deck and rubber-soled shoes are 
preferred by skaters.

Impact is also important in the mechanics of an ollie. 
An impulsive impact between the tail and the ground 
causes the ‘pop’, which changes the translational and 
angular velocities of the board, causing it to lose contact 
with the ground and move upwards.

There is no standardization of popsicle stick boards in 
the skateboard industry. Boards are measured differently 
by each brand and non-specific descriptions, such as mel-
low, steep, and wide, are usually used to communicate 
deck dimensions to customers [3]. This makes it difficult 
for skaters to find their optimal board shape.

Skaters know and feel when a specific skateboard per-
forms to their liking. However, they do not know how this 
translates to quantifiable board dimensions. Skateboards 
might have evolved to optimum geometries over the years, 
but from an academic and mechanical perspective, skate-
board designs have not been shown to be optimal for spe-
cific tricks.

Researchers have analyzed the skateboard in planar 
riding models [14, 16, 27], which show the relationship 

between the dimensions and the stability while rolling and 
turning. However, these-dimensional analyses do not apply 
to aerial movements like the ollie. Others research the ollie 
by investigating the simulated contact forces [1, 24] and 
through experimental biomechanics [8, 11, 12, 28, 29]. 
Shield et al [24] and Anderson et al [1] found optimal ollie 
motions without changing the geometry, but no research 
has yet shown how the skateboards’ dimensions influence 
ollie height.

Now that skateboarding is an Olympic sport, knowing 
how to improve performance is more important than ever. 
Achieved height is the most measurable Olympic judg-
ing criteria applicable to the ollie [30]. This leads to our 
research question:

What are the optimal geometric parameters of a skate-
board for an athlete to reach maximal ollie height?

We find answers to this question by formulating a simplified 
human–skateboard dynamics model and solving an optimal 
control problem (OCP) utilizing direct collocation methods.

t1=0.013 t2=0.129 t3=0.181 t4=0.187 t5=0.303 t6=0.431 t7=0.543

t8=0.676 t9=0.722 t10=0.904 t11=1.097

Fig. 1  Phases of the ollie. Green arrow: resultant force without fric-
tion, red arrows: force components with friction, blue arrow: resultant 
force with friction. Blue, green, and red lines are trajectory of back 

wheel, middle, and front wheel, respectively. Images are retrieved 
from  https:// youtu. be/ 339k4 XEvbxY with consent. The phases and 
associated motion cues are described in Table 1

https://youtu.be/339k4XEvbxY
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2  Methods

2.1  Skateboard equations of motion

We start by developing a simplified 2D rigid body model 
of the skateboard. The board was modeled as a simplified 
popsicle stick skateboard where we assume the board is geo-
metrically symmetric, i.e., the front nose and truck is a mir-
ror of the back tail and truck, and there is no deck concavity. 
While in reality a skateboard bends and flexes during the 
ollie, this study assumed a rigid body model of the skate-
board to reduce mathematical complexity.

The skateboard model is detailed in Fig. 3. During the 
wheel–ground contact phases, we use a sliding joint for the 
rear wheel–ground contact to avoid having to expose the 
ground reaction forces in the equation of motion (EoMs) 
derivation. When the board is airborne during the ollie, we 
treat it as an unconstrained rigid body in 2D.

2.2  Athlete equations of motion

The athlete was modeled as a point mass of 80 kg and no 
rotational inertia (Fig. 3). The contact forces between the 
point mass and the skateboard were modeled as a pair of 
equal and opposite forces acting between the massless feet 
and the athlete’s center of mass (CoM). Due to this simpli-
fication, this does not model metabolic leg power, only the 
mechanical power output [17, 19].

We derived the EoMs using the TMT method [26], facili-
tated by SymPy [18]. The code used for the derivation is pro-
vided in reference [13], along with a derivation of the EoMs.

Several kinetic and kinematic constraints were intro-
duced to create a realistic simulation. First, the feet were 
constrained to the surface of the board and could move 
only within a fixed region relative to the human’s CoM: 
0.466m ≤ yh − yfoot ≤ 1.13m.

These bounds were found by scaling a human inertia 
model to 1.80 m tall and posing it to match a picture of 
Jake Hayes’ world record ollie (Fig. 4) using the software 
Yeadon [9].

We also implement a minimum and maximum foot-to-
foot separation of 0.1 to 1.0 m, respectively, along with 

constraining the skater to always stay on top of the skate-
board to eliminate relative errors. To make sure the feet 
never leave the skateboard, the rear foot is bound to the 
tail section and the front foot to the flat section of the deck 
(see Fig. 3). The feet can disconnect from the board, as 
seen in Fig. 1, but only due to how the friction model is 
implemented (section 2.3).

We constrain the rate of force development to simulate 
the leg shortening and lengthening cycle with a maximum 
force Fmax to keep this within realistic limits and a maxi-
mum mechanical power P = Fvrel as this also constrains 
knee extension rate. We used similar numerical values 
from a countermovement jump study that tested Division-
I male soccer players with a mean height of 179.5 cm, 
mass of 75.5 kg, and age of 19.65 years [2]. The kinetics 
of the human controls are bound to the characteristics of 
a countermovement jump motion because it accounts for 
76% of the variance in the performance of the ollie [8] and 
is a reliable assessor of lower-body mechanical power [2].

To account for the fact that Barker et al [2] measured 
two legs simultaneously, we constrain the sum of the 
forces produced by both legs together. We also constrain 
the absolute force and power produced by each leg to 
within realistic physical limits to prevent in and out-of-
phase pushing and pulling of the individual legs.

2.3  Friction and impact model

The feet slide along the deck’s griptape to drag vertically 
and level the skateboard. We model both the static and 
dynamic friction during the foot’s sliding on the deck 
using an approach based on the relaxed formulation by 
Patel et al [21], which models implicit impact and friction. 
Application of the relaxed formulation can result in slow 
convergence and long compute times and require a close 
initial guess [24]. We chose to use a variation to this for-
mulation with a simplified foot–board contact model and 
a multi-phase method for the tail–ground impact to have 
faster convergence and no need for a close initial guess.

We modify the relaxed formulation by removing the 
impact condition between the human and the board, 
instead assuming that the feet never impact the skateboard 
and simply exert zero normal force when out of contact. 
We start by setting the normal forces of the feet Fp1,Fp2 
and the feet accelerations s̈1, s̈2 as control variables. Foot 
acceleration is controlled instead of foot location itself to 
ensure smooth and realistic foot trajectories. We divide 
each normal force into a pair of non-negative slack vari-
ables representing its positive and negative component, for 
example, Ff1 = F+

f1
− F−

f1
.

Fig. 2  Popsicle stick skateboard terminology
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Friction is then enforced using a set of six path constraints 
for each foot (shown below for the back foot):

The first two equations above introduce �1 , a slack variable 
representing the magnitude of the relative velocity between 
the foot and the skateboard ṡ1 . The third ensures that the 
positive or negative component of the friction is always 
smaller than �Fp1 , where � is the Coulomb coefficient of 
friction, while the fourth ensures that when the foot slides 
the sum of the positive and negative friction components 
equal �Fp1 . It is important that when sliding in the positive 
direction, the negative friction component F−

f1
= �Fp1 and 

F+

f1
= 0 , and vice versa. This is enforced by the final two 

path constraints, (5) and (6).
The translational and angular velocities after tail–ground 

impact are calculated with the Newton impact law as pre-
sented in Vallery and Schwab [26] with a coefficient of res-
titution of e = 0.8.

2.4  Geometry and parameterization

The skateboard model is described using ten variables. This 
includes six optimizable parameters: wheelbase ( lwb ), deck 
length ( ld ), tail/nose length ( lt ), tail/nose inclination ( � ), 
truck height ( htr ), and wheel radius ( rw ). Four additional 
parameters, which were dimensions orthogonal to the 2D 
plane of the model, were fixed to industry standard values: 
deck thickness ( hd = 0.0012m ), truck width ( dtr = 0.21m ), 
deck width ( dd = 0.21m ), and wheel width ( dw = 0.031m ). 
The optimizable and fixed parameters are shown in Fig. 5 in 
blue and green respectively.

The skateboard’s mass and inertia were calculated as a 
composition of 11 basic constant-density 3D shapes (cuboi-
dal, semicircular, and triangular prisms), shown in Fig. 5, 
such that they were functions of the optimizable parame-
ters. Material densities for wood, steel, and polyurethane 
of 705 kgm−3 , 7700 kgm−3 , and 1130 kgm−3 , respectively, 
were used.

(1)𝜓1 + ṡ1 ≥ 0

(2)𝜓1 − ṡ1 ≥ 0

(3)�Fp1 − F+

f1
− F−

f1
≥ 0

(4)(�Fp1 − F+

f1
− F−

f1
) �1 = 0

(5)F+

f1
(𝜓1 + ṡ1) = 0

(6)F−

f1
(𝜓1 − ṡ1) = 0

2.5  Optimal control problem

The OCP was formulated with the objective of maximizing 
the peak board height during the ollie. The board dynamics, 
control, and geometric parameters were simultaneously opti-
mized via trajectory optimization using a direct method. The 
direct method is well suited for when dynamics and control 
must be computed to a similar accuracy and the structure of 
the control trajectory is not known a priori [15].

The OCP was solved numerically using Pycollo 
[7]. Pycollo solves the generalized multi-phase OCP 
described in Betts [5] by transcribing the OCP to a non-
linear programming problem (NLP) using an LGL (Leg-
endre–Gauss–Lobatto) collocation method [4]. The NLP is 
then solved using Ipopt [6]. Pycollo uses ph-mesh refinement 
[22] to iteratively improve the transcription mesh, solving 
successive NLPs until a desired solution tolerance is met.

2.6  Phases

The movement was divided into three dynamically distinct 
sequential phases of flexible duration: 

1. Preparation phase (P1): P1 starts with the vertical forces 
equal to the body weight. The wheels are in contact with 
the ground throughout P1. P1 ends when the tail impacts 
the ground.

2. Upward phase (P2): Neither wheel is in contact with 
the ground. The phase ends when the board’s vertical 
velocity is zero.

3. Downward phase (P3): This phase is governed by the 
same EoMs as P2. This phase and the OCP terminate 
when one of the wheels touches the ground.

We use a multi-phase formulation for the ollie OCP to han-
dle discontinuities in the state trajectories in a numerically 
stable manner. This allows the impact of the tail with the 
ground during the pop to be treated as an impulse, which is 
not possible during a single continuous phase. It also allows 
a decision variable to be defined for the skateboard height at 
the end of P2, which is required in the objective function. A 
disadvantage of this approach is that the transition between 
phases is prescribed in terms of the system state, leaving no 
room for the optimizer to discover these transitions.

We used an initial transcription mesh involving 30 mesh 
sections for P1 and P2, and 10 mesh sections for P3. The 
optimal trajectory in P1 and P2 is more nonlinear than in P3 
requiring a denser mesh to be used. Additionally, settings 
for the NLP and mesh tolerances in Pycollo were set to 1e−8 
and 1e−3 respectively.
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2.7  Objective function

The objective function for maximization is:

where y(2)
s

 is the height achieved by the skateboard’s CoM in 
P2 and t(2)

F
 is the final time of P2.

2.8  Optimal control scenarios

We solve OCPs for five scenarios. Schematics of each skate-
board for each scenario are shown in Table 1. Skateboards 1 
and 2 are a popsicle stick (base) skateboard and longboard, 

(7)J = y(2)
s

(

t
(2)

F

)

respectively. Both boards’ dimensions are selected to match 
typical consumer boards, see reference [13] for more on 
inertial parameter estimates. The longboard is larger than 
the base skateboard with a longer wheelbase, deck, nose, 
and tail, as well as taller trucks and larger radius wheels. It 
is also flatter with a less inclined tail and nose. As such, it 
is 38% heavier with 105% more inertia. We solved the base 
skateboard OCP to demonstrate that the model and optimiza-
tion methodology produce ollies with qualitatively similar 
motion to Fig. 1. We use the longboard OCP to further dem-
onstrate the skateboard model and optimization methodol-
ogy as well as to show sensible trends and results are pro-
duced when the geometry is fixed to different values than the 

Blue: State variables
Red: Forces
Cyan dot: Front foot
Blue dot: Back foot
Yellow: Foot movement
Green: Frames

Fig. 3  Free body diagrams of human and skateboard. N is the inertial 
reference frame, and A and B are skateboard-fixed reference frames. 
Forces acting between the foot locations on the board and human’s 
CoM ( Ff1 , Fp1 , Ff2 , Fp2 ) are equal and opposite. xs , ys , xh , and yh 
locate the skateboard and human in N. �s is the skateboard’s inclina-
tion angle. s

1
 and s

2
 are the positions of the back and front foot on the 

board. g is the acceleration due to gravity. mh and ms are the mass of 
the human and skateboard, respectively

Fig. 4  Reconstruction of human configuration using the software 
Yeadon at the highest point of the world record ollie (115.6  cm) as 
seen in reference [25]

Variable Description

lwb Wheelbase
ld Deck length
lt Tail/nose length
φ Tail/nose inclination
htr Truck height
rw Wheel radius
hd Deck thickness
dtr Truck width
dd Deck width
dw Wheel width
dcom CoM distance from deck

Fig. 5  Parameterized skateboard. Blue parameters are optimized, 
green parameters are set to industrial standards. Orange is dependent 
on other variables. Red lines split the skateboard into 11 basic shaped 
segments for the inertia calculation
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popsicle board. To demonstrate simultaneously solving for 
the control trajectories and optimizing the geometry param-
eters we present two single parameter optimizations: rows 3 
and 4 in Table 1 which have their wheelbase and tail length 
optimized, respectively, and row 5 which demonstrates a 
multiple parameter optimization involving the simultaneous 
optimization of wheelbase, deck length, tail/nose inclination, 
truck height, and wheel radius.

2.9  Computation

We produced our results using Python 3.10.6, SymPy 1.11, 
Pycollo 0.1.6, and Ipopt 3.14.9, on a MacBook Pro with 
Apple M1 Pro CPU, 16GB RAM and running macOS 
Ventura 13.2.1. All OCPs were solved in less than 3 min. We 
consistently used a null seed initial guess and ensured suc-
cessful Ipopt and Pycollo exit statuses meeting the desired 
NLP and mesh tolerances specified in section 2.5. We did 
not employ any additional techniques to minimize chances 
of finding local minima.

3  Results

Table 1 summarizes the results for each scenario and the fol-
lowing sections expand on these findings. Animations of the 
five optimal trajectories can be found in Online Resource 1.

3.1  Base skateboard optimization

The base skateboard optimal trajectory is shown in Fig. 6 
and is similar to the trajectory shown in Fig. 1. Initially, 
the skateboard moves forward relative to the human. Imme-
diately prior to the impact of the tail with the ground, the 
skateboard rapidly moves backward with respect to the skat-
er’s CoM. During this movement, the back foot slides with 
dynamic friction into the pocket of the skateboard, the point 
on the tail with the lowest velocity during rotation. Impact 
instantaneously changes the momentum of the skateboard. 
In the speeds subplot of Fig. 6, it is visible that the angular 
velocity reduces at impact (green line, 1082 to 286◦ s−1 ), 
while vertical velocity is gained (orange line, 3 to 5m s−1).

The human controller follows a countermovement jump 
force graph where unloading is from t = 0.0 to 0.2 s , eccen-
tric braking is at t = 0.2 to 0.35 s , and the concentric phase 
is from t = 0.35 s until impact. During the concentric phase, 
the vertical velocity (pink line) increases. The front foot uses 
large static friction to pull the board upwards before impact. 
The extension force reduces to comply with the power bound 
( Pleg = vrelF ) until the human loses contact with the skate-
board just before impact. During upward motion, the vertical 
velocity of the human gradually decreases due to gravity, 
reaching its highest point just before the ollie’s peak. The 
slopes and maximum of the vertical forces (purple line) are 
bound by the eccentric (negative) and concentric (positive) 
rate of force development, and the maximum permitted 
force. The front foot uses dynamic friction to help level the 
board during flight. The optimizer operating at these bounds 

Table 2  Key values from the results of five different ollie optimiza-
tions: skateboards 1 and 2 are a fixed geometry popsicle skateboard 
and longboard respectively; skateboard 3 has an optimizable wheel-
base; skateboard  4 has an optimizable tail/nose length; and skate-
board 5 has an optimizable wheelbase, deck length, tail/nose inclina-
tion, truck height, and wheel radius. Mass centers are shown with a 

cross. “Maximum human jump height” is calculated by subtracting 
the take-off vertical position of the human’s mass center from the 
maximum height of the human’s mass center. The impact loss is cal-
culated as the difference in skateboard kinetic energy before and after 
impact

Name Shape Ollie
Height
(m)

Max.
Speed
(m s� 1)

Max.
Ang.
Speed
(rad s� 1)

Weight
(kg)

Inertia
(kgm� 2)

Impact
Loss
(J)

Max.
Human
Height
(m)

Max.
Human
Jump
Height
(m)

Max.
Human
Speed
(m s� 1)

Dimensions

Base 0.876 5.002 18.885 2.377 0.122 1.778 1.430 0.266 2.261
lwb = 0.44m, ld = 0.57m,
lt = 0.13m, � = 20.0� ,
dtr = 0.053m, rw = 0.024m

Longboard 0.604 3.638 11.321 3.277 0.250 0.952 1.289 0.089 1.304
lwb = 0.58m, ld = 0.65m,
lt = 0.14m, � = 10.0� ,
dtr = 0.073m, rw = 0.030m

Wheelbase 0.899 4.618 19.288 2.377 0.104 2.228 1.453 0.302 2.427
lwb = 0.35m, ld = 0.57m,
lt = 0.13m, � = 20.0� ,
dtr = 0.053m, rw = 0.024m

Tail
Length

0.855 4.972 15.398 2.979 0.257 4.038 1.399 0.227 2.092
lwb = 0.44m, ld = 0.57m,
lt = 0.30m, � = 20.0� ,
dtr = 0.053m, rw = 0.024m

Multiple
Parameter

0.982 5.073 42.762 1.459 0.020 2.856 1.509 0.338 2.569
lwb = 0.21m, ld = 0.21m,
lt = 0.13m, � = 26.8� ,
dtr = 0.045m, rw = 0.012m
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indicates that maximizing force and power output also maxi-
mizes ollie height.

3.2  Longboard optimization

Despite similar force application to the longboard than those 
applied in the base OCP, the maximum ollie height reduced 
by 31%. This aligned with expectations as longboards are 
harder to ollie than popsicle stick skateboards in practice 
due to their larger size and can be explained by the lower 
translational and angular speeds achieved by this skateboard 
(Table 2).

3.3  Wheelbase optimization

In this OCP, the wheelbase was reduced from 0.44 to 0.35 m, 
which allowed the peak ollie height to increase from 0.876 
to 0.899 m (Table 2).

Most of the phenomena seen in the results of the base 
OCP are also visible for this OCP. The difference in ollie 
height can be attributed to the increased angular velocity 
for the shorter wheelbase board, which occurs for two rea-
sons: more even distribution of force application pre-pop, 
and smaller impact angle.

Fig. 6  Detailed trajectory of base skateboard. The top subplot shows 
the trajectory of the skateboard relative to the human’s mass center 
at various time instances. The second subplot shows the coordinates 
of the skateboard and the human. The third subplot shows the speeds 
of skateboard and human. The bottom subplot shows the Back and 

Front extension (N-frame y-direction) forces, abduction (N-frame 
x-direction) forces, sum of extension forces, and the foot-board fric-
tion forces. The phase endpoints are shown by the vertical dotted blue 
lines
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The first difference is visible in the force subplot of 
Fig. 7: the sum of the vertical forces (purple line) changes 
at its maximum rate during unloading and does not stagger 
like in Fig. 6. The front and rear feet are equidistant from 
the rear wheel, allowing perfect balance. In these positions, 
both legs can exert equal force without rotating the board 
during eccentric braking ( t = 0.15 to 0.30 s ). Shortly before 
the impact, the front foot (orange line) releases pressure as 
the back foot pushes down to create maximal momentum 
about the back axis and a steep increase in angular velocity.

The decreased wheelbase causes the impact angle to 
be lower and the angular velocity (green line) almost zero 
just after impact. Consequently, no control is exerted while 
the skateboard gains height. This is in contrast to the base 
skateboard OCP solution, in which the front foot supplies 
an abduction force immediately after the pop. Only a small 
downward force is applied to the skateboard at t = 0.53 s to 
level it before the ollie’s peak.

3.4  Tail length optimization

In solving the tail length OCP, a maximum ollie height of 
0.855 m was found, in comparison to 0.876 m for the base 
skateboard. Tail length was increased from 0.14 to 0.30 m 
(Table 2). As the maximum ollie height is lower, the opti-
mal solution is by definition a local minimum, a possible 
outcome.

3.5  Multiple parameter optimization

When five geometric parameters are free, the ollie height 
improves by 0.106 m compared to the base skateboard and 
represents the highest ollie achieved by any optimized skate-
board tested (Table 2).

This skateboard is easier to rotate due to the lower inertia 
and mass ( Is = 0.02 kgm−2 compared to 0.122 kgm−2 and 
ms = 1.459 kg compared to 2.377 kg , seen in Table 2). With 
the same amount of force over time, the angular velocity 

Fig. 7  Detailed trajectory of optimized wheelbase
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(green line) is twice as high in comparison to the base 
skateboard solution. The human also jumps highest with 
this skateboard setup. With this setup, the skateboarder is 
able to jump almost solely from its back foot extension force 
(blue line) creating almost double the angular velocity as the 
other solutions (Fig. 8).

4  Discussion

The kinematics and kinetics of all ollies found as a result 
of the OCPs resemble the motion and strategy used in real 
ollies. Without any motion cues, the optimization success-
fully replicates the ollie motion, with almost all phenomena 
seen in Fig. 1. The solutions show that it is optimal for the 
human to first jump, then slam the skateboard tail into the 
ground, then slide the front foot over the deck to drag it up 
and level it out, and finally catch (stop) the skateboard with 
the back foot at the skateboard’s highest point. All results 

also show high similarities to a countermovement jump 
ground reaction force. The sum of the human control forces 
naturally bound to realistically produced values and rates 
due to the model constraints. In an ollie ground reaction 
force, the impulse from the skateboard hitting the ground is 
roughly 5 J [10], which is of the same order of magnitude 
as the found impact losses in Table 2. Based on this and our 
anecdotal motion comparisons, our simplified ollie model 
may be useful for insights in the ollie dynamics, human 
kinetic output, and human movement.

Lower inertia and skateboard mass are beneficial for ollie 
height. Comparing the solutions for the base skateboard 
and longboard we see an expected trend that ollie height 
decreases (by 31%) for the larger board. In all parameter 
optimizations that improved ollie height compared to the 
base skateboard, a reduction in mass and inertia is found. 
This makes sense dynamically because it is easier to lift 
and rotate the skateboard if it has less mass and inertia, yet 
our model does not illuminate the fine motor skills relative 

Fig. 8  Detailed trajectory of optimization of all parameters except the tail
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to foot size needed to ollie such a board. Thus, a very small 
board may not be an optimum in reality.

A standard popsicle stick skateboard is close to opti-
mum and slight changes in its geometry do not influence 
the ollie height much. This implies that board designers can 
make small modifications to skateboard geometry without 
significantly penalizing ollie height. The best performing 
single parameter optimization was only able to ollie 0.023 m 
higher than the base skateboard. When multiple parameters 
are changed, the ollie height increased by 12%. However, 
the geometry and size of the resulting skateboard were sub-
stantially different from a popsicle stick skateboard. Skaters 
will also need to consider tricks other than the ollie and 
likely therefore keep the popsicle stick skateboard as the 
norm. Our optimizations have not yet revealed small realiz-
able changes that can significantly improve ollie height. But 
if ollie height were the only consideration, it could likely be 
improved by drastically changing the skateboard. Out of the 
six parameters tested [13], ollie height is most improved by 
the wheelbase. Shortening the wheelbase could be a promis-
ing area of further investigation since it does not influence 
the board shape, which is crucial for other tricks.

We have developed a new contact implicit friction model 
compatible with generalized OCPs by restating the hybrid 
relaxed formulation of Patel et al [21] using a simplified 
contact definition. Static and dynamic friction is achieved 
while retaining the ability to have contact implicit events. 
The simplification leads to quicker convergence and works 
with a null seed initial guess. The ollie OCP by Shield 
et al [24] was without any parameter optimization. Theirs 
took 43 min to solve and needed accurate initial guesses to 
achieve convergence. All OCPs using our formulation solved 
in under 3 min, which includes the time taken to derive the 
EoMs and all constraints, and transcribe and solve the OCP. 
Furthermore, this was all done without an accurate initial 
guess, which is known to be beneficial for not biasing the 
OCP solution [5].

Parameter optimization of tail length leads to a local maxi-
mum. Tail length is maximized despite this resulting in a lower 
ollie height. In reality, a longer tail length would cause a higher 
energy dissipation due to it bending more during impact. A 
plausible cause for this local maximum is that impact loss is 
of too little effect. When a human jumps, the order of mag-
nitude of the amount of energy necessary to go up is on the 
order of 103 J ( mgh = 100 kg ⋅ 10m s−2 ⋅ 1m ). The dissipation 
of energy during impact is on the order of 10−1 J . This means 
that the impact loss has such a limited effect on increasing 
ollie height that the solution space is likely flat. The model 
does capture the increase in impact loss in Table 2, but it is not 
sufficient to influence the solution. Higher fidelity models that 
provide more links from board properties to human motion 
could improve this. All other solutions are not guaranteed to 

be global optima either as direct collocation does not guarantee 
finding a global optimum. Though, finding higher outcomes 
than the base optimization is still valuable for interpreting per-
formance through geometrical dimensions.

In future research, we advise to implement a normal force 
acting on the front wheel during the preparation phase. The 
front foot also has to counteract the rotation created by the 
back foot. In reality, the front foot could be located anywhere 
forward of the rear truck without causing a counterclockwise 
rotation due to the compensation of the normal force. This 
could also be a reason why the force curves are not com-
pletely smooth; the board must balance on the rear wheel 
prior to the pop.

5  Conclusions

In this paper, we formulate and efficiently solve an OCP that 
simultaneously finds the human-applied time-varying con-
trol force and optimal board geometry to perform a maximal 
height skateboard ollie without any prescribed motion cues. 
Our model is designed to be simple, yet able to capture the 
essential dynamics of this complex human–board maneuver. 
The lumped point mass model of the human based on the 
countermovement jump ensures that the forces delivered to 
the skateboard are realistically bound in magnitudes and rates. 
Both board-ground impact and foot–board friction are utilized 
when executing an ollie. Our formulation makes both of these 
discontinuous model elements compatible with the direct col-
location discretization scheme. In particular, we introduce a 
new simplified contact implicit friction model that improves 
the convergence properties of the OCPs, enabling 10 times 
faster OCP solve times than similar problems and more robust 
convergence from less accurate initial guesses.

The resulting simulations show qualitatively and quantita-
tively similar motions to real ollies. The maximal achievable 
heights reflect expected geometric changes to the board, i.e., 
increased mass and inertia result in lower ollies, giving cre-
dence that our objective function is sound. We learned that 
simply decreasing the wheelbase may result in higher ollies, 
without affecting the other geometry of the board. Yet, small 
changes to geometry do not seem to result in large changes to 
ollie height. When optimizing for multiple geometric param-
eters, the optimizer chooses a small board and strategy that 
maximizes the angular velocity at tail impact to give an ollie 
12% higher than the base board design.

This model and the results provide a new stone in the 
foundation needed for utilizing optimization to improve 
skateboard trick strategy and performance. In its current 
form, it can be used to inform jump strategy and the effects 
of changes to the essential board geometry. Tying this tool 
to experimental studies of skateboard ollies is an obvious 
next research step.
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