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Abstract
Endurance running is among the most popular physical activities partially due to its low barriers to entry. However, some 
people avoid running because of respiratory distress, and respiratory monitoring could help prevent this. Wearable sensors 
are valuable for respiration detection during exercise and enable respiratory feedback in real time. Therefore, this study 
presents a wearable chest-mounted stride and respiration sensor including step and flow reversal event detection algorithms. 
The algorithms were evaluated using precision and recall between detected and reference events with respect to different 
levels of breathing depth, motion artifact, thoracic skin temperature and sweat. Overall F1 scores reached 93.2%, 97.4% 
and 97.2% for step, expiration and inspiration events, respectively. No significant effect on event detection performance was 
observed for breathing depth, stride motion artifact, or thoracic skin temperature. In contrast, sweat level slightly decreased 
detection performance. Consequently, this sensor is able to accurately measure stride and respiration during running and 
could be suitable for use as a system to guide runners’ respiration during exercise.

Keywords Algorithm development · Respiration · Textile sensors · Wearable

1 Introduction

While endurance running is popular, beneficial to health [1] 
and has low barriers to entry, some runners do experience 
barriers to start or maintain participation. Technology could 
address this problem by monitoring or coaching beginners 
for a safe and joyful run. As there is a general gender gap 
in sports participation with less females taking part [2], our 
research specifically focuses on women.

Respiratory measurement and monitoring is invaluable 
in many fields, and especially sports, since breathing pat-
terns (BP) are closely correlated to many physiological, 
psychological, and environmental variables [3]. For exam-
ple, breathing rate (BR) is a simple metric that is sensi-
tive to rapid changes in physical workload (such as during 
running), but it is underutilized in sports applications [4]. 
Many contact-based methods provide practical and accurate 
measurement of BP during field running. Perhaps the most 
appropriate field-ready wearable sensors are based on strain 
or pressure measurement, as they are unobtrusive and rela-
tively robust to motion artifact [5].

Some commercial  wearable  garments ,  such 
as the Hexoskin®(Carre Technologies, Canada), 
LifeShirt®(VivoMetrics, USA), Tyme WareTM smart shirt 
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(Tyme Ware, USA) and QUS Shirt (sanSirro, Austria), 
can sense respiration and stride data during running in 
the field with integrated algorithms to detect flow reversal 
(FR) and step events. Not only can such devices provide 
accurate estimation of BR, but they can detect the moment 
of breath onset (also known as FR) [6]. This detection of 
breath onset may be especially valuable for evaluating syn-
chronization phenomena unique to running, such as loco-
motor-respiratory-coupling (LRC) [7]. Such synchronized 
data could be leveraged for biofeedback applications: for 
example, breathing or LRC or both information can be 
transformed into an auditory signal and fed back in real 
time to teach runners awareness and control of physiologic 
functions [8, 9]. According to learning theories such as 
instrumental or operant conditioning, the provided audi-
tory signal should have reinforcing properties to elicit the 
intended breathing behavior during running [10]. By the 
provided biofeedback, a controlled slower breathing can be 
induced to trigger positive psychophysiological well-being 
effects as well as to create an enhanced running experi-
ence [11].

Textile resistive and capacitive sensors are often used for 
gathering kinetic data [12]. Whereas resistive sensors have 
the advantage of high signal resolutions, capacitive meas-
urement methods are more likely to produce high linearity, 
low hysteresis and high repeatability [13]. Dinh et al. [14] 
reviewed stretchable respiration sensors including resistive 
and capacitive measurement technologies and emphasized 
capacitive pressure sensors’ advantageous insensitivity to 
external influences. Nevertheless, textile capacitive sensors 
can be affected by external influences, i.e., temperature and 
moisture; thus, their textile integration must be robust to 
protect the signal quality from distortion [15]. In addition, 
Daley et al. [7] detailed the impact of anthropometric param-
eters (such as high adiposity) on lung volume and soft tissue 
artifact. Since FR detection accuracy is likely highly affected 
by many parameters, algorithm design should be robust.

There are several early FR detection algorithms reported 
in the literature that are based on minima and maxima or 
zero crossing event detections in resting conditions [16, 17]. 
Recently, Zhong et al. [18] evaluated a textile capacitive 
respiration sensor during running and reported large motion 
artifact in the respiration signal that were caused by the run-
ning motion; nevertheless, they reported high accuracy of ± 
1 bpm deviation of the reference system BR.

Step detection algorithms are often designed for foot or 
tibia-mounted inertial measurement units (IMU) as these 
are the closest locations to foot strike itself; subsequently, 
high accuracies (2 ms–15 ms temporal deviation from the 
reference system) have been reported [19, 20]. Moreover, 
the use of waist-worn or smartphone IMUs for step detec-
tion is a growing area, especially concerning the develop-
ment of dead-reckoning algorithms [21]. Additionally, step 

detection algorithms for chest-mounted IMUs were also 
investigated and exhibit high event detection accuracy above 
95% [22–24].

Therefore, we aimed to develop a wearable chest-mounted 
sensor for stride and respiration sensing during running 
including customized step and FR detection algorithms. This 
wearable sensor enables further development towards a con-
current respiratory biofeedback system in running. Within 
this work, we answer the following research questions:

• Does the new wearable chest sensor enable accurate flow 
reversal and step detection during running?

• How does each of the following parameters affect event 
detection performance: respiration depth, stride motion 
artifact, thoracic skin temperature, sweat rate.

2  Methods

2.1  Stride and respiration sensor (SRS)

This work presents a stride and respiration sensor (SRS) 
similar to that of Bernhart et al. [25]. Figure 1 presents the 
SRS containing a bespoke smart textile sensor (Grabher 
Group). This sensor detects respiratory movement of the 
thorax by measuring pressure between the ribcage and a 
chest-worn elastic band as capacitive differences. An on-
body unit (OBU) prototype was developed by integrating 
a microcontroller unit (MCU; PSoCTM 62, Infineon; 2 MB 
flash, 1 MB SRAM, 1.7−3.6 V) with a 1. capacitive meas-
urement interface (CAPSENSETM , Infineon) for respira-
tory sensing [26] and 2. an IMU (MPU6050, DEBO SENS 
3AXIS) into a 3D printed box (material: PLA - 1.75 mm, 
3D Prima; printer: Prusa i3 MK3, Prusa Research) that is 
mounted centrally on the chest band. In addition, the OBU 
( 12.5 × 6 × 2.5 cm, 163 g) contains a power bank and an 
SD card for wireless data logging. The textile sensor was 
connected to the MCU via conductive yarns and push but-
tons integrated to the OBU with a distance 16–17 cm apart 
depending on the length of the chest belt (woven polyamide 
(PA) elastane (EL) (51% recycled PA, 39% PA, 10% EL), 
adidas), which was adjusted (ca. 70 to 75 cm (unstretched)) 
to fit different thoracic girths. The textile sensor was placed 
at the side of the runner’s body to avoid signal interference 
from breast movement during running. Conversely, the OBU 
was mounted centrally on the underbust band to (1) avoid 
distraction from asymmetric weights and (2) minimize the 
distance between the MCU and the textile sensor, which 
contributes to signal interference. The textile sensor was 
encapsulated in an adhesive elastic flex foil (POWERFLEX 
ELASTIC, IVB) to protect it from external influences such 
as sweat. In total, 10 SRS prototypes were developed and 
used in the study.
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2.2  Data collection

2.2.1  Instruments

A smartphone was mounted at the back hip and was run-
ning a bespoke research application called Breathtool (no 
open access), that guides runners to perform LRC at pre-
determined ratios (e.g., 4:1 steps per breath) with step rate 
(SR) adaptive audio. Breathtool was developed based on 
the concepts of Harbour et al. [9] and was used in this study 
to stabilize runners’ BR via LRC. In addition, runners were 
equipped with the SRS sampling at 70 Hz. A Spiroergome-
try System (COSMED Quark, Italy) [27] was used to acquire 
reference respiration data at 20 Hz and tibia-mounted IMUs 
(Physilog®, Gait Up, Switzerland) [28] provided reference 
stride data at 128 Hz. A wireless climate network sensor 
(WCN2, Hochschule Kaiserslautern, Germany) was also 
mounted close to the smart textile sensor at the inner side 
of the belt to record temperature and relative humidity at a 
sampling rate of 1 Hz representing thoracic skin temperature 
and the amount of sweat, respectively. Participants ran on a 
treadmill (h/p cosmos sports, Germany) in a laboratory to 
ensure equal conditions.

2.2.2  Study protocol

Before the experiment, participants were briefed on all 
details of the study and filled in a pre-questionnaire on run-
ning experience (see Online Resource 1). Then, the follow-
ing tasks were performed during the experiment: 

 1. Signing informed consent
 2. Anthropometry assessment by the ISAK (International 

Society for the Advancement of Kinanthropometry) 
restricted profile [29] by a level one certified expert

 3. Breathtool app familiarization

 4. Synchronization (wireless climate network & reference 
IMUs & SRS)

 5. 6 min warm-up run at self-selected speed for treadmill 
and Breathtool sound familiarization during running

 6. 2 min calm-down and synchronization (reference spiro-
ergometry & SRS)

 7. 3 min breathing at rest
 8. 3 min breathing at walking
 9. Four 5 min runs in randomized order with the condi-

tions presented in Table 1 with 1 min breaks for sensor 
calibration

 10. 2 min calm-down and synchronization (all instruments)
 11. Post-questionnaire regarding SRS comfort and Breath-

tool instruction user experience (see Online Resource 
2)

Table 1 details the expected scenarios of the four runs in the 
study protocol. Two speed conditions around a participant’s 
self-selected speed were chosen, as it was speculated that 
they would result in different levels of soft tissue motion 
artifact. For some less-experienced runners, treadmill speeds 
were reduced by an additional 10% each to prevent overex-
ertion and ensure adherence to the instructed BR; however, 
the relative speed difference was kept consistent between 

Fig. 1  The (a) stride and res-
piration sensor (SRS) contain-
ing an elastic strap with an 
integrated (b) smart textile res-
piration sensor and a centrally 
mounted OBU containing the 
MCU and IMU

Table 1  Prescribed speeds, LRC ratios and expected experimental 
conditions

Intensity (% 
of individual 
speed)

LRC ratio Consequent expected scenario

− 10 2:2 Low motion artifact and flat breathing
− 10 3:3 Low motion artifact and deep breathing
+ 10 2:2 High motion artifact and flat breathing
+ 10 3:3 High motion artifact and deep breath-

ing
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intensity levels. Two LRC ratios were prescribed under the 
assumption that breathing depth would adjust inversely. An 
auto-calibration function integrated in the MCU was trig-
gered in the breaks between the runs to correct for respira-
tion signal drift related to external influences, e.g., sweat 
and temperature. Synchronization gestures were performed 
before and after recording to produce identifiable signal pat-
terns in the data:

• wireless climate network sensor and reference IMUs 
and SRS: Three significant strong motions below a hand 
dryer to synchronize accelerometers as well as tempera-
ture and humidity

• reference spiroergometry and SRS: Three 10 s breath 
holds (apnea) with a forced exhale to sync respiration [6]

The recording protocol including breaks took at least 40 min, 
in which the participants ran for 26 min total (including 
warm up). The SRSs were washed after each recording. 
The University Ethics board approved this study and written 
informed consent was obtained from all participants.

2.2.3  Sample

Nineteen female runners (age: 20–27, mean: 24.0, stand-
ard deviation: ± 2.29) participated in this study. Table 2 
presents the participants’ anthropometric data. All partici-
pants individually estimated their breast sizes in reference 
to their waist girth on the common scale A to F in the 
sizes A, B and C (15%, 65% and 20% of the participants, 
respectively). While 20.8% of participants report having 
no running experience, 62.5% indicate running at most 
twice a month, and 16.7% declare running at least once a 
week. Running speeds were set between 5.9 and 11.0 km/h 
for the -10% (speed: 5.9−9.0 km/h, mean: 7.2 km/h, stand-
ard deviation: 0.9 km/h) and +10% (speed: 7.1−11.0 km/h, 
mean: 8.8 km/h, standard deviation: 1.1 km/h) running 
speed conditions. In total, 76 runs were recorded. Three 
of these (Run 4 of participants P08, P10 and P18) were 
excluded due to a SRS breathing sensor signal saturation 

because of sweat interferences and two runs (run 3 and 4 
of participant P09) were excluded because of missing data 
in the reference IMU on the left tibia. Table 3 presents the 
total amount of event samples and their distribution over 
scenarios.

2.3  Data processing

Reference step events were extracted by applying the step 
detection algorithm of Aubol et al. [20]. Reference inspira-
tion and expiration events were computed by the algorithm 
presented by Harbour et al. [6]. Since the product of BR 
and depth (tidal volume;  VT) determines ventilation  (VE), 
they are inherently interdependent. It was theorized that 
the prescribed LRC ratios (and, hence, BR) would result 
in different breathing depths based on VE = BR ⋅ VT  . To 
quantify the actual effect of these distinct experimental 
conditions, breathing depth was extracted from reference 
spiroergometry  VT while motion artifact was quantified by 
reference IMU spectral density in a stride frequency band 
between 2.4 and 3.2 Hz. This quantified motion artifact 
caused by running is termed as stride motion artifact here. 
In addition, the mean and standard deviations of BR and 
SR for each condition are computed to calculate the LRC 
mean absolute percentage error  (MAPELRC) to estimate 
the adherence to the instructed LRC. The  MAPELRC was 
computed by extracting LRCactual =

SRactual

BRactual

 compared to 

LRCprescribed =
SRactual

BRprescribed

 with having BRprescribed2∶2
=

SRactual

4
 

for an LRC of 2:2 and BRprescribed3∶3
=

SRactual

6
 for an LRC of 

3:3. A priori limits for acceptable adherence was set to 5% 
 MAPELRC, which conforms to a similar threshold sug-
gested by the literature [5] to sensitively estimate attach-
ment to prescribed breathing rhythms.

The MCU inherits a clock drift over time. Therefore, all 
recording devices were synchronized to a mutual timeline 
for further data analysis. Synchronization time stamps were 
extracted from the raw data of the synchronization gestures 
for removing clock drift and synchronizing the devices to a 
common starting timestamp without changing the devices’ 

Table 2  Mean and standard deviation (SD) of participants’ anthro-
pometrics: Sum of six skinfolds  (6SFSum in mm), body-mass-index 
(BMI in kg

m2
 ), waist-to-hip ratio (WHR), body mass (in kg) and body 

height (in cm)

6SFSum 
[mm]

BMI [ kg
m2

] WHR Body mass 
[kg]

Body height 
[cm]

Mean 107.30 22.45 0.70 60.36 164.15
SD 21.52 2.79 0.03 6.32 5.34

Table 3  Sample sizes of all reference events distributed over scenar-
ios and in total

Scenario Step Expiration Inspiration

− 10% and 2:2 8302 2104 2107
− 10% and 3:3 8237 1439 1441
+ 10% and 2:2 7363 1860 1855
+ 10% and 3:3 8526 1473 1474
Total 36,634 7729 7732
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sampling rates  (FS). A new time scale was calculated for the 
sensor devices by firstly determining the clock drift  (clkdrift) 
and consequently replacing the time scale of the device:

The aligned datasets were segmented into the four runs, 
with three minutes per run extracted for statistical analy-
sis. The first 30 s of the five minutes run were excluded to 
avoid using data when the participants had not yet adhered 
to the breathing sound instructions. The last 90 s were also 
excluded because the participants were allowed to select 
their preferred LRC within this time range for a different 
study purpose.

2.4  Data analysis

The goal of the evaluation was to understand the validity 
of event detection, the influence of speed and breathing 
depth on the performance of the detection and the correla-
tion between algorithm performance and sweat as well as 
thoracic skin temperature. Therefore, a custom algorithm 
similar to that of Bernhart et al. [25] was used with the 
SRS data to detect step, inspiration and expiration events. 
True positive (tp), false negative (fn), and false positive 
(fp) events were identified to represent correctly identified 
events, missed events, and wrongly identified events by the 
SRS algorithm versus the reference devices, respectively. 
The events were aligned by a time window with the size of 
the double signal period time averaged over a run (window 
size equals 2

SR
 for step event alignment and 2

BR
 for FR event 

alignment) around each reference event and were annotated 
by following rules:

• tp: A SRS algorithm detected event exists within the ref-
erence event time window.

• fn: No SRS algorithm detected event exists within the 
reference event time window.

• fp: No reference event exists within the SRS algorithm 
detected event time window.

Duplicate tp events were removed afterwards. Event detec-
tion performance was evaluated by assessing F1-Score  (F1) 
from calculated precision (P) and recall (R) between the 
custom and reference events:

(1)clkdrift =
(syncendA − syncstartA ) − (syncendB − syncstartB )

num_samplesB

(2)time_scaleB(i) =
{

syncstartA + i ⋅ clkdrift +
i
FS

}

for i ∈ N0

(3)P =
tp

tp + fp
; R =

tp

tp + fn
; F1 = 2 ⋅

P ⋅ R

P + R

Precision indicates the proportion of correctly classified 
events out of the total number of all (correctly and incor-
rectly) classified events. On the other hand, recall shows 
the proportion of correctly classified events in the total 
number of events that could have been detected. The 
F1-Score represents the harmonic mean of precision and 
recall. In addition, the estimated BR deviation of the SRS 
 (BRdev in breaths per minute (bpm)) was determined by 
BRdev = (BRactual − BRactual ⋅ F1) ⋅ 60 for each scenario.

The mean of these three performance measures across all 
runs for each detected event (step, expiration and inspira-
tion), speed condition and LRC ratio were plotted to show in 
which scenario the algorithm performed best. Mann–Whit-
ney U tests [30, 31] were used to evaluate statistically sig-
nificant differences in event detection performance between 
LRC ratios (2:2; 3:3) and running speeds (-10%; +10%). 
Pearson correlation coefficients were calculated between 
mean runners’ sweat and thoracic body temperature val-
ues per run versus each of the three performance measures. 
Spearman’s correlation coefficients were used to calculate 
the correlation between LRC ratio and tidal volume or speed 
and stride motion artifact.

3  Results

Figures 2 and 3 present the synchronized signals of the SRS 
and the reference systems of the acceleration and respira-
tion data, respectively. Step events are detected in the valley 
before a large peak as it presents the foot strike event. FR 
events are detected at zero crossing events in the reference 
spiroergometry data and at minima and maxima in the SRS 
data.

Table 4 presents the aggregated tidal volumes, stride 
motion artifact, BRs, SRs and  MAPELRCs between the pre-
scribed LRC and actual LRC for each scenario. In addition, 
Mann–Whitney U tests were calculated to show whether 
the values of tidal volume per LRC level or the values of 
stride motion artifact per speed level were statistically dif-
ferent. The results indicate that the selected LRC ratios 
( p = 2.16 × 10−11 ) and speed levels ( p = 8.76 × 10−5 ) 
were significantly different in consequent tidal volume and 
stride motion artifact, respectively. The Spearman correla-
tion coefficient between LRC ratio and tidal volume was 
0.72 ( p = 1.07 × 10−12 ) and thus were positively correlated 
as theorized. In addition, the correlation between speed 
and stride motion artifact was 0.46 ( p = 6.24 × 10−05 ), 
as initially predicted. Both correlations were statistically 
significant.

Table 5 shows that  F1 was highest for the detection of 
expiration (97.4%) and inspiration events (97.2%), and was 
slightly lower for the detection of steps (93.2%). Notably, for 
each of the three events to be detected, precision was highest 
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for the − 10% and 3:3 scenario. Recall was highest for sce-
nario +10% and 3:3 for detecting expiration and inspiration 
events, while scenario +10% and 2:2 shows the best results 
for step detection. The SRS estimated mean overall BR devi-
ates 0.91 (±0.51) bpm over all scenarios. On the event level, 
precision was higher than recall when analyzing expiration 

(99.0 vs. 96.1% ) and inspiration (99.0 vs. 95.7% ), while the 
opposite was true for step detection (95.7 vs. 99%).

Table  6 presents that all Mann–Whitney U tests 
resulted in p-values larger than 0.05 which implies that 
all event detection performance indicators were not 

Fig. 2  Synchronized accel-
eration data of the SRS and the 
reference system of both legs 
including algorithm detected 
step events (blue dashed vertical 
lines) and reference step events 
(red dashed vertical lines). 
Dashed lines are overlapping 
each other for the third and last 
event

Fig. 3  Synchronized respira-
tion data of the SRS and the 
reference system including 
algorithm detected (blue dashed 
vertical lines) and reference (red 
dashed vertical lines) expiration 
and inspiration events
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significant different between LRC and speed levels and 
thus, breathing depth and running motion artifact levels, 
respectively.

Table 7 shows a significant negative moderate correlation 
between mean sweat level and FR detection performance. In 
contrast, no significant correlations were found for FR detec-
tion and thoracic skin temperature. In addition, there was no 
observed relationship between thoracic skin temperature or 
sweat level and step detection performance.

In the questionnaire, 62.5% of the participants reported 
that they liked the overall comfort of the SRS, while 95.7% 
felt that the attached electronics had no influence on their 
breathing. 69.6% of participants reported no distraction to 
their movement ability, and 91.3% stated that the skin con-
tact of the sensor was comfortable.

4  Discussion

The SRS results in a BR deviation of 0.91 (±0.51) bpm 
which is similar to the results reported in the cited litera-
ture. Therefore, these results suggest that the SRS is accurate 
and functionally sound for beginner runners across a range 
of typical running scenarios. The four experimental condi-
tions chosen resulted in distinct levels of breathing depth and 
stride motion artifact characteristic of recreational running. 
The participants were able to follow the instructed breathing 
sounds with excellent adherence as the  MAPELRC of each 
scenario was below 5% (see Table 4). No difference in event 
detection performance was observed between different LRC 
levels or running speeds, suggesting that the SRS can even 
detect shallow breathing in the presence of strong running 
motion artifacts.

The precision of the FR detection was, on average, 99% 
and recall near 96%, which implies that the algorithm iden-
tifies few false FR events, and misses relatively more FR 
events which causes a slightly overestimated BR. The rela-
tively strong low-pass filter used for FR detection may be the 
reason for this result. Reducing the filter order or increasing 
the cut-off frequency of the filter would probably compen-
sate for the false positive and false negative rates, but may 
not increase the accuracy of FR detection. Conversely, the 
step detection precision was lower than the recall and there-
fore, more step events were wrongly identified than left out. 
Compared to a previous study [25], the step detection was 

Table 4  Mean ± standard deviations of stride motion artifact (SMA 
in decibel (dB)), mean tidal volume (VT in liter (L) at body tempera-
ture and pressure saturated (btps)), step rates (SR in Hz), breathing 

rates (BR in Hz) and LRC mean absolute percentage error  (MAPELRC 
in %) calculated for each scenario (speed and LRC)

Scenario VT [L] SMA [dB] BR [Hz] SR [Hz] MAPELRC

− 10% and 2:2 1.37 ± 0.17 63.76 ± 4.86 0.64 ± 0.04 2.56 ± 0.18 1.75 %
− 10% and 3:3 1.84 ± 0.23 62.80 ± 4.97 0.45 ± 0.06 2.57 ± 0.17 3.66 %
+10% and 2:2 1.49 ± 0.22 68.32 ± 4.47 0.65 ± 0.06 2.62 ± 0.16 3.37 %
+10% and 3:3 1.89 ± 0.26 68.70 ± 5.53 0.44 ± 0.02 2.65 ± 0.18 1.39 %

Table 5  Average value of the performance indicators (in %) over all 
runs for each event and scenario

Mean across all runs

Event Scenario Precision Recall F1

− 10% and 2:2 99.5 94.9 97.0
− 10% and 3:3 99.8 96.5 98.0

Expiration +10% and 2:2 97.7 94.8 95.9
+10% and 3:3 98.9 98.0 98.4
Overall 99.0 96.1 97.4
− 10% and 2:2 99.4 94.3 96.6
− 10% and 3:3 99.7 96.1 97.8

Inspiration +10% and 2:2 97.5 94.3 95.6
+10% and 3:3 99.2 98.0 98.6
Overall 99.0 95.7 97.2
− 10% 2:2 91.9 94.3 92.5
− 10% and 3:3 93.4 94.7 93.9

Step +10% and 2:2 92.0 94.9 92.8
+10% and 3:3 92.8 94.2 93.4
Overall 92.5 94.5 93.2

Table 6  P-values for Mann–Whitney U tests per event and variable 
for each performance indicator. This table shows whether the perfor-
mance indicators are statistically different between the speed or LRC 
level. A p-value smaller than 0.05 indicates that the respective per-
formance indicator has statistically different values between speed or 
LRC levels

Event Variable Mann–Whitney U test, 
p-value

Precision Recall F1

Expiration 0.51 0.34 0.34
Inspiration LRC (2:2; 3:3) 0.69 0.12 0.16
Step 0.42 0.87 0.78
Expiration 0.17 0.60 0.95
Inspiration Speed (− 10%; +10%) 0.28 0.61 1.00
Step 0.98 0.60 0.72
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worse by 7.2 and 5.1 percentage points (pp) in precision and 
recall, respectively. This may originate from the increased 
mass of the OBU which was 2.5 times heavier than a pre-
vious version ( 7.1 × 4.3 × 2.0 cm; 65 g). Nevertheless, the 
FR detection was 7.1 pp higher in precision and 8.9 pp in 
recall versus the previous version. As the algorithms were 
applied in the same manner, this performance improvement 
is likely due to the Capsense measurement method (instead 
of a capacitive voltage division in the previous version) and 
a more stable integration strategy of the current SRS imple-
mentation that increased the signal quality by avoiding the 
movement of the sensor itself. In future work, a signal to 
noise ratio analysis must be conducted to investigate this 
assumption.

Furthermore, there is suggestive evidence that higher 
sweat levels negatively affect algorithm FR event detection 
performance. Nevertheless, the sensor robustness against 
moisture was improved by a novel sensor encapsulation ver-
sus previous SRS versions, as accurate FR detection was still 
retained after 26 min of exertion for all participants except 
three (missing the last run because of sweat issues which 
corresponds to approx. 4% of all runs recorded). Experi-
ments with previous sensor setups reported challenges with 
sweat contamination after about 20 min or less [25]. As 
expected, in this investigation there was no apparent rela-
tionship between thoracic body temperature and FR detec-
tion, and step detection performance was also independent 
of sweat level and thoracic body temperature.

While FR event detection was sufficiently accurate for 
all speed and LRC conditions, there was a significant cor-
relation with sweat level. Even though the current sensor’s 
elastic foil encapsulation is waterproof, the sweat ions cause 
changes in skin capacitance that contaminate the quality of 
the respiratory signal. However, this work improved upon 
previous concepts substantially by modifying the textile 
sensor integration strategy for enhanced waterproofing and 
actually no skin contact to the textile sensor is required. For 

the future, a solution for sensor integration without foil and 
instead with hydrophobic fabrics is planned to improve SRS 
comfort and, above all, robustness against perspiration. An 
OBU miniaturization is also ongoing to reduce the bulk of 
the electronic components for lower obtrusiveness and to 
reach an increased step detection performance by decreasing 
the soft tissue motion artifact.

This algorithm evaluation did not report the event 
detection time lag because after the uniform clock drift 
was removed, a non-uniform clock drift was identified in 
the synchronized data. This non-uniform clock drift was 
small enough to perform an event-based evaluation with 
the presented alignment strategy by including an enlarged 
alignment window. However, the non-uniform clock drift 
prevents a valid time-lag-based evaluation. In future work, 
the removal of the non-uniform clock drift will be inves-
tigated to enable a time-lag-based algorithm evaluation.

This event detection based analysis of the algorithm 
is sufficient to evaluate the suitability of the SRS for BR 
detection because event time lag has negligible effects on 
BR calculation. Rather, as it is recommended to smooth 
BR over a minimum of five previous breathing cycles 
or 10 s [32], systematic or random event detection time 
lag is unlikely to cause substantial BR estimation error. 
Nevertheless, FR or step detection lag profoundly affects 
estimation of LRC phase synchronization with the SRS or 
any similar sensor, so a detection lag-based evaluation is 
mandatory to establish validity for such purposes.

In addition, this algorithm evaluation did not consider 
the anthropometric parameters of the participants. A lin-
ear regression model with anthropometric factors is not 
prudent for statistical comparisons because the event 
detection performance was near 100% for some partici-
pants. However, an anthropometric analysis would be 
enabled in combination with a time-lag-based evaluation 
or by increasing the sample size with diverse groups of 
participants.

Table 7  Pearson correlation coefficients (PCC) between performance measures and the mean runners’ sweat level and thoracic skin temperature 
per run

Sweat Precision Recall F1 score

Event PCC p-value PCC p-value PCC p-value

Expiration − 0.42 0.00 − 0.37 0.00 − 0.47 0.00
Inspiration − 0.45 0.00 − 0.38 0.00 − 0.46 0.00
Step 0.05 0.67 0.15 0.20 0.08 0.49

Temperature Precision Recall F1 score

Event PCC p-value PCC p-value PCC p-value

Expiration 0.18 0.14 0.07 0.54 0.13 0.26
Inspiration 0.18 0.14 0.09 0.48 0.14 0.26
Step − 0.12 0.33 − 0.09 0.46 − 0.12 0.33
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In the current analysis, the algorithms were applied in a 
post-processing scenario; in future work, a real-time algo-
rithm evaluation will be investigated. Real-time applications 
include additional challenges such as speed/accuracy trade-
offs, which could result in a correlation between event detec-
tion accuracy and event detection delay. Hence, for LRC 
phase coupling estimation and feedback provision, short 
feedback loops are essential. To minimize distraction to the 
runner, feedback loops shorter than the human reaction time 
are recommended [33]; these are between 180 and 200 ms 
and 140 and 160 ms (rarely below 100 ms) for visual and 
auditory reaction time, respectively [34].

5  Conclusion

This paper presented SRS, a wearable sensor system 
device for stride and respiration detection during running. 
An IMU and a capacitive textile sensor were integrated 
into a wearable chest belt to balance performance, robust-
ness, and comfort. The results suggest that the SRS and 
associated algorithms are valuable because they provide 
accurate stride and respiration detection independent of 
running speed and breathing depth. Future work should 
improve the SRS robustness without sacrificing perfor-
mance or comfort, and validate it against a reference 
device for event detection time lag considering runners’ 
anthropometrics and LRC relative phase. We speculate 
that the SRS is likely suitable for LRC real-time feedback 
during recreational running in the field pending these next 
developments.
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