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Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor lacking estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER2) expression. It has higher aggressiveness and metastasis than 
other subtypes, with limited effective therapeutic strategies, leading to a poor prognosis. The phosphoinositide 3-kinase 
(PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway is prevalently over-activated 
in human cancers and contributes to breast cancer (BC) growth, survival, proliferation, and angiogenesis, which could be 
an interesting therapeutic target. This review summarizes the PI3K/AKT/mTOR signaling pathway activation mechanism 
in TNBC and discusses the relationship between its activation and various TNBC subtypes. We also report the latest clini-
cal studies on kinase inhibitors related to this pathway for treating TNBC. Our review discusses the issues that need to be 
addressed in the clinical application of these inhibitors.
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Introduction

Breast cancer (BC) is the most common and life-threatening 
malignancy affecting women, with approximately 2.3 mil-
lion new cases and 685,000 deaths reported worldwide in 
2020 [1]. Clinically, this heterogeneous disease is classified 
into three main types based on estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) status: hormone receptor (HR)-positive, 

HER2-positive, and triple-negative breast cancers (TNBC) 
[1]. Recent advances in endocrine and anti-HER2 therapies 
have improved the survival of patients with HR-positive 
and HER2-positive BC [1]. However, TNBC has a more 
aggressive and metastatic nature and a worse prognosis, and 
46% of TNBC patients develop distant metastases, with a 
recurrence of 1.6–3.4 years [2]. Traditionally, TNBC was 
defined as a BC group lacking ER and PR expression, HER2 
overexpression, or gene amplification. In 2011, Lyman et al. 
classified them into six subgroups: basal-like 1/2 (BL1/2), 
immunomodulatory (IM), mesenchymal (M), mesenchymal 
stem-like (MSL), and luminal androgen receptor (LAR) [3].

Non-selective chemotherapy—represented by anthra-
cyclines and taxanes—is the traditional treatment option 
for patients with locally recurrent inoperable or metastatic 
triple-negative breast cancer (mTNBC). However, the effi-
cacy of single or combination chemotherapy is poor, and the 
median overall survival (mOS) of patients with advanced 
TNBC rarely exceeds 12–18 months [3–5]. In addition, 
TNBC-targeted therapies include monoclonal antibody 
(mAb), antibody–drug conjugate (ADC), peptide–drug con-
jugate (PDC), and so on [6]. Recently, different immunother-
apeutic modalities, including immune checkpoint blockade, 
vaccination, and adoptive cell transfer, have been extensively 
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studied in the clinical setting of BC, particularly in patients 
with TNBC [7]. Several molecular pathways are activated in 
TNBC (Fig. 1), particularly the phosphoinositide 3-kinase 
(PI3K)/protein kinase B (AKT)/mechanistic target of rapa-
mycin (mTOR) signaling pathway—a key TNBC survival 
and resistance mechanism and a promising molecular target 
for treating TNBC [4].

The PI3K/AKT/mTOR signaling pathway—one of the 
most common over-activated pathways in human cancers—
is abnormally altered in nearly 70% of BC [5]. This pathway 
links receptor tyrosine kinase (RTK) signaling to cell growth 
and survival regulation, and excessive activation can pro-
mote increased cell proliferation, inhibit apoptosis, and con-
tribute to abnormal cell differentiation and autophagy, form-
ing tumors and promoting metastasis [8]. PI3K is stimulated 
by activated RTK and phosphorylates Ptdlns-4,5-p2 (PIP2) 
to Ptdlns-3,4,5-p3 (PIP3) at the plasma membrane, initiat-
ing the PI3K pathway [9]. AKT and mTOR are key nodes 
in this pathway after PI3K activation. Sequential activation 
of these nodes promotes cellular proliferation, survival, 

and migration (Fig. 2). Additionally, the PI3K pathway is 
regulated by several phosphatases, including phosphatase 
tensin homolog deleted on chromosome 10 (PTEN) and 
polyphosphate (5-phosphatases). PTEN negatively regu-
lates PI3K signaling by dephosphorylating PIP3 to PIP2 
and silencing AKT signaling [10]. PIP3 can be hydrolyzed 
by 5-phosphatase to produce PtdIns (3,4) P2, which can bind 
and activate pyruvate dehydrogenase kinase 1 (PDK1) and 
AKT, thereby activating the PI3K pathway [11].

Alterations or mutations in the PI3K/AKT/mTOR path-
way occur in 25% of primary TNBC and possibly more fre-
quently in mTNBC. Meanwhile, inhibitors associated with 
this pathway can significantly treat TNBC and are clinically 
useful. This review summarizes the PI3K/AKT/mTOR sign-
aling pathway activation mechanism in TNBC and discusses 
the relationship between its activation and various TNBC 
subtypes. Our review reports the latest clinical studies on 
kinase inhibitors related to this pathway for TNBC treat-
ment. We also discuss the issues that must be addressed in 
the clinical application of these inhibitors.

Fig. 1  Major abnormal signaling pathways in TNBC. Although no 
clear driver gene has been found for TNBC at present, the occurrence 
and development of TNBC are closely related to the abnormalities 
of many signaling pathways. After NGS sequencing of many clinical 

samples, it was found that the EGFR signaling pathway, Notch sign-
aling pathway, and Wnt signaling pathway were the most common 
abnormalities in patients with TNBC. This figure is drawn by AI
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Activation of the PI3K pathway in TNBC

PIK3CA activating mutations

PI3Ks are intracellular signaling enzymes divided into 
three mammal classes [12]. Notably, class I PI3K is the pre-
dominant type driving tumorigenesis and has four catalytic 
isoforms, each comprising a regulatory subunit (p85α/β/γ) 
and a catalytic subunit (p110α/β/δ/γ) [13, 14]. The PIK3CA 
(PIK3CA encodes p110α) mutation is an oncogenic mecha-
nism associated with PI3K pathway over-activation in BC, 
which over-activates p110α, enhances PIP2 phosphoryla-
tion, and increases PIP3 accumulation, resulting in sustained 
downstream pathway activation [14]. PIK3CA is the second 
most commonly mutated gene in TNBC, accounting for 9% 
of primary TNBC and possibly higher in advanced TNBC 
[15]. PIK3CA mutations modestly increase TNBC cell 
proliferation and significantly inhibit their apoptosis [16]. 
A study on the correlation between PI3K pathway activa-
tion and specific sites of BC metastasis revealed that the 
PIK3CA mutation rate was significantly higher in metastatic 

liver lesions than in other metastatic sites. This suggests that 
activation of the PI3K/AKT/mTOR pathway may represent 
an organ-specific drug target signaling for liver metastases 
in BC [17].

AKT1 activating mutations

AKT, or protein kinase B, is a key effector molecule down-
stream of the PI3K pathway [14]. After PI3K is activated, 
accumulated PIP3 recruits intracellular PDK1 and AKT to 
the cell membrane. PDK1 phosphorylates Thr308 of AKT, 
and mTORC2 phosphorylates Ser473 of AKT, allowing 
AKT to be fully activated. Moreover, PDK1 indirectly 
enhanced mTORC2 activity. Activated AKT phosphoryl-
ates the most critical downstream effector, mTOR complex 1 
(mTORC1), which promotes cell proliferation and oncogenic 
transformation [18]. AKT has three isoforms: AKT1/2/3. 
AKT gene amplification (common in AKT1) is more preva-
lent in BC [18], and 2.5% of AKT1 proteins have E17K 
mutations in the PHD structural region, resulting in aberrant 
AKT1 activation [19]. AKT1 promotes cell proliferation by 

Fig. 2  Summary diagram of the PI3K pathway and cellular activation 
pathways. PI3K is divided into three classes, of which class I can be 
subdivided into classes IA and IB. Class IA features tyrosine kinase 
receptors (RTKs), and class IB is associated with G-protein-coupled 
receptors (GPCRs). When the corresponding receptor is activated 
by a growth factor (L) or a chemokine (C), PI3K is recruited to the 
plasma membrane and is activated, leading to the phosphorylation 
of PIP2 to produce PIP3. PIP3 recruits and binds AKT and proteins 

with pleckstrin homology (PH) structural domains such as PDK1. 
Subsequently, AKT is phosphorylated and activated by PDK1 and 
the mammalian target of rapamycin complex 2 (mTORC2), triggering 
several phosphorylation-based signaling cascades. In addition, PTEN 
negatively regulates the activation of PIP3 by 3’-phosphatase activity, 
which converts PIP3 to PIP2, thereby stopping the phosphorylation 
cascade
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upregulating S6 and cyclin D1 and inhibits cell migration 
and invasion. AKT2 promotes cell migration and invasion 
by inducing F-actin and waveform protein and is involved 
in distant dissemination. AKT3 is overexpressed in TNBC 
(14%) and promotes cell growth more than AKT1/2, but not 
invasion [20].

mTOR activating mutations

mTOR is a serine/threonine protein kinase, of which 
mTORC1 is the main PI3K/AKT pathway effector [21]. 
mTORC1 is highly activated in cancer and promotes pro-
tein synthesis by phosphorylating p70S6 kinase 1 (S6K1) 
and eIF4E-binding protein (4EBP), and new lipid synthesis 
through sterol response element-binding protein (SREBP) 
[22]. Additionally, it promotes cell growth and division by 
promoting nucleotide production and inhibiting autophagy 
[23, 24]. Saxton et al. described these mechanisms [21]. 
Besides, mutations in the upstream tumor suppressors TP53 
and LKB1 and downstream negative regulator TSC1/2 com-
plexes activate mTOR [25, 26]. mTORC2 is involved in the 
composition of the actin cytoskeleton and regulates AKT 
phosphorylation [27]. The mTOR inhibitor everolimus has 
been approved for treating postmenopausal HR-positive 
and HER2-negative patients with advanced BC. The role of 
everolimus in TNBC is described in more detail later.

PTEN inactivating mutations/loss

PTEN is an important tumor suppressor that dephospho-
rylates protein substrates on Tyr, Ser, and Thr phosphoryl-
ated peptides, thereby inactivating these substrates [28]. 
In the PI3K pathway, PTEN silences signaling by dephos-
phorylating PIP3 to PIP2, preventing AKT activation [29]. 
The tumor suppressor function of PTEN is influenced 
individually or synergistically by different mechanisms, 
including genetic alterations, transcriptional activation 
or repression, post-transcriptional regulation, and protein 
interactions [29]. In particular, after PTEN transcription, 
multiple mechanisms regulate its expression, one of which 
is noncoding RNAs, including microRNAs and compet-
ing endogenous RNAs (ceRNAs). MicroRNAs—one of the 
key regulators of PTEN—can inactivate PTEN and act as 
an oncogenic player [30]. In BC, miR-29b and miR-301, 
which are microRNAs targeting PTEN, inhibit PTEN pro-
tein levels, enhance cell proliferation, migration, and inva-
sion, and promote tumor development [31, 32]. In addi-
tion, miR-498 is overexpressed in TNBC tissues and cell 
lines, reducing PTEN and activating PI3K-AKT signaling, 
which promotes TNBC cell proliferation and migration 
[33]. PTENP1 is a ceRNA with a sequence homologous 
to PTEN and can be used as a decoy to attract microR-
NAs targeting PTEN to prevent translation inhibition [34]. 

Additionally, post-translational protein modifications and 
interactions also can modulate PTEN activity [35].

Association of TNBC subtypes 
with alterations in PI3K pathway

In 2011, Lyman et al. classified TNBC into six subgroups, 
and genetic analysis revealed that BL1 is involved in the 
DNA damage response and cell cycle genes, whereas BL2 
has articular and myoepithelial markers and is involved in 
the growth factor and PI3K pathways [36]. Two mesenchy-
mal subtypes (M and MSL) are associated with EMT gene 
overexpression and growth factor signaling [36]. The M 
subtype is metaplastic breast cancer (MBC) because of its 
highly activated cell migration-related signaling pathways, 
extracellular matrix–receptor interaction, and differentia-
tion pathways. Additionally, it has tissue features that are 
sarcoma-like or squamous epithelial cell-like and is easily 
resistant to chemotherapy [37]. mTOR inhibitors or drugs 
targeting EMT may be effective in the M subtype, and 
patients with the MSL subtype can be treated with PI3K 
inhibitors and anti-angiogenic drugs [36, 37]. The IM sub-
type has an abundance of immune cell-related genes and 
signaling pathways, such as the Th1/Th2, B cell receptor, 
and NK cell pathways, and can be optionally treated with 
immune checkpoint inhibitors [36, 38]. The LAR subtype 
has highly activated hormone-related signaling pathways, 
including steroid synthesis, androgen and estrogen metab-
olism, and porphyrin metabolism pathways. Significantly, 
the androgen receptor (AR) and many of its downstream 
metabolic markers and coactivators are detected in the 
LAR subtype, with mRNA levels of AR being nine times 
higher than other subtypes [39]. Therefore, anti-AR ther-
apy is an option for patients with LAR subtype. Figure 3, 
drawn by AI, summarizes the characteristics and potential 
treatments for each subtype.

Based on genetic sequencing of TNBC cases in China 
in 2019, TNBC was classified into four subtypes by Jiang 
et al.: LAR, immunomodulatory, basal-like immune-sup-
pressed, and mesenchymal-like [40]. When comparing 
previous data from the Cancer Genome Atlas (TCGA), 
they found an increased frequency of PIK3CA mutations 
in the LAR subtype [40]. Furthermore, TNBC cell lines 
contained PIK3CA gene mutations in 40% of LAR and 
23% of MSL, while AKT1 mutations were more common 
in LAR than in other subtypes [41, 42]. In the basal-like 
subtype, PIK3CA and AKT1 mutations were rare, and 
PTEN protein expression was low compared with other 
subtypes with heterozygous loss of the PTEN copy number 
identified in 46.1% [41, 43].
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Clinical data of studies targeting PI3K 
pathway in TNBC

PI3K inhibitors

PI3K inhibitors are divided into specific PI3K and pan-PI3K 
inhibitors. In BC, including TNBC, PIK3CA mutations are 
very common; consequently, PI3Kα-specific inhibitors—a 
class of selective oral inhibitors targeting the PI3K catalytic 
subunit P110α class I—have been extensively studied. They 

can also inhibit other subunits; however, all class members 
have a significantly reduced effect on PI3Kβ [44]. PI3Kα-
specific inhibitors include alpelisib, taselisib, inavolisib, 
and serabelisib. The PI3Kγ inhibitor eganelisib and the 
dual PI3K and mTOR inhibitors gedatolisib have received 
attention. Pan-PI3K inhibitors can inhibit the kinase activ-
ity of all isoforms of class I PI3K: α, β, γ, and δ, including 
buparlisib, pictilisib, copanlisib, and others [45]. Several 
preclinical studies have depicted that PI3K inhibitors com-
bined with chemotherapy, immunotherapy, AR, Poly (ADP 

Fig. 3  Characteristics and potential therapies based on the TNBC molecular subtype
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ribose) polymerase (PARP), and CDK4/6 inhibitors may be 
new strategies for treating TNBC [42, 46, 47].

Alpelisib (BYL719) is an oral specific PI3Kα inhibitor 
and it effectively reduces the risk of treatment-related toxic 
side effects and extends the therapeutic window compared 
with pan-PI3K inhibitors [48]. Although alpelisib, com-
bined with fulvestrant, was approved by the FDA for treat-
ing patients with HR-positive, HER2-negative, PIK3CA 
mutated advanced or progressive BC, its use in TNBC 
continues to be explored. A phase I/II trial that enrolled 42 
patients with HER2-negative advanced-stage BC (including 
12 TNBC patients) demonstrated that alpelisib combined 
with nab-paclitaxel had good tolerance and encouraging 
efficacy. Additionally, 40% of patients with PI3KCA muta-
tions had longer PFS than the non-mutated group at 11.9 
and 7.5 months, respectively [49]. Currently, EPIK-B3, an 
ongoing phase III, randomized, double-blinded, placebo-
controlled trial, is testing the safety and efficacy of this com-
bination in advanced TNBC patients carrying a PIK3CA 
mutation or PTEN deletion (ClinicalTrials.gov Identifier: 
NCT04251533). Additionally, two phase I trials evaluated 
the activity of buparlisib plus olaparib and alpelisib plus 
olaparib combinations in germline BRCA-mutant and wild-
type recurrent BC (including TNBC patients) and ovarian 
cancer, respectively. This shows significant central nervous 
system toxicity in the former combination and favorable 
safety in the latter. These results provide preliminary clinical 
evidence for the synergy between PI3K and PARP inhibi-
tors [50, 51]. Notably, a phase Ib clinical trial of alpelisib 
plus enzalutamide for treating AR and PTEN-positive meta-
static BC patients is ongoing, which may provide clinical 
evidence for the combination of AR and PI3Kα inhibitors 
in managing advanced TNBC (ClinicalTrials.gov Identifier: 
NCT03207529) (Table 1).

Taselisib (GDC-0032) is another PI3Kα inhibitor; 
besides selective inhibition of P110α, its effect mechanism 
includes a proteasome-mediated degradation specific to the 
mutant oncoprotein [52]. A multi-institutional phase Ib/II 
study, TBCRC0322, evaluating the safety and efficacy of 
taselisib plus enzalutamide, displayed that the combination 
was tolerated [53]. However, the SANDPIPER trial dem-
onstrated limited benefit of taselisib in metastatic BC, and 
drug development was halted, resulting in a portion of the 
phase II trial not being completed [54]. In 17 patients with 
metastatic AR+ ( ≥ 10%) TNBC, the clinical benefit rate 
(CBR) was 35.7% in the combination group, while none 
of the patients on enzalutamide alone benefited. The CBR 
between PIK3CA mutated and unmutated groups was non-
significant and higher in patients with the LAR subtype than 
other subtypes (75% vs. 12.5%, p = 0.06). Another phase 
Ib trial investigated the safety and efficacy of a combina-
tion of the CDK4/6 inhibitors palbociclib and taselisib in 
solid tumors, including the TNBC cohort. In patients with 

PIK3CA mutations and ER-advanced BC (eight TNBC and 
two HER2-positive), ORR, CBR, and mPFS were 10%, 30%, 
and 3.6 months, respectively [55].

Inavolisib (GDC-0077) is a recently developed strong 
p110α inhibitor that induces specific degradation of the 
mutated form of PIK3CA. Several relevant phase II/III clini-
cal studies (ClinicalTrials.gov Identifiers: NCT05306041, 
NCT05646862, NCT04191499, and NCT05894239) have 
been conducted in metastatic and advanced BC patients with 
PIK3CA mutations and HR-positive or HER2-positive phe-
notypes, but have not been studied in TNBC. Serabelisib 
(TAK-117) is a novel PI3K inhibitor with high selectivity 
for p110α and a strong ability to induce cell proliferation 
and inhibit apoptosis. A phase II clinical trial evaluated the 
combination of TAK-228 and TAK-117 for treating meta-
static TNBC (ClinicalTrials.gov Identifier: NCT03193853).

Eganelisib (IPI-549) is a highly selective PI3Kγ inhibitor 
(≥ 150-fold compared with class I PI3K isoforms and other 
kinases) with anti-tumor activity alone and has shown feasi-
bility when combined with a programmed cell death 1/pro-
grammed cell death ligand 1 (PD1/PDL1) inhibitor in pre-
clinical studies. The MARIO-1 trial—a first-in-human phase 
I/Ib trial—evaluated the safety and efficacy of eganelisib 
monotherapy or in combination with nivolumab in patients 
with solid tumors. The trial revealed that the most common 
grade ≥ 3 toxicities associated with eganelisib monotherapy 
were increased levels of alanine aminotransferase (18%), 
aspartate aminotransferase (18%), and alkaline phosphatase 
(5%). Based on the trial results, 30 or 40 mg of eganelisib 
once daily combined with a PD1/PDL1 inhibitor would be 
more appropriate for a phase II study [56]. MARIO-3 is 
a phase II multi-arm cohort study; cohort A assessed the 
effectiveness of eganelisib combined with albumin pacli-
taxel and atelizumab in patients with advanced or metastatic 
TNBC, where cohort A1 was PDL1-positive and cohort A2 
was negative (ClinicalTrials.gov Identifier: NCT03961698). 
The latest results at the 2022 San Antonio Breast Cancer 
Symposium indicate that this triple combination therapy has 
promising anti-tumor activity (ORR 55.3% and DCR 84.2%) 
and manageable toxicity regardless of PD-L1 status [57].

Gedatolisib (PKI-587) is a potent reversible dual inhibitor 
that selectively targets all class I PI3K isoforms and mTOR. 
A phase I trial enrolled 18 patients with advanced TNBC to 
investigate the safety of gedatolisib combined with cofetu-
zumab pelidotin, demonstrating that this combination had 
a good safety profile and promising clinical activity, which 
warrants further investigation to treat metastatic TNBC [58]. 
In another phase of the Ib trial, 107 patients with BC were 
treated with gedatolisib combined with docetaxel, cisplatin, 
or dacomitinib; 10% of evaluable patients (7/70) experienced 
dose-limiting toxicity, and the most common was grade 3 
oral mucositis. Twenty-two patients with TNBC were treated 
with gedatolisib combined with cisplatin, with an ORR of 
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40% in the first line and 33.3% in the second/third line [59]. 
Currently, a phase II trial tests the effectiveness of geda-
tolisib plus talazoparib in advanced TNBC or BRCA1/2 
mutated, HER2-negative BC (ClinicalTrials.gov Identifier: 
NCT03911973).

Menarini (MEN1611) is a novel oral PI3Kδ inhibitor that 
exhibits lower cytotoxic activity than taselisib in a p110δ-
driven HER2-positive BC cell model and higher cytotoxic 
activity than alpelisib in a p110β-driven cellular model 
[60]. SABINA is an ongoing multicenter, double-cohort, 
non-comparative, open-label phase II clinical trial that aims 
to analyze the safety and efficacy of MEN1611, both as a 
monotherapy and in combination with eribulin, for treating 
locally advanced or metastatic TNBC with PIK3CA/PTEN 
mutations (ClinicalTrials.gov Identifier: NCT05810870).

Buparlisib (BKM120) is an oral pan-class I PI3K inhibi-
tor that targets all PI3K isoforms. Two phase III clinical 
studies—BELLE-2 and BELLE-3—demonstrated the effec-
tiveness of buparlisib plus fulvestrant in endocrine-resistant 
hormone-positive BC [61, 62]. However, BELLE-4 and an 
additional single-arm phase II clinical study demonstrated 
no clinical benefit of buparlisib in combination with pacli-
taxel or monotherapy in locally advanced or metastatic 
TNBC [63, 64]. Buparlisib has been discontinued in BC 
due to its serious adverse effects and poor efficacy. Pictilisib 
(GDC-0941) and copanlisib (BAY80–6946) are both pan 
inhibitors but have no clinical results in TNBC. A phase I/II 
trial is ongoing to evaluate the safety and efficacy of copan-
lisib in patients with metastatic TNBC (ClinicalTrials.gov 
Identifier: NCT04345913).

AKT inhibitors

Capivasertib (AZD5363) is an orally administered, highly 
selective pan-AKT inhibitor with similar activity against 
AKT1/2/3 [65]. The PAKT trial was a randomized, dou-
ble-blinded, placebo-controlled phase II clinical trial that 
recruited 140 patients with untreated metastatic TNBC. 
The trial aimed to assess the safety and efficacy of adding 
capivasertib to paclitaxel as a first-line treatment for TNBC 
patients. The results demonstrated that the median PFS in the 
capivasertib group increased from 4.2 to 5.9 months com-
pared with the placebo group. In 28 patients with PIK3CA/
AKT1/PTEN alteration, mPFS was 9.3 months in the capiv-
asertib group vs. 3.7 months in the placebo group. These 
results suggest that adding the AKT inhibitor capivasertib 
to the first-line treatment of TNBC significantly prolongs 
PFS, with the benefit being more pronounced in patients 
with PIK3CA/AKT1/PTEN alterations. The final results of 
this trial showed that the capivasertib group had a longer OS 
than the placebo group (19.1 vs. 13.5 months; HR, 0.70), 
but the difference was not significant. However, contrary 
to previously published results, there was no difference in 

the clinical benefit between patients with or without altera-
tions in PIK3CA/AKT1/PTEN. Herein, the most common 
adverse events were diarrhea (13% vs. 1%), infection (4% 
vs. 1%), rash (4% vs. 0%), and fatigue (4% vs. 0%), with 
equal proportions in both neutropenic groups (3%) [66, 67]. 
The safety and efficacy of capivasertib combined with pacli-
taxel as first-line treatment for mTNBC were evaluated in 
the phase III clinical trial CAPitello290 (ClinicalTrials.gov 
Identifier: NCT03997123). Additionally, the Begonia trial 
explores the efficacy and safety of durvalumab (MEDI4736) 
in combination with new oncology therapies for treating 
first-line metastatic TNBC, with trial group II investigating 
capivasertib in association with paclitaxel and durvalumab 
(ClinicalTrials.gov Identifier: NCT03742102).

Ipataserti (GDC-0068) is a highly selective ATP-com-
petitive small AKT inhibitor that exhibits activity in vari-
ous cancer cell lines and xenograft models, including BC 
[68]. The LOTUS trial evaluated the safety and efficacy of 
adding ipatasertib to the late first-line treatment of TNBC. 
Compared to the paclitaxel combined with placebo group, 
the results displayed an increase in PFS with the addition 
of ipatasertib to paclitaxel, and the PFS increased from 
4.9 to 6.2 months in the ITT population and from 3.7 to 
6.2 months in the low PTEN subgroup. Further analysis of 
42 patients with PIK3CA/AKT1/PTEN-mutated demon-
strated an even more significant improvement in their PFS, 
from 4.9 to 9.0 months. In the final analysis, the median 
OS was longer in the trial group than the placebo group, at 
25.8 and 16.9 months, respectively. In all biomarker-defined 
subgroups (PTEN normal or low, PIK3CA/AKT1/PTEN 
altered or unaltered), median OS favored ipatasertib–pacli-
taxel. Unfortunately, patients carrying PI3K/AKT/mTOR 
mutations depicted no enhanced efficacy with paclitaxel plus 
ipatasertib [69, 70]. However, the phase III clinical trial IPA-
Tunity130 displayed the opposite results to LOTUS, dem-
onstrating that paclitaxel combined with ipatasertib failed to 
improve PFS in TNBC patients with PIK3CA/AKT1/PTEN 
mutations [71]. Additionally, a multicenter, three-arm, phase 
II clinical study called PathFinder was designed to investi-
gate the safety and efficacy of ipatasertib in combination 
with capecitabine, eribulin, or carboplatin plus gemcitabine 
in patients with unresectable locally advanced or metastatic 
TNBC (ClinicalTrials.gov Identifier: NCT04464174). PTEN 
loss and PI3K/AKT activation are the mechanisms of immu-
notherapy resistance in patients with TNBC [72]. AKT 
inhibitors are under development in clinical trials as poten-
tial strategies to enhance the efficacy of immunotherapy 
for TNBC. A phase III, double-blinded, placebo-controlled 
clinical trial, IpaTunity170, demonstrated an ORR of 54% 
for triple combination therapy (ipatasertib combined with 
paclitaxel/nab-paclitaxel and atezolizumab) in mTNBC 
(ClinicalTrials.gov Identifier: NCT04177108) [73]. How-
ever, the BARBICAN trial indicated that this combination 
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did not improve the clinical outcomes of neoadjuvant treat-
ment [74]. Additionally, two phase I clinical trials are under-
way to explore the safety and efficacy of ipatasertib and 
atezolizumab combined with chemotherapy in metastatic 
TNBC (ClinicalTrials.gov Identifiers: NCT03853707 and 
NCT03800836).

mTOR inhibitors

The mTOR inhibitors include everolimus and temsirolimus. 
The BOLERO-2, PrE0102, and GINECO studies demon-
strated that everolimus plus endocrine therapy significantly 
prolonged PFS in postmenopausal HR-positive and HER2-
negative advanced BC patients who failed endocrine therapy 
[75–77]. Meanwhile, BOLERO-4 and BOLERO-5 demon-
strated that everolimus, in combination with letrozole and 
exemestane, respectively, prolonged PFS in this group of 
patients [78, 79]. And the MIRACLE study depicted that 
everolimus plus endocrine therapy was effective in patients 
with premenopausal HR-positive and HER2-negative 
advanced BC [80]. Additionally, in a phase I clinical trial, 
the mTOR inhibitors temsirolimus and everolimus combined 
with the chemotherapeutic drug liposomal doxorubicin and 
the anti-angiogenic agent bevacizumab were examined in 52 
metaplastic TNBC patients. Although the study reported a 
promising ORR (21%), the clinical trials have stopped [81].

Conclusion

The PI3K/AKT/mTOR signaling pathway is crucial for 
TNBC cell growth, survival, proliferation, and angiogenesis, 
making it an important TNBC therapy target. PI3K (alpe-
lisib) and mTOR (everolimus) inhibitors, which have FDA 
approval, provide more treatment options for advanced BC 
patients with HR-positive and HER2-negative status after 
progression on endocrine therapy; they have shown better 
ORR rates in TNBC clinical trials. Additionally, increasing 
PI3K/AKT/mTOR signaling pathway-related inhibitors has 
demonstrated safety and efficacy in various clinical studies, 
and their combination with conventional chemotherapy sig-
nificantly prolonged PFS and OS. PI3K inhibitors, includ-
ing pan and selective inhibitors, are important. Pan inhibi-
tors have not yet illustrated the expected efficacy, but they 
have opened the way for specific PI3K α-specific inhibitors. 
Although PI3K-selective inhibitors are not licensed in the 
TNBC field, they have a wide development field and great 
potential for clinical application.

Most completed and ongoing clinical studies have been 
conducted with inhibitors of the PI3K signaling pathway 
in combination with taxane, including nab-paclitaxel, 
paclitaxel, and docetaxel. The PAKT and LOTUS trials 

showed that combining the AKT inhibitor with paclitaxel 
in advanced TNBC patients significantly prolonged PFS, 
especially in those with PI3K signaling pathway muta-
tions. In addition, current clinical trials, which addressed 
PI3K inhibitors combined with AR, PARP, CDK4/6 
inhibitors and immunotherapy, have shown some effi-
cacy. Consequently, the subsequent clinical study design 
could be based on PI3K/AKT/mTOR signaling pathway-
related inhibitors combined with chemotherapy as the 
cornerstone, with the option of combining AR, PARP, 
and CDK4/6 inhibitors and immunotherapy to manage 
TNBC. Furthermore, developing specific treatment regi-
mens based on the features of each TNBC subtype requires 
further exploration.

However, PI3K signaling pathway inhibitors still face 
many challenges for further clinical applications. First, 
although PI3K plays a central role in oncogenesis, only 
modest anti-tumor activity has been observed, and the 
future of PI3K signaling pathway inhibitors depends on 
the correct choice of combination therapy. Second, the 
toxic reactions associated with these inhibitors, such as 
fever, rash, pruritus, hyperglycemia, and mucositis, should 
not be ignored in clinical applications. Learning how to 
manage these drugs to improve patient compliance and 
researching more selective inhibitors are new challenges 
that must be addressed. The PI3K signaling pathway is 
vital for normal human cells; it responds to insulin and 
insulin-like growth factors and amino-acid-nutrients, regu-
lates blood glucose and amino acids, and influences cel-
lular autophagy. Consequently, we need to identify specific 
inhibitors of the PI3K signaling pathway associated with 
BC. Finally, there remains an incomplete understanding of 
the action and regulatory mechanisms of the PI3K sign-
aling pathway, and the specific efficacy still needs to be 
confirmed by clinical trials and basic experimental studies.
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