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Abstract
Objectives  Breast carcinoma (BRCA) has resulted in a huge health burden globally. N1-methyladenosine (m1A) RNA 
methylation has been proven to play key roles in tumorigenesis. Nevertheless, the function of m1A RNA methylation-related 
genes in BRCA is indistinct.
Methods  The RNA sequencing (RNA-seq), copy-number variation (CNV), single-nucleotide variant (SNV), and clinical 
data of BRCA were acquired via The Cancer Genome Atlas (TCGA) database. In addition, the GSE20685 dataset, the exter-
nal validation set, was acquired from the Gene Expression Omnibus (GEO) database. 10 m1A RNA methylation regulators 
were obtained from the previous literature, and further analyzed through differential expression analysis by rank-sum test, 
mutation by SNV data, and mutual correlation by Pearson Correlation Analysis. Furthermore, the differentially expressed 
m1A-related genes were selected through overlapping m1A-related module genes obtained by weighted gene co-expression 
network analysis (WGCNA), differentially expressed genes (DEGs) in BRCA and DEGs between high- and low- m1A score 
subgroups. The m1A-related model genes in the risk signature were derived by univariate Cox and least absolute shrinkage 
and selection operator (LASSO) regression analyses. In addition, a nomogram was built through univariate and multivariate 
Cox analyses. After that, the immune infiltration between the high- and low-risk groups was investigated through ESTI-
MATE and CIBERSORT. Finally, the expression trends of model genes in clinical BRCA samples were further confirmed 
by quantitative real-time PCR (RT‒qPCR).
Results  Eighty-five differentially expressed m1A-related genes were obtained. Among them, six genes were selected as 
prognostic biomarkers to build the risk model. The validation results of the risk model showed that its prediction was reli-
able. In addition, Cox independent prognosis analysis revealed that age, risk score, and stage were independent prognostic 
factors for BRCA. Moreover, 13 types of immune cells were different between the high- and low-risk groups and the immune 
checkpoint molecules TIGIT, IDO1, LAG3, ICOS, PDCD1LG2, PDCD1, CD27, and CD274 were significantly different 
between the two risk groups. Ultimately, RT-qPCR results confirmed that the model genes MEOX1, COL17A1, FREM1, 
TNN, and SLIT3 were significantly up-regulated in BRCA tissues versus normal tissues.
Conclusions  An m1A RNA methylation regulator-related prognostic model was constructed, and a nomogram based on 
the prognostic model was constructed to provide a theoretical reference for individual counseling and clinical preventive 
intervention in BRCA.
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Introduction

Breast carcinoma (BRCA) is the most common malig-
nant tumor in women [1]. The percentage of women with 
BRCA is steadily increasing, with an estimated 11.7% 
of all cancer cases or 2.3 million new cases in 2020 [1, 
2]. BRCA can be mainly classified into luminal A, lumi-
nal B, HER-2 positive, and triple-negative breast cancer 
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(TNBC) according to the expression of ER, PR, HER-2, 
and Ki-67. The different subtypes may lead to different 
responses to clinical treatment and different prognoses 
[3]. Great improvements in the early diagnosis and com-
prehensive treatment of breast cancer have been made in 
recent years, but breast cancer is still the leading cause of 
cancer death in women [2]. Therefore, there is an urgent 
need to develop new therapeutic and prognostic targets 
for BRCA.

Growing evidence has revealed that RNA chemical 
modifications have important functions in vital cel-
lular processes, such as cell differentiation, circadian 
rhythm maintenance, cell signaling, and protein produc-
tion [4–6]. RNA methylation is one of the most com-
mon RNA chemical modification patterns observed dur-
ing posttranscriptional RNA epigenetic modifications, 
including N3-methylcytosine (m3C), N1-methyladenosine 
(m1A), N6-methyladenosine (m6A), and 5-methylcytosine 
(m5C) [7–11]. The N1 position where the methyl group 
is attached to adenosine is m1A [12] and is prevalent in 
rRNA, mRNA, tRNA, and mitochondrial transcripts. 
Most m1A is found in GC-rich sequences with a highly 
structured 5-untranslated region (UTR) near the mRNA 
translation start site [8]. Studies have shown that m1A 
dysregulation affects RNA structural stability, protein 
interactions, folding, cell proliferation, and cell death 
[8, 13]. M1A methylation regulators are composed of 
“eliminate decoders” (ALKBH3, ALKBH1), “encoders” 
(TRMT61B, TRMT10C, TRMT6, TRMT61A), and “code 
readers” (YTHDC1, YTHDF1, YTHDF2, YTHDF3) 
[14–17]. It has been demonstrated that dynamic regu-
lation of m1A in response to physiological stress and 
abnormal expression of m1A regulators are associated 
with tumorigenesis and cancer recurrence [18]. Studies 
have illustrated that changes in m1A-related genes are 
closely related to the progression of bladder cancer [19]. 
The expression of ALKBH1 is closely related to the poor 
prognosis of lung adenocarcinoma (LUAD) [20]. A study 
by Couch et al. demonstrated that TRMT61B is closely 
associated with ER-negative breast cancer [21].

However, the impact of m1A-related genes on breast 
cancer prognosis remains unclear. Therefore, this study 
mainly used bioinformatics analysis to investigate the 
effect of m1A-related genes on the prognosis of breast 
cancer patients. A total of 6 m1A-related genes (MEOX1, 
COL17A1, FREM1, CD1C, TNN, and SLIT3) were 
selected as prognostic m1A-related biomarkers to build 
the risk model. The validation results of the risk model 
showed that its prediction was reliable. Finally, the exper-
imental results demonstrate the reliability of the bioinfor-
matics analysis. This research may provide new ideas for 
the diagnosis and treatment of BRCA.

Materials and methods

Data source

The transcriptome (1104 BRCA samples and 114 normal 
samples), copy-number variations (CNVs), single-nucleotide 
variants (SNVs), and clinical data of BRCA were down-
loaded from the TCGA database (https://​portal.​gdc.​cancer.​
gov/). After removing the samples without survival status 
and invalid survival time, a total of 1069 BRCA samples 
with complete survival information were obtained for sub-
sequent risk model construction. Moreover, the GSE20685 
dataset, the external validation set, was retrieved from the 
GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo), con-
taining the expression profile data of 115 BRCA samples 
with survival information. Finally, 10 m1A RNA methyla-
tion regulators were obtained from the literature of Wu et al. 
[22], including ALKBH1, ALKBH3, TRMT10C (AKA: 
RG9MTD1), YTHDF2, TRMT61A, TRMT61B, YTHDC1, 
TRMT6, YTHDF1, and YTHDF3.

CNV and functional enrichment analyses of m1A 
RNA methylation regulators

Considering the important role of various CNV regions 
in lymph-node metastasis in triple-negative breast cancer 
patients [23], the genetic variation of N6-methyladenosine 
(m6A)-related regulators, that is, CNV data, expression dif-
ferences, and mutations, has been investigated in BRCA 
[24]. In the current study, similarly, the R package was 
employed for the 10 m1A-related regulators to initially seek 
their CNV types and frequencies and chromosomal assign-
ments. In addition, based on transcriptome data, the expres-
sion patterns of 10 m1A-related regulators were compared 
between BRCA samples and controls using the rank-sum 
test and visualized by ggplot2 (Version 3.3.3). For the explo-
ration of the biological function and signaling pathway of 
these m1A-related regulators, Gene Ontology (GO) enrich-
ment analysis was further utilized for the 10 m1A-related 
regulators by ClusterProfiler (version 3.18.0) [25] in the 
R package with adj.p < 0.05 and count ≥ 1 as the selection 
standard, and the results were visualized in a bar chart and 
bubble diagram by enrichplot (version 1.10.2) [26].

Survival analysis and immune infiltration of 10 
m1A‑related regulators

The m1A score of each of 1069 BRCA samples was cal-
culated by single sample Gene Set Enrichment Analysis 
(ssGSEA) of Gene Set Variation Analysis (GSVA) [27, 28]. 
Then, the survival time and survival data were extracted, and 
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the survminer package (version 0.4.9) was utilized to calcu-
late the optimal threshold of m1A scores to separate BRCA 
samples into m1A score high-risk and low-risk subgroups 
according to previous methods [29]. The survival package 
(Version 3.2–11) [30] was used for the survival analysis of 
the two subgroups, a survival curve was drawn, and p < 0.05 
was considered statistically significant.

In addition, the immune infiltration was analyzed in the 
two score subgroups [31]. First, the ESTIMATE algorithm 
was applied for the stromal scores, immune scores, and 
ESTIMATE composite scores of each sample in two score 
subgroups. The comparison of the three scores between the 
two m1A score subgroups was conducted through the rank-
sum test and visualized in violin plots. Moreover, CIBER-
SORT was further performed on each sample in both sub-
groups to compute the proportions of 22 types of immune 
cells, and the correlations of the immune cells were com-
puted by Pearson correlation analysis [32].

Screening of m1A‑related Genes

In contrast to the previous studies of BRCA, disease status 
(BRCA/normal) was used as the trait data of weighted gene 
co-expression network analysis (WGCNA) (Version 1.70-3), 
which was performed to filter the most relevant m1A mod-
ules and genes in this study [33]. Initially, the expression 
values of genes were computed, and genes with expression 
values greater than 1 were selected for cluster analysis. The 
cluster analysis of samples aimed to determine whether out-
lier samples needed to be removed. Next, the adjacency and 
similarity between genes were calculated. Then, the dynamic 
tree cutting algorithm was performed to divide modules. 
Based on the following settings, the minimum number of 
genes per module was 200, MEDissThres = 0.2. Finally, 
genes in the key modules that met the requirements of 丨GS
丨 > 0.2, and 丨MM丨 > 0.6 were regarded as m1A-related 
genes.

Differentially expressed m1A‑related genes

The limma package (Version 3.44.3) [34] was applied with 
the criteria of adj.p < 0.05 and |Log2FC|≥ 1 to screen out 
the differentially expressed genes (DEGs) between 1104 
BRCA samples and 114 normal samples. Similarly, DEGs 
between m1A score high-risk and low-risk subgroups were 
identified as well, which exhibited the differences in gene 
expression between BRCA cohorts with different prognoses 
according to the m1A score. In addition, the VennDiagram 
package (Version 1.6.20) was utilized to overlap DEGs in 
BRCA samples, DEGs in m1A score high-risk and low-risk 
subgroups, and the m1A-related module genes obtained by 
WGCNA (the downregulated DEGs in BRCA were inter-
sected with the downregulated genes in the m1A score 

high-risk subgroup and key module genes, and vice versa) 
to acquire the differentially expressed m1A-related genes.

Construction and validation of the m1A‑related 
prognosis model

First, based on the ratio of 7:3, 749 and 320 samples of 
the 1069 BRCA samples were treated as the training set 
and internal validation set, respectively. Moreover, after 
extracting the expression data of differentially expressed 
m1A-related genes from the training set, the overall survival 
(OS) and other clinical information were combined with the 
extracted expression data to further obtain clinical expres-
sion data of BRCA samples. Then, the risk model was built 
by univariate Cox analysis and least absolute shrinkage and 
selection operator (LASSO) logistic regression [35]. To be 
more specific, univariate Cox analysis was applied to screen 
out the differentially expressed m1A-related genes with 
p < 0.05 by the survival package (version 3.2-11). LASSO 
logistic regression analysis was performed with the setting 
of family to Cox, to the screened differentially expressed 
m1A-related genes for constructing the risk model. At the 
meantime, Kaplan–Meier (K–M) survival analysis was con-
ducted to evaluate the difference in OS of TCGA-BRCA 
cohorts with different expression patterns of these model 
genes, as described by Zhang et al. [36].

Moreover, the RiskScore of every BRCA patient was 
computed by the risk coefficient ( coef i ) of the model genes 
obtained by LASSO and their respective expression levels 
( xi ), with the formula RiskScore = 

∑n

n=1
coefi ∗ xi [37]. After 

separating BRCA patients into high- or low-risk (score) 
groups based on the median RiskScores, the overall sur-
vival curves were plotted for the groups by survminer (ver-
sion 0.4.8). The risk model efficacy was further assessed by 
the area under the curve (AUC) of the receiver-operating 
characteristic (ROC) curves37. The 1-, 3- and 5-year sur-
vival time node ROC curves were plotted by the survival 
ROC package (Version 3.1-12) for the risk model. Moreover, 
the same evaluation procedures were employed for both the 
internal and external validation (GSE20685) sets to further 
determine the effectiveness of the risk model.

Establishment of a nomogram

To detect the prognosis of the risk model and clinical 
factors, correlation analysis was performed between clin-
icopathological characteristics (age, T, N, M, sex, sub-
type, vital, and stage) of the 1069 BRCA samples and the 
RiskScore. The differences in subgroups of clinicopatho-
logical characteristics [age (> 60 and ≤ 60), T (T1, T2, T3, 
T4), M (M0, M1), N (N0, N1, N2, N3), sex (male, female), 
subtype (BRCA_LumA, BRCA_LumB, BRCA_Normal, 
BRCA_Basal, BRCA_Her2), and Vital (Alive, Dead)] 
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between the low- and high-risk groups were examined by 
the Chi-square test. In addition, the rank-sum test was fur-
ther utilized to compare differences in RiskScores expres-
sion among the different subgroups of clinicopathological 
characteristics [38]. Considering the vital significance of 
the intrinsic subtype of BRCA in prognosis, risk stratifica-
tion analysis was further conducted to investigate the utili-
zation of the risk model in patients with different intrinsic 
subtypes of BRCA [39].

Next, univariate Cox independent prognostic analysis 
was further employed for the clinicopathological charac-
teristics and RiskScore to investigate the prognosis of the 
clinicopathological characteristics and the risk model. 
Subsequently, clinicopathological characteristics with 
p < 0.05 were regarded as factors for multivariate Cox 
independent prognostic analysis.

Then, the rms function (version 6.2-0) in the R package 
was employed on the 1069 BRCA samples to construct 
the nomogram to further predict BRCA patient 1-, 3-, and 
5-year survival probabilities according to the total score 
of independent factors screened by the Cox analyses, and 
the nomogram was verified by the overall calibration curve 
[40]. In addition, the effectiveness comparison between 
the risk model and nomogram was evaluated by decision 
curve analysis (DCA).

Effects of the risk model on immune heterogeneity

The estimate package (version 1.0.13) was performed on 
the 1069 BRCA samples to detect the immune differences 
between the two risk groups. The immune infiltration of 
both stromal and immune cells in a tumor sample can 
be obtained by the ESTIMATE algorithm, which is pre-
sented as stromal scores, immune scores, and ESTIMATE 
composite scores [41]. Furthermore, the abundances of 
22 types of immune cells were calculated in each BRCA 
sample by the CIBERSORT algorithm (Version 1.03) [42] 
with p < 0.05 as the selection standard. Then, the rank-sum 
test was used to compare the proportions of 22 immune 
cells between the high- and low-risk groups. In addition, 
the correlation between risk model genes and differential 
immune cells was detected through Pearson correlation.

In this study, the rank-sum test was employed to com-
pare the differences between the two risk groups in both 
the expression data of 24 human leukocyte antigen (HLA) 
genes extracted from a previous publication by Yue et al. 
[43] and the expression data of nine immune checkpoint 
molecules (LAG3, ICOS, TIGIT, CD274, PDCD1, IDO1, 
CD27, PDCD1LG2, and HAVCR2).

Analysis of risk model gene mutations

Eventually, the SNVs of each risk model gene in BRCA 
were analyzed according to the SNV data, and their muta-
tion frequencies were presented as a waterfall diagram by 
maftools R package [44].

Total RNA extraction and quantitative real‑time PCR 
(qRT‒PCR) analysis

All clinical samples were obtained from the Department of 
Breast Surgery, Guizhou Provincial People's Hospital, and 
all patients signed informed consent. The clinical charac-
teristics of the patients are shown in Table 1. Total RNA 
was extracted from BRCA tissues and healthy controls using 
RNA extraction kits (Promega, Shanghai, China) in accord-
ance with the manufacturer's instructions. Then, cDNA 
synthesis was conducted on 2 μg of each sample using a 

Table 1   Clinical features of patients

Features Variables No. (%)

Age  < 35 8 (40)
 ≥ 35 12 (60)

Gender Female 20 (100)
Molecular subtype Luminal A 5 (25)

Luminal B 5 (25)
HER-2(+) 5 (25)
TNBC 5 (25)

Lymphatic metastasis Yes 16 (80)
No 4 (20)

Distant metastasis Yes 2 (10)
No 18 (90)

Table 2   The primer sequences 
for qPCR

Primers for validated 
Genes
Gene

Prime sequence (5′–3′)
Forward reverse

GAPDH
MEOX1

TAT​GAC​AAC​AGC​CTC​AAG​AT
CCA​ACT​GGC​ACT​TCC​CTG​TCTC​

AGT​CCT​TCC​ACG​ATA​CCA​
TCT​CCG​CCT​GGA​TGA​TTT​CTTC​

COL17A1 GCT​CCA​GTG​GCA​ACT​CTT​CTC​ CTC​TCG​TGT​TTG​ACT​CCG​TCC​
FREM1 GTG​AAT​GGG​AGA​GTG​TGG​GAAG​ GCA​AGA​GTG​TGA​TAC​GAG​GAGC​
CD1C
TNN
SLIT3

TGA​AGT​ACA​GGT​GAA​AGC​GG
GAG​ATG​TTC​CGC​TTC​CCT​ATG​
ACT​GTT​TGA​TGG​GCT​GGT​GTC​

CAT​CCA​GGA​GAC​CCA​AGA​GA
TGA​TGT​TCT​GTT​CCT​CCC​TGG​
TGG​GCT​AAG​TGG​AGT​GTC​TGG​
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fixed one-step RT-PCR kit (Promega, Shanghai, China). 
The SYBR Green Super Mix system was applied to per-
form qRT‒PCR. Gene expression was evaluated for three 
biological replicates, and the 2−ΔΔCT method was employed 
to analyze the relative changes in gene expression. GAPDH 
was utilized as a control. The primer sequences used in this 
paper are listed in Table 2.

Results

CNV and expression of m1A RNA methylation 
regulators

To explore the functional alteration and biological signifi-
cance of m1A RNA methylation in BRCA development, 

Fig. 1   CNV and expression of m1A RNA methylation regulators. a 
Waterfall plot of CNV types and frequencies of 10 m1A RNA meth-
ylation regulators. b Location of CNV alteration of the 10 m1A 
regulators on chromosomes. c Expression of 10 m1A methylation 

regulators between breast tumor tissue and breast normal tissue (* 
represents p < 0.05, **represents p < 0.001, ***represents p < 0.001, 
and ****represents p < 0.0001). d Bar plot of enriched GO terms in 3 
categories for the 10 m1A RNA methylation regulators

Table 3   The CNV situation of m1A regulators

m1A Amp Del Stable

YTHDF2 4/1081 0 1077/1081
TRMT61B 7/1081 0 1074/1081
TRMT10C 14/1081 0 1067/1081
YTHDC1 13/1081 0 1068/1081
YTHDF3 172/1081 0 909/1081
ALKBH3 14/1081 0 1067/1081
ALKBH1 5/1081 1/1081 1076/1081
TRMT61A 10/1081 2/1081 1071/1081
TRMT6 25/1081 0 1056/1081
YTHDF1 96/1081 0 985/1081
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the mutation rate of CNV and the expression levels of 10 
m1A RNA methylation regulators were first evaluated. The 
waterfall diagram showed that 9 of 10 m1A RNA meth-
ylation regulators were mutated in the BRCA samples, 
and YTHDF1 was the gene with the highest mutation fre-
quency of 15% (Fig. 1a). For the chromosomal assign-
ment results, it was revealed that 10 m1A RNA methyla-
tion regulators were mainly located on chromosomes 1, 
2, 3, 4, 8, 11, 14, and 22 (Fig. 1b). Besides, copy-number 
amplification occurred in 8 regulators except ALKBH1 
and TRMT61A which experienced copy-number deletions 
(Table 3). However, in general, the probabilities of CNV 
among the 10 m1A RNA methylation regulators in BRCA 
samples were low.

From the perspective of the gene expression patterns 
of these 10 m1A RNA methylation regulators in BRCA, 
the boxplot of the rank-sum test suggested that except for 
YTHDF3, the expression levels of the other nine m1A 
RNA methylation regulators showed significant differ-
ences between tumor and normal samples (Fig. 1c), indi-
cating the potential correlation of m1A RNA methylation 
and BRCA.

Next, using the enrichment analysis targeted the m1A 
RNA methylation regulators, the GO enrichment results 
indicated that in the BP process, these regulators were 
mostly significantly correlated with the methylation and 
modification of RNA, tRNA, and mRNA such as posi-
tive regulation of translation initiation, RNA methylation, 
tRNA metabolism process, tRNA methylation, tRNA 
processing, tRNA modification, mRNA modification, and 
mRNA methylation. From the perspective of cellular com-
ponents (CC), they were significantly correlated with the 
mitochondrial matrix, mitochondrial nucleoid, nucleus, 
endonuclease complex, endoribonuclease complex, ribo-
nuclease P complex, and methyltransferase complex. Addi-
tionally, demethylase activity, methyltransferase activity, 
transferase activity, RNA methyltransferase activity, and 
S-adenosylmethionine-dependent methyltransferase activ-
ity were mainly enriched in the molecular functions (MF) 
(Fig. 1d).

Prognostic value and immune correlation analysis 
of m1A RNA methylation regulators of BRCA​

Following the m1A score of 1069 BRCA samples was calcu-
lated using ssGSEA, the m1A score high-risk and low-risk 

subgroups were generated according to the optimal threshold 
of m1A scores. Differences in OS and immune infiltration 
states between two subgroups were revealed using K–M 
survival analysis and the immune-related analyses. It was 
revealed that the prognosis of BRCA patients in the m1A 
score high-risk group was significantly worse (p = 0.025) 
(Fig. 2a). For the exploration of the immune infiltration, both 
ESTIMATE and CIBERSORT algorithms were employed. 
The ESTIMATE results illustrated that the m1A score low-
risk group had significantly higher stromal scores, immune 
scores, and ESTIMATE composite scores (Fig. 2b). In addi-
tion, CIBERSORT results illustrated that M0 macrophages 
had a strong negative correlation with all the remaining 
immune cells. The proportions of seven types of immune 
cells (CD T cells, follicular helper T cells, activated NK 
cells, plasma cells, resting memory CD4 T cells, activated 
memory CD4 T cells, and activated dendritic cells) were 
significantly different between the two score subgroups 
(Fig. 2c–e).

MElightgreen and MEblack with the strongest 
correlations to the m1A score

Next, the genes associated with the m1A score were iden-
tified using WGCNA methods. The clustering analysis 
showed that there was no outlier sample, and the sorted 
staging data of m1A, T, N, M, age, and stage selected were 
used to construct a sample dendrogram and trait heatmap 
(Fig. 3a). Moreover, the optimal soft threshold analysis 
revealed that β was selected as 8 (Fig. 3b). On account of 
the optimal soft threshold, when 200 was set to the minimum 
number of genes in each gene module, 23 modules were 
acquired (Fig. 3c). Moreover, with MEDissThres set to 0.2 to 
merge similar modules analyzed by the dynamic tree cutting 
algorithm, 12 modules were obtained (Fig. 3c). Using m1A 
characteristics as well as other clinical characteristics as the 
clinical phenotypes of WGCNA, the correlation heatmap 
between modules and clinical phenotypes illustrated that of 
the 12 modules, MElightgreen (Cor = − 0.54, p = 5E−82) 
had the strongest negative correlation with m1A character-
istics, while MEblack (Cor = 0.45, p = 1E–54) correlated the 
most negatively with m1A traits. Therefore, MElightgreen 
and MEblack were considered key modules related to m1A 
(Fig. 3d). As for, the correlations between m1A traits and 
genes in these key modules, it was showed that the correla-
tion coefficient between MEblack genes and m1A traits was 
0.52 (p < 0.05), and 220 of 574 genes in the MEblack mod-
ule met the selection requirements. Furthermore, the corre-
lation coefficient between the MElightgreen gene and m1A 
traits was 0.8, and 434 of 1000 genes in the MElightgreen 
were selected as m1A-related genes (Fig. 3e).

Fig. 2   The grouping of m1A regulators and their immune infiltration 
relationship. a The K–M curves for BRCA patients in two m1A score 
subgroups. b Violin plots of the immune, stromal, and ESTIMATE 
score differences between the two m1A score subgroups. c Boxplot 
of TME cell composition. d Heatmap of the correlation between the 
22 types of immune cells. e Boxplot of immune cell infiltration in the 
two m1A score subgroups

◂
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Identification of differentially expressed 
m1A‑related genes

To further explore the differences in gene expression 
between different subgroups, the differentially expressed 

analysis was conducted with adj.p < 0.05 and |Log2FC|≥ 1. 
A total of 3600 DEGs, of which 1180 were up-regulated and 
2420 were downregulated genes in BRCA samples com-
pared to controls, were collected (Fig. 4a). Similarly, 184 
differentially expressed genes related to BRCA prognosis 
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were found between the two m1A score risk subgroups, 
including 182 downregulated and 2 up-regulated genes in 
m1A score high-risk samples (Fig. 4b). Finally, the overlap 
analysis among DEGs in BRCA, DEGs in the high-m1A/
low-m1A risk subgroups, and m1A-related genes showed that 
85 differentially expressed m1A-related genes were selected 
(overlapping genes were only obtained in downregulated 
genes) (Fig. 4c).

High efficiency of risk model based on 6 model 
genes

The expression data of 85 differentially expressed m1A-related 
genes were extracted from the training set to explore their 
prognostic value in BRCA. After combining these data with 
OS clinical information, forest map was drawn to visualize 
the univariate Cox analysis results, and nine differentially 
expressed m1A-related genes relevant to survival were identi-
fied including MEOX1, COL17A1, FREM1, CD1C, TNN, 
CLEC10A, IL33, CADM3, and SLIT3. Besides, SLIT3 was 
a risk factor (HR > 1) and the rest of the factors were pro-
tective factors (HR < 1) (Fig. 5a). The LASSO regression 
analysis results of these nine genes involved further sug-
gested that 6 genes (MEOX1, COL17A1, FREM1, CD1C, 
TNN, and SLIT3) were screened out as model genes when 
the cross-validation error was lowest (lambda. min = 0.00397) 
(Fig. 5b). About the survival differences of these genes with 
distinct expressed patterns, the K–M analysis results pre-
liminarily suggested that cohorts with low expression of 
COL17A1, FREM1, CD1C, and TNN had worse prognoses 
(Supplementary Fig. 1). Next, the RiskScore of the six model 
genes was estimated with the formula: R​isk​Sco​r​e = 0.​31 × SL​
IT3 + (− 0​.04) × ​MEOX1 + (−​ 0.03) × ​COL17A1 +​ (− 0.1​
) × FREM1 ​+ (− 0​.03) × CD1​C + (− 0.09) × TNN. The risk 
curve​ ba​sed​ on the RiskScore of 749 samples in training set 

showed that the high-risk patients experienced worse survival 
(Fig. 5c). The K–M curve demonstrated that the low-risk 
patients had a higher survival probability (Fig. 5d). Further-
more, the AUCs of the ROC curve in the training set were 
all greater than 0.6 at 1, 3, and 5 years, suggesting that the 
efficiency of the risk model was good (Fig. 5e). Moreover, the 
validation results of both the internal (test set) and external 
validation (GSE20685) sets all showed consistent results with 
those of the training set (Fig. 5f–k).

Clinical correlation analysis

Differences of risk score among BRCA individuals with dif-
ferent clinical characteristics were compared for the correla-
tion of the risk model and clinicopathological characteristics 
using Chi-square test and rank-sum test. The Chi-square test 
results suggested that except for N (p = 0.62), there were 
significant differences in age, T, M, sex, subtype, vital, and 
stage between the two risk groups (Table 4). Furthermore, 
the rank-sum test results demonstrated that the RiskScores 
differences among the subgroups of T, M, Stage, Vital, Age, 
Subtype, and Sex groups were significant except for N, indi-
cating the excellent correlations of the risk model and vari-
ous clinicopathological characteristics (Fig. 6). In addition, 
the risk stratification analysis was conducted to investigate 
the application of the risk model in survival prediction in 
patients with different intrinsic subtypes of BRCA, and it 
was illustrated that there was a significant difference in OS 
between different risk groups both Luminal A- and Luminal 
B-related BRCA cohorts (Supplementary Fig. 2).

Excellent potential of nomogram for clinical 
prediction

Univariate and multivariate Cox analyses were further used 
to evaluate the independent prognostic value among the risk 
model and various clinicopathological characteristics. T, N, 
M, stage, age, and RiskScore could be considered as inde-
pendent prognostic factors in the univariate Cox independent 
prognostic analysis (p < 0.05) (Fig. 7a). Next, the multivari-
ate Cox independent prognostic analysis showed that the 
p values of age, stage, and RiskScore were less than 0.05, 
which could be regarded as independent prognostic factors 
for BRCA (Fig. 7b). Moreover, a nomogram was constructed 
for clinical utilization. The C-index of the nomogram based 
on age, stage, and RiskScore was 0.778, and the slopes of the 
calibration curves for the nomogram at 1, 3, and 5 years were 
close to 1, revealing that the prediction of this nomogram 
was accurate (Fig. 7c, d). At the same time, DCA curves also 
suggested that the net benefit of the nomogram was greater 
than that of the risk model (Fig. 7e).

Fig. 3   Screening of m1A-related genes. a The dendrogram and phe-
notypic trait heatmap of BRCA samples. b Soft threshold power 
analysis was implemented to obtain the scale-free fit index of the net-
work topology, with a soft threshold power β of 8 hierarchical cluster 
analysis detection of the co-expression clusters was determined by 
WGCNA. c The upper part is the hierarchical clustering dendrogram 
of genes, and the lower part is the gene module. The genes clustered 
in the same branch are divided into the same module, and different 
colors represent different modules. d Heatmap of the correlation 
between different modules and m1A traits. The darker the color is, the 
higher the correlation. Red indicates a positive correlation and blue 
indicates a negative correlation. The number in the cell indicates the 
correlation and significance. The upper row is the correlation, the 
lower row is the p value, the left side is the module gene of different 
colors, and the color bar on the right side represents the correlation 
range. e Left: the correlation coefficient between the MEblack gene 
and modular traits was 0.52 (p < 0.05). Right: the correlation coeffi-
cient between the MElightgreen gene and the modular trait was 0.8 
(p < 0.05)

◂
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Correlation between the risk model and the tumor 
microenvironment

Through a series of approaches of ESTIMATE and CIB-
ERSORT, the relationship between the risk model and the 
tumor microenvironment was also investigated. The ESTI-
MATE results revealed that immune scores and ESTIMATE 
scores between the high- and low-risk groups were notably 
different (p < 0.05) (Fig. 8a). Furthermore, CIBERSORT was 
applied to calculate the proportions of 22 types of immune 
cells in 561 BRCA samples (HIGH = 273, LOW = 288) after 
eliminating samples with p > 0.05. The boxplot of the rank-
sum test indicated that 13 types of immune cells (CD8 T 
cells, naive B cells, follicular helper T cells, M0, M1, M2 
macrophages, activated memory CD4 T cells, monocytes, 
neutrophils, naive CD4 T cells, activated mast cells, resting 
dendritic cells, and memory B cells) were different between 
the 2 risk groups (Fig. 8b). Moreover, the risk model genes 
were positively correlated with B cells but negatively cor-
related with M0 macrophages (Fig. 8c).

Besides, differences of 24 HLA genes as well as 9 immune 
checkpoint molecules in different risk groups were explored 
as well through rank-sum test. Results illustrated that 20 
out of 24 HLA-related genes (HLA − DPA1, HLA − DQB1, 
HLA − DRB1, HLA − DRB6, HLA − DRB5, HLA − DMB, 
HLA − C, HLA − DQB2, HLA − J, HLA − H, HLA − F, 
HLA − E, HLA − DPB1, HLA − DPB2, HLA − DOA, 
HLA − DOB, HLA − DQA1, HLA − DQA2, HLA − DMA, 
and HLA − DRA) were differentially expressed between the 
two risk groups (p < 0.05) (Fig. 8d). Finally, the rank-sum 
test of nine immune checkpoint molecules revealed that the 

expression differences between the two risk groups of 8 
immune checkpoint molecules (TIGIT, IDO1, LAG3, ICOS, 
PDCD1LG2, PDCD1, CD27, and CD274) were significant, 
indicating the therapeutic potential for BRCA by targeting 
the mechanisms controlling immune checkpoint expression 
(Fig. 8e).

SNV of risk model genes and relative expression 
levels of related genes in normal and primary 
tumors

Finally, the mutation rate of SNVs based on the “maftools” 
and the mRNA expression levels of 6 model genes in clini-
cal BRCA samples were investigated. The waterfall diagram 
suggested that a total of 41 samples were altered in at least 
one model gene, which accounted for 74.55%, and FREM1 
was the most mutated model gene with a frequency of 29% 
followed by TNN (20%) and COL17A1 (16%) (Fig. 9a). 
To further directly validate the expressions of these model 
genes in BRCA tissues, we assessed the expression levels of 
these genes in BRCA tissues and normal tissues by qRT‒
PCR, and the results showed that except for CD1C, the other 
five genes had lower mRNA levels in tumor tissues than in 
normal tissues (Fig. 9b).

Discussion

In recent years, RNA modification has become a research 
hotspot. M1A is an important posttranscriptional modifica-
tion of RNA [14, 45]. Many studies have proven that m1A 

Fig. 4   Identification of differentially expressed m1A-related genes. a 
Volcano plot of differentially expressed genes between 1104 BRCA 
samples and 114 normal samples The abscissa represents log2FC 
and the ordinate represents –log10 (ajust. p.value). Each dot in the 
figure represents a gene, the red dots represent up-regulated differen-
tially expressed genes, the blue dots represent downregulated differ-
entially expressed genes, and the black dots represent no significant 

differences in these genes. The transverse reference line represents 
–log10 (p.value = 0.05), and the longitudinal reference line repre-
sents log2FC =  ± 1. b Volcano plot of differentially expressed genes 
between the high-m1A and low-m1A score subgroups. c Venn dia-
gram of downregulated genes in the high-m1A subgroup, downregu-
lated DEGs in TumorBRCA samples, and m1A-related genes from 
WGCNA
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Fig. 5   Construction and validation of the risk model. a Forest plot 
of univariate Cox regression analysis. b LASSO regression for the 
selection of characteristic parameters. Left: penalty graph of 6 char-
acteristic variable coefficients. Right: in the LASSO logistic regres-
sion model, the best penalty coefficient lambda was selected using a 
fivefold cross-validation and minimization criterion. c, f and i: The 
risk curve and heatmap of 6 model genes for the training set, internal 

validation set and the external validation set, respectively. d, g and j: 
Survival analysis between patients in the high-risk group and the low-
risk group for the training set, internal validation set, and the external 
validation set, respectively. e, h, and k ROC curves of 1-, 3-, and 5- 
year survival time nodes for the training set, internal validation set, 
and the external validation set, respectively
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is closely related to the tumor immune response [18, 46]. 
There are currently approximately 2570 m1A modification 
sites validated in humans [47], but little is known about the 
relationship between m1A modification and BRCA.

In recent years, bioinformatics methods have been widely 
used in breast cancer research. For example, the expression, 
somatic mutation, copy-number variation, and biological 
function of pyroptosis-related genes in breast cancer were 
evaluated based on the TCGA-BRCA dataset [48]. Yang 
et al. [35] used the WGCNA method and ssGSEA Z-score 
to predict survival and risk stratification in triple-negative 

breast cancer. A prognostic signature based on 6 fatty 
acid metabolism-related genes relevant to OS was gener-
ated using Lasso Cox hazards regression analysis in the 
TCGA dataset and was validated in two external cohorts 
[49]. In this study, a prognostic model was constructed by 6 
m1A-related genes (MEOX1, COL17A1, FREM1, CD1C, 
TNN, and SLIT3) screened by univariate Cox analysis and 
LASSO regression analysis.

Considering that breast cancer is intrinsically hetero-
geneous and different intrinsic subtypes are associated 
with distinct biological features and clinical outcomes. By 
comparing the risk scores for different intrinsic subtypes 
of breast cancer, it was found that the risk scores were 
well differentiated among different subtypes. Some stud-
ies have found that Luminal A and Luminal B may have 
differences in clinical diagnosis [50], and the risk scores 
of the two also had significant differences, which prelimi-
narily proves the effectiveness of the study. Moreover, risk 
stratification survival analysis for each subtype was carried 
out as well. The results showed that the prognostic model 
had good predictive ability in the prognosis of Luminal A 
and Luminal B patients with BRCA. Meanwhile, correla-
tion analysis between risk models and clinical factors was 
conducted. Except for the N-stage, other clinicopathologi-
cal features had a significant correlation with risk scores. 
Although, the significant correlation between risk genes 
MEOX1, COL17A1, and lymph-node metastasis in triple-
negative breast cancer patients has been reported [51, 52]. 
However, these studies did not involve the specific mecha-
nism of m1A regulation, which is not inconsistent with our 
conclusions. Although univariate analysis has shown that 
lymph-node (N) status was associated with OS, further 
multivariate analysis has shown that it was not sufficient 
to participate as an independent prognostic factor in the 
construction of m6A-related nomograms, which was also 
similar to our findings [53]. We speculated that the rel-
evant mechanism of m1A had less influence on the lymph-
node metastasis process of breast cancer patients.

Studies have shown that high levels of MEOX1 were an 
independent prognostic factor for non-small cell lung can-
cer (NSCLC), and it could regulate cell proliferation and 
colony formation in vitro, making it a potential therapeu-
tic target for NSCLC [54]. Yodsurang V mentioned that 
COL17A1 was a novel p53 transcriptional target in BRCA 
that inhibited cell migration and invasion and was posi-
tively associated with prognosis, and the expression level 
of COL17A1 mRNA in both primary and metastatic BRCA 
tissues was significantly reduced, which was consistent with 
our findings [55]. FREM1 was mainly involved in cellu-
lar metabolism and immune cell infiltration. The results of 
immunohistochemical (IHC) and immunofluorescence (IF) 
showed that the expression of FREM1 in BRCA tissue was 
significantly reduced as shown in the current study, and low 

Table 4   The number of high- and low-risk patients under different 
clinical factors

Total Risk p value

High Low

Age (year)
Mean (SD)

58.3 (± 13.2) 60.9 (± 13.5) 55.6 (± 12.3)  < 0.001

Gender
 Female 1,057 (98.9%) 524 (98.1%) 533 (99.6%) 0.022
 Male 12 (1.1%) 10 (1.9%) 2 (0.4%)

Vital
 Alive 918 (85.9%) 441 (82.6%) 477 (89.2%) 0.002
 Dead 151 (14.1%) 93 (17.4%) 58 (10.8%)

Stage
 STAGE I 180 (17.1%) 78 (14.9%) 102 (19.4%) 0.05
 STAGE II 606 (57.7%) 305 (58.2%) 301 (57.2%)
 STAGE III 245 (23.3%) 127 (24.2%) 118 (22.4%)
 STAGE IV 19 (1.8%) 14 (2.7%) 5 (1.0%)

M stage
 M0 887 (97.7%) 445 (96.7%) 442 (98.7%) 0.075
 M1 21 (2.3%) 15 (3.3%) 6 (1.3%)

N stage
 N0 502 (47.9%) 250 (47.7%) 252 (48.0%) 0.62
 N1 353 (33.7%) 172 (32.8%) 181 (34.5%)
 N2 119 (11.3%) 66 (12.6%) 53 (10.1%)
 N3 75 (7.1%) 36 (6.9%) 39 (7.4%)

T stage
 T1 276 (25.9%) 116 (21.8%) 160 (29.9%)  < 0.001
 T2 620 (58.2%) 328 (61.8%) 292 (54.6%)
 T3 133 (12.5%) 57 (10.7%) 76 (14.2%)
 T4 37 (3.5%) 30 (5.6%) 7 (1.3%)

Intrinsic subtype
 BRCA 

Basal
169 (17.5%) 83 (17.2%) 86 (17.7%)  < 0.001

 BRCA Her2 75 (7.7%) 50 (10.4%) 25 (5.1%)
 BRCA 

LumA
496 (51.2%) 214 (44.4%) 282 (58.0%)

 BRCA 
LumB

193 (19.9%) 126 (26.1%) 67 (13.8%)

 BRCA 
normal

35 (3.6%) 9 (1.9%) 26 (5.3%)
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FREM1 expression was an independent prognostic factor 
for BRCA [56]. The study by Zhang et al. [57] demonstrated 
that SLIT3 was a potential tumor suppressor in lung adeno-
carcinoma. And meanwhile, the results of IHC in a study of 
BRCA showed that SLIT3 expression was lower than that in 
normal tissues [58], exhibiting the same expression patterns 
in this study. Therefore, we believe that these genes may be 
involved in the prognosis of breast cancer. In this work, the 
C-index of the m1A-related nomogram was calculated to be 
0.7782541, indicating that the prediction of the nomogram 
model was accurate. We performed a decision curve analysis 

on the risk model and nomogram, and compared the predic-
tion efficiency of the simple risk model and the model after 
adding clinical factors (M stage). The results showed that the 
latter can better predict the survival of patients.

It is noteworthy that the DEGs between the high-m1A 
and low-m1A risk groups and the low-m1A risk groups 
which may be attributed to the fact that the role of m1A 
modification in tumors is heterogeneous. The repressive 
impact of m1A on translation is probably due to its scar-
city in cytosolic mRNAs [17, 59]. For the m1A eraser genes 
ALKBH1 and ALKBH3, it was suggested that the mRNA 

Fig. 6    RiskScore difference between subgroups of eight clinicopathological characteristics
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expression of MFAP2 and the methylation modification of 
m1A were increased in colorectal cancer when ALKBH1 
was silenced [60]. The depletion of ALKBH3 enhances the 

decay of Aurora A mRNA and inhibits its translation [61]. 
Similarly, the expression of key genes relevant to the ErbB 
and mTOR pathways could also be inhibited by ALKBH3 

Fig. 7   Risk model nomogram construction and verification. Forest 
plot for clinicopathological characteristics in univariate (a) and mul-
tivariate (b) Cox independent prognostic analyses. c The nomogram 
consists of RiskScore, Stage, and age. d Calibration curves for the 

BRCA patients 1-, 3-, and 5-year OS predictions of the nomogram. e 
Decision curve analysis (DCA) curves comparing the nomogram and 
RiskScore for the 3-year survival rate of BRCA patients (left) and the 
5-year survival rate of BRCA patients (right)
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in gastrointestinal cancer [62]. On the other hand, overex-
pression of TRM6/TRM61 mRNA as m1A writer genes was 
detected in highly invasive glioblastoma multiforme, which 
reduced PKCα [59]. Moreover, it was found that the expres-
sion of DEGs in hepatocellular carcinoma patients with 
different m1A methylation modification modes was mostly 
regulated, which was similar to our results. It was indicated 

that the inhibition of m1A methylation on gene expression 
may play an important role in BRCA.

A large number of studies have also shown that immune 
infiltration is associated with tumor prognosis. Tumors with 
a large amount of CD8+ T-cell infiltration, M1 macrophages, 
and plasma cells in the tumor microenvironment seem to 
have a better prognosis [63–67]. Higher levels of M0 and M2 
macrophages and lower levels of CD8+ T cells in the tumor 

Fig. 8   Impact of risk models on immune heterogeneity. a Violin plots 
of differences in the immune microenvironment between the high- 
and low-risk groups. b Boxplot of immune cell infiltration in the two 
risk groups (*represents p < 0.05, **represents p < 0.001, ***repre-
sents p < 0.001, and ****represents p < 0.0001). c Correlation map 

between model genes and differential immune cells. d Boxplot of 
HLA-related gene expression differences between the high- and low-
risk groups. e Boxplot of 9 immune checkpoint molecule expression 
differences between the high- and low-risk groups
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microenvironment are associated with poorer prognosis 
[68, 69]. In our study, risk model genes had a strong nega-
tive correlation with M0 macrophages and a strong positive 
correlation with B cells, which has proven the finding of 
Zhu [69]. A large number of studies have proven that HLA 
family genes are closely related to immunotherapy. HLA 
genes are essential for T lymphocyte activation and antigen 
presentation [70]. Low HLA-E expression is associated with 
better overall survival in endometrial cancer [71]. This study 
found that among the 24 HLA family genes, except HLA-
G, HLA-L, HLA-B, and HLA-A, the remaining genes were 
significantly differentially expressed between the high- and 
low-risk groups.

Immune checkpoint blockade shows better therapeu-
tic response in many tumor treatments [72]. We therefore 
analyzed the differential expression of immune check-
points between the high-risk and low-risk groups. Except 
for HAVCR2, other immune checkpoints were differen-
tially expressed between the high- and low-risk groups. Our 
findings suggest that BRCA may be particularly sensitive 
to combination checkpoint blockade therapy. Studies have 
shown that high LAG3 expression can induce EGFR-TKI 
and gefitinib resistance, as well as anti-PD-1 therapy resist-
ance [73]. There are also studies, suggesting that ICOS 
activation may enhance the effects of inhibitory checkpoint 
blockade [74]. Ostroumov et al. [75] identified TIGIT as a 
potential target of immune checkpoint combination therapy 
by transcriptome analysis. In recent years, numerous studies 
have shown that cancer cells expressing CD274 may have 
an impact on regulatory T cells in the tumor microenviron-
ment [76]. PDCD1 is closely associated with TMB, MSI, 

and immune cell infiltration, and can be used as a prognostic 
marker in various cancers [77]. A new finding suggested 
that IDO1 promotes GC metastasis and may be a promis-
ing target for GC anticancer therapy [78]. Hence, these 
immune checkpoints may offer new directions for breast 
cancer treatment.

Finally, we examined the mRNA expression levels of 
m1A-related genes in breast cancer tissues and normal breast 
tissues. Except for CD1C, other genes had lower mRNA 
levels in tumor tissues than in normal tissues. Studies have 
discovered that over-expression of MEOX2 promoted apop-
tosis through inhibiting the PI3K/Akt pathway in laryngeal 
cancer cells [79]. A study by Feiyu Mao et al. demonstrated 
that high expression of COL17A1 is a marker for predicting 
poor prognosis in pancreatic cancer and promoting tumor 
progression through the NF-κB pathway [80]. Another study 
demonstrated that elevated FREM1 expression in breast can-
cer is a marker of favorable prognosis and high levels of 
immune infiltration [56].

However, this study also has limitations. We only veri-
fied the mRNA expression of the genes and RIP-qPCR and 
western blot experiments of six m1A methylation-related key 
genes, especially the CD1C gene, should be completed in a 
follow-up study. In addition, the exploration of the original 
cohort data was not involved in this study and required fur-
ther investigation [58]. Clinical experiments and in vivo and 
in vitro experiments are required to validate the correlation 
between m1A modification and BRCA, which could make 
our findings more sound and solid.

In conclusion, an m1A RNA methylation regulator-related 
prognostic model containing six genes (MEOX1, COL17A1, 

Fig. 9   a Waterfall plot of mutation SNV types and mutation frequencies of 6 model genes. b Validation of model gene expression between 
breast cancer tissues and normal tissues by qPCR
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FREM1, CD1C, TNN, and SLIT3) was constructed, and the 
clinical correlation analysis and construction of the nom-
ogram based on the prognostic model were conducted to 
provide a theoretical reference for individual counseling 
and clinical preventive intervention in BRCA. In addition, 
the prognostic gene expression had significant correlations 
with M0 macrophages and naive B cells. Various immune 
checkpoint molecules (ICOS, TIGIT, etc.) that were dif-
ferentially expressed in the two risk groups might be con-
sidered potential therapeutic targets in BRCA. Moreover, 
mutations in FREM1 and TNN as well as the m1A RNA 
methylation regulator YTHDF1 occurred in the BRCA pro-
cess. In the future, we will continue to carry out experimen-
tal verification.
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