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Abstract
Purpose of Review  The true incidence of fungal disease is hampered by conventionally poor diagnostic tests, limited access 
to advanced diagnostics, and limited surveillance. The availability of serological testing has been available for over two dec-
ades and generally underpins the modern diagnosis of the most common forms of fungal disease. This review will focus on 
technical developments of serological tests for the diagnosis of fungal disease, describing advances in clinical performance 
when available.
Recent Findings  Despite their longevity, technical, clinical, and performance limitations remain, and tests specific for fun-
gal pathogens outside the main pathogens are lacking. The availability of LFA and automated systems, capable of running 
multiple different tests, represents significant developments, but clinical performance data is variable and limited.
Summary  Fungal serology has significantly advanced the diagnosis of the main fungal infections, with LFA availability 
increasing accessibility to testing. Combination testing has the potential to overcome performance limitations.

Keywords  β-D-Glucan · Galactomannan · Aspergillus · Candida · Lateral flow assays · Fungal serology

Introduction

Through increased clinical intervention, immunosuppression 
and modulation, and the impacts of environmental change, 
the population at risk of fungal disease grows annually, but 
the true incidence of fungal disease is hampered by conven-
tionally poor diagnostic tests, limited access to advanced 
diagnostics, and the limited surveillance of most fungal dis-
eases. Serological testing has been available for over two 
decades in various guises and generally underpins the mod-
ern diagnosis of the most common forms of fungal disease, 
whether acute or chronic in manifestation. While some tests, 
such as the cryptococcal lateral flow assay (LFA), repre-
sent a near-perfect test with high sensitivity and specific-
ity on easily obtained specimens (e.g., serum), other tests 
(e.g., galactomannan ELISA (GM)) show variable perfor-
mance, dependent on host and underlying condition, fungal 

manifestation, and specimen type, yet remain the most estab-
lished biomarker assay for a particular condition.

This review will focus on technical developments of sero-
logical tests for the diagnosis of both acute invasive fun-
gal disease (IFD) and chronic fungal disease but will also 
describe advances in our understanding of clinical perfor-
mance when available.

Aspergillus Antigen ELISA Assays

The GM assay manufactured by BioRad likely represents 
the most well-established/accepted fungal biomarker assay. 
It has been in clinical use for over two decades, has well-
defined positivity thresholds in blood and bronchoalveolar 
lavage (BAL) fluid, and is recognized as the main myco-
logical criterion for defining invasive aspergillosis (IA) [1]. 
While the availability of a single assay provides methodo-
logical uniformity, it does not guarantee consistent perfor-
mance, and both sensitivity and specificity of the BioRad 
GM can fluctuate between centers [2]. A lack of competitive 
comparator assays minimizes the drive for continued assay 
development, and so the recent availability of alternative 
GM is, indeed, encouraging, provided clinical performance 
is satisfactory (Table 1). When processing large numbers 
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of samples, plate-based ELISA platforms are favorable, but 
generally limit testing to large centers or reference laborato-
ries. The subsequent logistics of sample transportation and 
return of results when different laboratory reporting systems 
are employed can severely hamper utility, even when the 
testing center provides rapid processing.

The availability of GM platforms designed to test 
small sample numbers has the potential to improve 
access to testing through wider availability, but much 
will be dependent on cost and clinical performance. 
One such platform is the Virclia® Monotest Aspergillus 
Galactomannan AG, a rapid (1 h), fully automated sandwich 
chemiluminescent immunoassay (CLIA) for the detection 
of galactomannan in plasma, serum, and BAL fluid. With 
each monotest containing reagents and controls individual 
to a sample, a single sample can be tested without using 
excessive, additional reagents on separate controls. Clinical 
performance of the test when testing serum and BAL fluid 
has recently been described (Table 1), concordance with the 
BioRad GM test was excellent (K: 0.722), with 15 discordant 
Virclia Positive/BioRad negative being clinical cases of IA 
compared to three BioRad positive/Virclia negative [3]. 
The area under the ROC curve using proven/probable IA 
as a reference was excellent (0.968). The availability of an 
automated GM ELISA system is useful for minimizing inter-
assay variability, where manual operational events could be 
a potential source of non-reproducible GM positivity and 
have been attributed to 33% of GM positivity [9]. However, 
the BioRad GM can be automated using the Evolis system 
or other widely used systems such as the DS2 Dynex 
platform, and other non-BioRad automated GM systems are 
available but lack published clinical validation (e.g., ERA 
FungiXpert) [3, 10].

The JF-5 antibody utilized in the OLM lateral flow device 
and detects a galactomannoprotein released from actively 
growing Aspergillus hyphae has recently been incorporated 
into a plate-based ELISA assay. The Euroimmun Asper-
gillus antigen ELISA generated good concordance with 
the BioRad GM when testing serum and while sensitivity 
was poor (45%) when only considering the result from a 

single, closest to the date of IA diagnosis, it improved (71%) 
when including assay positivity across a 7-week window 
[5]. Sensitivity was further improved (96%) using an alter-
native lower threshold (0.2) derived from ROC analysis, 
but specificity fell to 76%, compared to 97% when using 
the manufacturer’s thresholds. Interestingly, when test-
ing serum, the detection of non-hematological cases of IA 
was potentially better using the Euroimmun assay than the 
BioRad GM, improving on a known limitation of the lat-
ter. Indeed, other non-BioRad GM ELISA assays have been 
used to achieve an early diagnosis of IA in asthmatic and 
rheumatology patients [11]. However, a recent evaluation of 
the BioRad GM ELISA in non-neutropenic patients with a 
range of Aspergillus manifestations (IA, COVID-19 associ-
ated aspergillosis (CAPA), chronic pulmonary aspergillosis) 
generated an overall sensitivity of 89% (range 81–100%) 
when testing serum and assay specificity was less convinc-
ing (75%), primarily compromised by false positivity in 
patients with histoplasmosis (41%) and tuberculosis (43%) 
[12]. Conversely, the prospective performance of the BioRad 
GM ELISA, evaluated by a center proficient at performing 
this test in a large hematology cohort, generated sensitivity 
below what would be expected when testing serum (41%) 
and BAL fluid (78%) [6]. This may reflect the changing sta-
tus of neutropenia post non-myeloablative allogeneic stem 
transplantation on test performance, where patients are not 
as profoundly and prolongedly neutropenic compared to his-
toric myeloablative recipients.

The performance of the Euroimmun assay when 
testing BAL fluid has also raised questions regarding the 
suitability of the threshold. Using the manufacturer’s 
threshold, specificity was excellent (96%), but sensitivity 
was moderate (74%), although it could be improved (90%) 
by halving the threshold without compromising specificity 
[4]. However, in another study evaluating the Euroimmun 
assay in hematology patients, lowering the threshold when 
testing BAL fluid did not significantly improve sensitivity 
(66–75%), but did compromise specificity (91–68%), and 
the sensitivity was considered inferior to that of the BioRad 
GM [6]. In this study, lowering the Euroimmun positivity 

Table 1   The clinical 
performance of non-BioRad 
Aspergillus antigen assays

Assay Sample type Performance parameter Reference

Se (%) Sp (%) LR + tive LR -tive

Virclia Serum/BAL 81 100  > 810* 0.19 [3]
Euroimmun BAL 74 96 18.5 0.27 [4]

Serum 45 97 15.0 0.57 [5]
BAL 66 91 7.2 0.38 [6]
Serum 34 100  > 340* 0.66
BAL 89 84 5.6 0.13 [7]
Serum 43 92 5.4 0.62

IMMY Serum 71 98 35.5 0.3 [8]
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threshold when testing serum did significantly improve 
sensitivity (34–93%) with only a minor impairment to 
specificity (100–83%), and the authors concluded that the 
lower threshold should be considered. Similar findings have 
been reported in evaluations of other GM-EIA assays (e.g., 
IMMY GM-EIA) [8].

While well-established in the hematology cohort as the 
main diagnostic test for IA, the recently described EORTC 
trial comparing empirical and pre-emptive antifungal 
strategies in high-risk neutropenic patients not on mould-
active prophylaxis confirmed the BioRad GM as a safe 
method to underpin a pre-emptive antifungal strategy [13]. 
Overall survival at day 42 was 97% in the pre-emptive 
compared to 93% in the caspofungin empirical arm, with 
similar rates of IFD (pre-emptive: 7.7% vs empirical 6.6%) 
after 84 days. The use of antifungal therapy in the pre-
emptive arm was half that in the empirical arm, with no 
excess mortality or IFD documented.

Another major development in GM ELISA testing was 
the release of the second revision of the EORTC/MSGERC 
consensus definitions of IFD [1]. The updated definitions 
recommend a GM index threshold of 1.0 when testing 
serum or plasma, BAL fluid, or CSF, double the value 
recommended by the manufacturer and that previously 
stated in the first revision of these definitions [14]. While 
this higher threshold is widely accepted when testing BAL 
fluid, this increase when testing serum/plasma remains 
contentious. Justification for this increased stringency when 
testing serum/plasma was based on the increased likelihood 
of IA associated with increased specificity (90–94%), while 
accepting that this could hamper enrolment into clinical 
trials, it was felt that this improved rigor was critical to 
underpinning the accuracy of clinical studies. These more 
stringent classifications were retrospectively applied to 226 
cases of proven/probable IA and 139 cases of possible IFD 
in the Aspergillus Technology Consortium (AsteC) and to an 
antifungal prophylaxis trial [15]. From the AsTec collection, 
40 cases of probable IA were reclassified as possible IFD. 
In the clinical trial, between 31 and 36% of patients were 
reclassified as possible IFD, and classification of probable 
IA was delayed by a median of 3 days in 15% of evaluable 
patients, and there was no difference in mortality in patients 
retaining a probable classification with those reclassified as 
possible IFD. Stating a definitive GM positivity threshold 
in guidelines also has implications when GM ELISA assays 
other than the BioRad GM are becoming available but 
potentially with differing units of measurement or different 
positivity thresholds that reflect the different kinetics of 
reaction. While a single GM positivity threshold is applied 
and until there is sufficient available clinical performance 
data for novel GM assays to be incorporated in guidelines, 
it becomes critical to understand the correlation in 
positivity between BioRad and non-BioRad GM assays. 

The performance of GM assay when testing serum for the 
diagnosis of Aspergillus sinusitis was also recently generated 
through meta-analysis, providing a moderate sensitivity and 
specificity of 63% and 65%, respectively [16•].

During the COVID-19 pandemic, GM assays were 
regularly used to aid in the diagnosis of CAPA, frequently 
testing samples outside the manufacturer’s current 
recommendations of serum and BAL fluid. While the 
GM testing of BAL fluid is widely accepted across patient 
cohorts and serum positivity in CAPA patients an indication 
of poor prognosis, performance when testing samples such 
as sputum, endotracheal aspirates (ETA), and non-directed 
bronchial lavage (NBL) fluid is unclear [17]. For CAPA, the 
detection of GM in NBL fluid appears comparable to BAL 
fluid when using the BioRad GM ELISA or IMMY LFA [18, 
19]. For sputum, while GM positivity has been demonstrated 
in CAPA patients, the diagnostic validity of both positive 
and negative results is ambiguous, but testing these samples 
could be advocated in resource-limited settings [20]. For 
GM testing of ETA, moderate agreement with BAL fluid 
was demonstrated (kappa: 0.47, accuracy: 80%). Using a 
higher positivity threshold of ≥ 2.0 for ETA testing generated 
a BioRad GM sensitivity and specificity of 75% and 81%, 
respectively [21]. In another study outside of the CAPA 
population, 92% of GM positive BAL fluids were also GM 
positive in ETA, but 33 samples were GM positive in ETA 
alone, indicating that GM negativity in ETA was likely 
representative of negativity in BAL fluid (98% probability), 
while GM positivity in ETA was not indicative of BAL GM 
positivity (40% probability) [22].

Lateral Flow Assays

Lateral flow assays to aid in the diagnosis of IFD are well 
established for cryptococcosis and gaining traction for 
the diagnosis of IA, including CAPA where acceptable 
performance was attained when testing deep respiratory 
tract specimens, but has also demonstrated utility for the 
early diagnosis of CAPA in serum [19, 23, 24, 25]. Their 
simplicity of use provides rapid sample processing and 
together with relatively low cost negates the need for batch 
testing and permits application in resource-limited settings 
where access to BioRad GM ELISA may be limited [26]. 
The main issue of subjective, individual interpretation 
when reading lateral flow strips has been negated by the 
availability of a digital reader providing quantitative, 
consistent results.

As with the GM ELISA, cross-reactivity between the 
IMMY Aspergillus LFA and other fungal species (e.g., 
Fusarium, Scedosporium, Candida, and endemic fungi) has 
been documented when testing respiratory samples [26, 27]. 
Clinical performance data is emerging but remains limited 



135Current Fungal Infection Reports (2023) 17:132–143	

1 3

when compared to the BioRad GM ELISA, but performance 
varies dependent on the specific assay used (OLM LFD or 
IMMY LFA), the specimen tested (BAL fluid or serum/
plasma), and the patient cohort. Broadly speaking, the 
IMMY LFA generally provides good performance when 
testing BAL fluid or serum, whereas the OLM LFD appears 
to provide better sensitivity when testing BAL fluid, and 
in a recent study in hematology patients, the OLM LFD 
sensitivity when testing serum was poor (26%) [6, 24, 26, 
28]. In relation to BAL fluid testing, non-viscous/non-
haemolysed BAL fluid can be tested directly using the OLM 
LFD, permitting point-of-care testing. A recent technical 
process where neat serum was heated at 120 °C for 15 min 
prior to centrifugation significantly increased the sensitivity 
of the OLM LFD to 89%, compared to 56% when performing 
the manufacturer’s protocol [29]. When compared to 
the BioRad GM ELISA, the IMMY LFA generated an 
acceptable, albeit potentially inferior sensitivity (74% versus 
89%) when testing serum from non-neutropenic patients with 
a range of Aspergillus manifestations, although specificity 
was likely superior (84% versus 75%), with IMMY false 
positivity largely associated in patients with histoplasmosis 
[12]. The OLM LFD generated poor sensitivity (7%) but 
excellent specificity (98%) when testing BAL fluid for the 
diagnosis of chronic pulmonary aspergillosis [30]. Apart 
from serum and BAL fluid, a lateral flow assay utilizing 
the capture antibody mAb476 has been developed for the 
diagnosis of IA when testing urine, and preliminary results 
are encouraging (sensitivity: 80%; specificity: 92%), with 
sensitivity varying depending on underlying condition 
(cancer patient: 90%; other patients: 64%) [31].

An interesting development is the availability of lateral 
flow assays for the detection of Aspergillus IgG and IgM 
antibodies to aid in the diagnosis of chronic pulmonary 
aspergillosis (CPA), overcoming some of the limitations 
encountered in resource-limited settings (Table 2). In an 
initial retrospective, multicenter French evaluation, sensi-
tivity and specificity were 89% and 96%, respectively, with 

sensitivity increasing to 91% in a single-center prospective 
study [32]. Across the range of CPA manifestations, the 
sensitivity for the diagnosis of CPA (92%), allergic bron-
chopulmonary aspergillosis (93%, ABPA) was greater than 
that for invasive/sub-acute aspergillosis (67%), likely reflect-
ing the immune status of patients associated with the latter 
impacting antibody availability. The antibody LFA was posi-
tive in 88% of patients deemed colonized with Aspergillus, 
potentially complicating clinical interpretation. A UK-based 
study confirmed the excellent sensitivity (92%) and specific-
ity (98%), but also demonstrated that while sensitivity was 
optimal for the detection of disease caused by A. fumigatus 
(96%), the detection of non-fumigatus Aspergillus species 
remained acceptable (88%) and the LFA was also positive 
in 89% of cases where sputum culture was negative [33]. 
Lower specificities (72%) have been documented in some 
studies and in patients with bronchiectasis in the absence 
of aspergillosis (82%) [34, 35]. Sensitivity of the LFA for 
the diagnosis of ABPA and severe asthma with fungal sen-
sitization (SAFS) may be low (< 7%) [36]. A meta-analysis 
of this assay for the diagnosis of CPA generated pooled 
sensitivity and specificity of 90% and 91%, respectively, 
generating positive and negative likelihood ratios of 10 and 
0.11, indicating that the test is useful for both confirming 
and excluding CPA [37]. A recent pilot study compared the 
performance of the LFA when testing 15 µl of whole blood 
obtained by a “finger-prick” with that of testing serum/
plasma and determined 100% concordance between sample 
types [38].

The detection of IgG antibodies against enolase, a metal-
loenzyme present in the cytoplasm and cell wall of C. albi-
cans, has been incorporated into LFA to aid in the diagno-
sis of invasive candidiasis (IC), generating a sensitivity and 
specificity of 71% and 96%, respectively, for the diagnosis of 
candidaemia [41]. During the development of the Candida 
LFA, the authors also developed a plate-based ELISA test 
which generated a sensitivity and specificity of 87% and 

Table 2   The clinical 
performance of the LDBio 
Aspergillus ICT lateral flow 
assay for the detection of 
Aspergillus IgG and IgM 
antibodies

Manifestation Population (cases/
controls)

Performance parameter Reference

Se (%) Sp (%) LR + tive LR -tive

CPA 154/150 92 98 46.0 0.08 [33]
44/211 91 96 22.8 0.09 [32]
262/188 89 96 22.3 0.11
20/68 85 72 3.0 0.21 [34]
74/100 68 81 3.6 0.39 [39]
30/30 87 90 8.7 0.14 [37]

CPA post TB 20/70 80 70 2.7 0.29 [40]
ABPA 106/164 91 87 7.0 0.10 [35]

12/374 0 96  < 0.25* 1.04 [36]
SAFS 60/374 7 97 2.3 0.96
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90%, respectively, and concordance between the two tests 
was excellent (observed agreement: 93%, kappa: 0.851).

The development of an LFA specific to the detection of 
the principle causes of mucormycosis (Rhizopus arrhizus 
var. arrhizus (syn. Rhizopus oryzae) and Rhizopus arrhizus 
var. delemar (Rhizopus delemar)) can help overcome the 
current lack of a specific antigen test for mucormycosis 
[42]. Utilizing the IgG1 mAb KC9, which binds to 
15 kDa extracellular polysaccharide, the LFA generated 
a limit of detection of 500 ng/ml in serum and 100 ng/ml 
in BAL fluid, with no cross-reactivity with other fungal 
genera, including Aspergillus spp., Candida albicans, 
Cryptococcus neoformans, Fusarium spp., Scedosporium 
spp., and Lomentospora prolificans noted. This technical 
evaluation needs to be followed by a clinical evaluation 
and with the development of an LFA for the detection 
of fucomannan in the cell wall of Mucorales species, 
represents a much-needed diagnostic development for this 
aggressive disease [43].

Detection of (1–3)‑β‑D‑Glucan

The detection of (1–3)-β-D-glucan (BDG) in the cell wall of 
most fungal species is a well-established but not necessarily 
universally accepted diagnostic strategy. While overall clinical 
sensitivity and specificity for the detection for generalized 
IFD is comparable with that of other biomarkers, the lack of 
fungal genus/species level identification and multiple potential 
sources of procedural and clinical false positivity can limit the 
appeal of the test [44, 45, 46, 47, 48, 48]. Nevertheless, the 
generally high negative predictive value (> 95%) has led to 
its recommendation for excluding in IFD in national clinical 
guidelines, underpinning antifungal stewardship schemes 
[49, 50]. Conversely, BDG positivity is not necessarily 
indicative of IFD, and the CandiSep randomized control trial 
investigating whether BDG positivity shortened the time to 
treatment and improved prognosis in ICU patients at risk of 
IC presenting with sepsis showed that BDG-guided treatment 
did not improve survival [51]. As BDG is one of the main 
fungal antigens recognized by the human innate immunity, 
generally leading to a pro-inflammatory response and possibly 
worsening signs of sepsis and mortality, its presence, even 
in the absence of IFD, may be associated with poor patient 
outcome, and subsequently, its use to guide antifungal therapy 
may be misleading, and combining BDG testing with other 
mycological investigations is warranted [52]. BDG positivity 
in serum can also be indicative of disease progression and 
subsequent worse patient prognosis (e.g., CAPA) [17]. Given 
the multiple sources of BDG false positivity, developing 
algorithms which incorporate additional mycology alongside 
BDG testing is critical to gaining an understanding of the 
probability of infection when presented with multiple, 

potentially discordant results. Algorithms incorporating BDG 
alongside PCR have been proposed for the management of 
PcP and IC, the latter utilizing likelihood ratios to provide 
the probability of IC according to the various combinations 
of diagnostic results [53, 54].

The validity and utility of BDG testing of cerebrospinal 
fluid (CSF) is still to be fully determined, but the presence 
of BDG in CSF is less likely to be associated with a non-
fungal/infective source, and given the range of fungi capable 
of causing cerebral infection, the application of broad-fungal 
biomarker could be clinically beneficial. A recent systematic 
review of BDG testing of CSF included 14 studies describing 
a range of fungi causing cerebral IFD (Candida, Aspergillus, 
Exserohilum, Cryptococcus, Endemic fungi), and while a 
meta-analysis was not feasible due to the different causative 
agents and individual study limitations (e.g., case reports), 
in general, BDG levels appeared to be elevated in case of 
cerebral IFD compared to controls, potentially correlating 
with disease severity and treatment response [55•]. In the five 
studies where clinical performance validation was possible, 
sensitivity ranged from 53% for the detection of fungal 
meningitis caused by Histoplasma capsulatum to 100% for 
Exserohilum rostratum, with specificity ranging from 82 to 
98%. Interestingly, despite the limited presence of BDG in the 
cell wall of Cryptococcus neoformans, the sensitivity of CSF 
BDG for the diagnosis of cryptococcal meningitis was 89% 
[55•]. A recent study demonstrated that the sensitivity of CSF 
BDG for the diagnosis of cerebral candidiasis and cerebral 
aspergillosis was 100%, albeit specificity was 70% [56].

BDG positivity has also been incorporated into a risk 
score model for predicting invasive candidiasis, where 
multivariate logistic regression analysis identified BDG 
positivity alongside CD8 + T-cell counts < 143 cells/µl, 
receipt of high dose corticosteroids, administration of 
carbapenem/tigecycline, an APACHE II score ≥ 15, and 
emergency gastrointestinal/hepatobiliary (GH) surgery with 
a significant risk of IC [57]. Five variables were assigned a 
weighted score of one point, with GH surgery designated 
two points based on a larger regression coefficient. Scores of 
0–2 were considered low risk if IC, 3–4 moderate risk, and 
5–7 high risk. Scores of < 1 had a high negative predictive 
value (> 98%) for excluding IC; conversely, scores of ≥ 6 
had a positive predictive value of 88.9%. The optimal overall 
threshold was ≥ 3, generating a sensitivity and specificity 
for the diagnosis of IC of 83% and 68%, respectively [57]. 
Combining BDG testing with Candida albicans germ-tube 
(CAGTA) antibody (IgG) immunofluorescence generated 
excellent sensitivity (97%) and moderate specificity (71%) 
for the diagnosis of IC, when either test was positive [58]. 
The combined BDG/CAGTA sensitivity was superior 
for the detection of IC caused by C. albicans compared 
to disease caused by non-albicans species. Median BDG 
concentrations in species other than C. albicans associated 
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with candidaemia can be lower (C. albicans: 182 pg/ml, 
C. parapsilosis: 78 pg/ml; C. auris: 48 pg/ml), leading 
to a reduction in BDG sensitivity for the diagnosis of 
candidaemia dependent on species (C. albicans: 65% vs C. 
auris: 42%) [59]. The sensitivity of the Wako BDG assay 
for the detection of IC caused by non-albicans species was 
increased by 24% when the positivity threshold was reduced 
to 7 pg/ml [60].

The major restriction to widespread accessibility to the test 
is sufficient sample numbers that subsequently offset the poten-
tially restrictive testing costs. The availability of novel BDG 
platforms that permit the cost-effective testing of low sample 
numbers with minimal “hands-on” time is a possible solution 
(Fuji-Film Wako, Associates of Cape Fungitell STAT, ERA 
Biology Fully automated Chemiluminescence Immunoassay 
System (FACIS)), and the availability of multiple, commercially 
available BDG assays provides competition to control price 
(Table 3). Currently, clinical validation is limited, or indeed lack-
ing, for some platforms and optimal positivity thresholds still 
require defining [61, 62, 63, 64, 65, 66, 67, 68, 69]. In general, 
clinical performance for the non-Fungitell assays is associated 
with lesser sensitivity than the established test, which can be 
partially resolved by utilizing positivity thresholds lower than 
those currently recommended by the manufacturer (Table 3). 
Some studies demonstrated particularly low sensitivities (50%) 

for novel BDG tests when diagnosing PcP, a condition typically 
associated with a high sensitivity (> 90%) [68]. However, this 
could be associated with the underlying condition of the patient, 
and pooled BDG sensitivity for the diagnosis of PcP in the HIV-
negative patient appears to be lower (86%) [47].

Detection of Antibodies

The performance of assays developed to detect antibodies 
raised by the host against fungal disease varies dependent 
on the etiology of the infection, the host’s underlying con-
dition, and the disease manifestation. For chronic pulmo-
nary aspergillosis (CPA), testing for Aspergillus specific 
IgG using commercially available assays is generally highly 
specific (> 90%) while providing acceptable sensitivity 
[72]. A range of different methods (Aspergillus precipitins, 
ELISA, Western blot) are available for the detection of IgG, 
with ImmunoCAP and Immulite assays generally providing 
superior performance [73]. Across all IgG ELISA assays, 
the optimal thresholds for the diagnosis of CPA could vary 
from that defined by the manufacturer and may be influ-
enced by CPA manifestation and the Aspergillus species 
causing infection, given most assays target A. fumigatus 
[73]. The detection of Aspergillus specific IgE and total IgE 

Table 3   Recent studies 
evaluating the performance of 
various assays for the detection 
of (1–3)-β-D-glucan in serum

Assay Population (n/N, (IFD)) Threshold Performance parameter Reference

Se (%) Sp (%) LR + tive LR -tive

Wako 31/60 (IC, IA, PcP) 7 pg/ml 36 95 7.2 0.67 [67]
135/187 (IC, IA, PcP) 93 97 31 0.07 [66]
13/43 (IC) 54 65 1.5 0.71 [65]
73/34 (IC) 58 85 3.9 0.49 [60]
129/46 (IC) 70 91 7.8 0.33
97/60 (IA/IC) 5 pg/ml 79 88 6.6 0.24 [63]
120/200 (IC) 3.8 pg/ml 73 91 8.1 0.19 [62]
63/na (PcP) 95 na na na
41/188 (IA) 2.4 46 90 4.6 0.6 [69]

Fungitell 28/56 (IC, IA, PcP) 80 pg/ml 61 96 15.3 0.41 [67]
135/187 (IC, IA, PcP) 98 97 32.7 0.02 [66]
13/43 (IC) 77 51 1.6 0.45 [65]
13/28 (IA) 95 51 1.9 0.10 [70]
97/60 (IA/IC) 92 98 46 0.09 [63]
120/200 (IC) 87 85 5.8 0.15 [62]
63/na (PcP) 100 na na na

Dynamiker 23/23 (PcP) 95 pg/ml 87 70 2.9 0.19 [71]
43/64 (IC, IA, PcP) 81 78 3.7 0.24 [68]
13/28 (IA) 71 66 2.1 0.44 [70]

STAT​ 13/43 (IC) 1.2 69 53 1.5 0.58 [65]
17/49 (CAPA) 71 94 11.8 0.31 [64]
9/49 (IC) 78 94 13.0 0.23
28/49 (IFD) 68 94 11.3 0.34
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aids in the diagnosis of allergic aspergillois and can be used 
to differentiate allergic bronchopulmonary aspergillosis 
from Aspergillus sensitized asthma (e.g., IgE against Asp 
f1-f4), with IgG levels potentially higher in patients with 
Aspergillus bronchitis (e.g., IgG against Asp f1 and f2) [74]. 
The detection of antibodies in patients with suspected IA 
is generally limited by the underlying, immunosuppressive 
condition of the patient, where the risk of IA is associated 
with the inability to raise a sufficient immune response [75]. 
However, studies are demonstrating raised baseline levels 
of IgG against various antigens (HsP90, Pep2, Crf1, and 
Cdc37) in patients with IA prior to chemotherapy or stem 
cell transplantation [76].

The detection of anti-mannan IgG/IgM antibodies to aid the 
diagnosis of IC can be performed using commercial kits from 
a range of manufacturers (e.g., BioRad, Serion, Dynamiker), 
but both sensitivity (52–93%) and specificity (54–98%) vary 
between studies, assays, clinical manifestation, and causative 
species (optimal detection for C. albicans, C. glabrata, and 
C. tropicalis) [73]. Combined Candida antibody testing (IgG 
and IgM) or combining antibody testing with antigen testing 
(BDG or mannan ELISA) or molecular diagnosis may provide 
improved clinical performance for the diagnosis of IC, but the 
optimal strategy is yet to be determined [77, 78].

None of the assays described reflect novel technological 
developments for the detection of fungal antigens. 
The availability of the previously mentioned CAGTA 
immunofluorescence assay, with IgG antibodies targeting 
the hyphal protein (Hwp1) expressed by C. albicans during 
active hyphal growth, may differentiate active infection 
from colonization, potentially overcoming a known 
limitation of anti-mannan antibody assays, although the 
sensitivity and specificity of the CAGTA of the diagnosis 
of IC varies [79]. A systematic review and meta-analysis 
of CAGTA performance generated pooled sensitivity and 
specificity of 66% and 76%, respectively, highlighting 
the need to combine this test with other mycological 
assays (e.g., BDG or Mannan ELISA) [58, 79, 80]. The 
development of LFA for the detection of Aspergillus 
antibodies (described in the lateral flow section) is a 
significant, recent development in this field, and similar 
LFA assays for the detection of Candida antibodies have 
been developed. In addition to the Candida LFA utilizing 
IgG antibodies to target enolase (also described in the 
lateral flow section), immunochromatographic LFA tests 
targeting mannan have been developed and are undergoing 
clinical assessment on a range of clinical samples. 
Oropharyngeal swabs were tested by ICT to aid in the 
diagnosis of oral candidiasis generating a sensitivity and 
specificity of 90% and 91%, respectively, when compared 
to culture [81]. The development of a dual path platform 
immunoassay for the detection of C. albicans in blood 
demonstrated a 3.9-fold increase in analytical sensitivity 

compared to conventional lateral flow modalities, but the 
reported limit of detection (8 × 105 cells/ml serum) was 
not encouraging from a clinical perspective, and to date, 
clinical validation is not available [82]. The availability 
of FACIS systems with the capacity to automatically 
perform a range of fungal antigen and antibody tests is 
encouraging, but clinical validation is currently limited.

New potential targets for the diagnosis of IC have been 
identified by mass spectrometry-based proteomic analysis 
of the C. albicans hyphal secretome and serum of patients 
with and without IC [83]. Of the 301 secreted hyphal 
proteins identified, seven (Bgl2 (1,3-β-glucosyltransferease), 
Eno1 (Enolase), Pgk1 (phosphoglycerate kinase), Glx3 
(glutathione independent glyoxalase), Sap5 (secreted 
aspartyl proteinase), Pra1 (pH regulated antigen), and Tdh3 
(glyceraldehyde-3-phosphate)) were immunogenic with the 
potential to differentiate patients with IC. The detection of 
IgG antibodies against enolase has already been reported 
(see LFA section), and it will be interesting to see if these 
other potential targets are exploited in the development of 
future assays [41]. Mass spectrometry has also been used 
to identify fungal trehalose in the serum of patients to aid 
the diagnosis of IC, generating positive results in all five 
candidaemic, BDG-positive patients, whereas mannan 
antigen ELISA testing was negative in two patients [84].

In relation to alternative targets for aspergillosis antibody 
detection, an ELISA for the detection of IgG, IgM, and IgA 
against mitogillin (a ribotoxin responsible for cleaving the 
phosphodiester bond in eukaryotic 29S rRNA ribosomes) 
has been described, generating excellent sensitivity (100%) 
and specificity (95%) for the diagnosis of aspergilloma [85]. 
Other studies have identified A. fumigatus recombinant 
proteins that were associated with raised antibody levels 
in patients with aspergilloma and ABPA [86]. While 
chitosanase CsnB has been studied as a potential antigen 
for aspergillosis, clinical levels of anti-CsnB IgG antibodies 
were not useful for the diagnosis of IA [87]. Recent 
proteome analysis of BAL fluid from a murine model and 
clinical cases of IA identified 11 proteins that, while not 
specific for IA, when found in combination may be a useful 
diagnostic indication of IA [88].

Apart from the main fungal pathogens (Aspergillus and 
Candida), the availability of diagnostic antibody tests for 
other fungal pathogens is limited [89]. Despite the extensive 
reporting of infections caused by an array of species within 
the Basidiomycetes division, reports are limited to antibody 
testing for Schizophyllum commune in patients with allergic 
bronchopulmonary mycosis and fungal ball [90]. Other 
antibody tests for potential mould pathogens include IgG 
against a cell wall mannoprotein of Talaromyces marneffei and 
various antibody assays for the diagnosis of Pythium insidiosum 
infections [91, 92]. The characterization of a fungal aspartic 
protease allergen Rhi o 1 from the airborne mold Rhizopus 
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oryzae could be used to underpin a diagnostic antibody test 
for mucormycosis caused by this species [93]. Antibody 
tests for pneumocystosis, cryptococcosis, sporothrichosis, 
scedosporiosis, and saccharomyces cerevisiae infection have 
been described [73, 94].

Concluding Remarks

The development of serological tests targeting fungal 
antigens or strictly targeting antifungal antibodies has greatly 
enhanced our ability to diagnose fungal disease whether 
acute and invasive or chronic/allergic in presentation. 
Despite their availability for over two decades, technical, 
clinical, and performance limitations remain, and tests 
specific for fungal pathogens outside the main pathogens 
are lacking. The availability of LFA to detect both antigen 
and antibody likely represents a significant development in 
accessibility to testing in resource-limited centers but can 
also improve time to result in centers where demand for 
testing undermines the use of high throughput platforms. 
The availability of automated systems, capable of running 
multiple different fungal biomarker and antibody tests, 
represents a significant technical development, but as with 
the LFA assays, we are still determining clinical validity 
and identifying variables that influence performance. The 
positive impact of serological testing on the diagnosis of 
fungal disease is obvious, and 65% of diagnostic-driven 
antifungal stewardship schemes have successfully involved 
BDG or GM testing, reducing unnecessary antifungal 
therapy without negatively impacting patient outcome 
[95••]. Nevertheless, when the performance of serological 
testing is assessed through systematic review and meta-
analysis, it is evident that, CrAg LFA aside, no single test 
can confidently confirm or exclude IFD and serological 
testing, while capable of determining refractory fungal 
disease through persisting positivity, it cannot specifically 
identify antifungal resistance. Combining tests (whether a 
combination of different antigens, antigen with antibody, 
antigen with molecular, or antibody with molecular) appears 
optimal. For some IFD, such as Pneumocystis pneumonia 
or IA, we may have already identified optimal diagnostic 
combinations (namely, BDG and PCP PCR and GM and 
Aspergillus PCR, respectively), but this does not mean we 
should not strive to improve diagnosis further by embracing 
novel technology (e.g., next-generation sequencing); for 
other fungal manifestations, we are still to determine optimal 
diagnostic strategies, and optimal diagnosis of fungal disease 
in resource-limited settings remains difficult.
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