Skip to main content
Log in

Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data or strains generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Ackema, K. B., Hench, J., Böckler, S., Wang, S. C., Sauder, U., Mergentaler, H., Westermann, B., Bard, F., Frank, S., & Spang, A. (2014). The small GTPase Arf1 modulates mitochondrial morphology and function. The EMBO Journal, 33, 2659–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alejandre-Castañeda, V., Patiño-Medina, J. A., Valle-Maldonado, M. I., Nuñez-Anita, R. E., Santoyo, G., Castro-Cerritos, K. V., Ortiz-Alvarado, R., Corrales-Escobosa, A. R., Ramírez-Díaz, M. I., Gutiérrez-Corona, J. F., et al. (2022). Secretion of the siderophore rhizoferrin is regulated by the cAMP-PKA pathway and is involved in the virulence of Mucor lusitanicus. Scientific Reports, 12, 10649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrianopoulos, A., & Timberlake, W. E. (1994). The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and Cellular Biology, 14, 2503–2515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud, M. B., Cerqueira, G. C., Inglis, D. O., Skrzypek, M. S., Binkley, J., Chibucos, M. C., Crabtree, J., Howarth, C., Orvis, J., Shah, P., et al. (2012). The Aspergillus Genome Database (AspGD): Recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Research, 40, D653–D659.

    Article  CAS  PubMed  Google Scholar 

  • Bao, M. Z., Schwartz, M. A., Cantin, G. T., Yates, J. R., 3rd., & Madhani, H. D. (2004). Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell, 119, 991–1000.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, S., Huang, L., & Liu, H. (2004). Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell, 119, 981–990.

    Article  CAS  PubMed  Google Scholar 

  • Chou, S., Lane, S., & Liu, H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 26, 4794–4805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrochano, L. M., Kuo, A., Marcet-Houben, M., Polaino, S., Salamov, A., Villalobos-Escobedo, J. M., Grimwood, J., Álvarez, M. I., Avalos, J., Bauer, D., Benito, et al. (2016). Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biology, 26, 1577–1584.

    Article  CAS  PubMed  Google Scholar 

  • Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Pérez, S. P., Patiño-Medina, J. A., Valle-Maldonado, M. I., López-Torres, A., Jácome-Galarza, I. E., Anaya-Martínez, V., Gómez-Ruiz, V., Campos-García, J., Nuñez-Anita, R. E., Ortiz-Alvarado, R., et al. (2020). Alteration of fermentative metabolism enhances Mucor circinelloides virulence. Infection and Immunity, 88, e00434-e519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallon, J., Kelly, J., & Kavanagh, K. (2012). Galleria mellonella as a model for fungal pathogenicity testing. In A. Brand & D. MacCallum (Eds.), Host–fungus interactions methods in molecular biology. (Vol. 845). Humana.

    Google Scholar 

  • Fernández Núñez, L., Ocampo, J., Gottlieb, A. M., Rossi, S., & Moreno, S. (2016). Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides. Fungal Biology, 120, 1493–1508.

    Article  PubMed  Google Scholar 

  • Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Baştürkmen, M., Spevak, C. C., Clutterbuck, J., et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  • Gavrias, V., Andrianopoulos, A., Gimeno, C. J., & Timberlake, W. E. (1996). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Molecular Microbiology, 19, 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, A., Sarkar, A., Paul, P., & Patel, P. (2021). The rise in cases of mucormycosis, candidiasis and aspergillosis amidst COVID19. Fungal Biology Reviews, 38, 67–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grahl, N., Shepardson, K. M., Chung, D., & Cramer, R. A. (2012). Hypoxia and fungal pathogenesis: To air or not to air? Eukaryotic Cell, 11, 560–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenigl, M., Seidel, D., Carvalho, A., Rudramurthy, S. M., Arastehfar, A., Gangneux, J. P., Nasir, N., Bonifaz, A., Araiza, J., Klimko, N., et al. (2022a). The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe, 3, e543–e552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G. H., Ibrahim, A. S., & Carvalho, A. (2022b). COVID-19-associated fungal infections. Nature Microbiology, 7, 1127–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, M. K., Ahmed, S., Khan, A., Siddiqui, A. J., Khatoon, S., & Jahan, S. (2023). Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. European Journal of Medicinal Chemistry, 246, 115010.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. J., Chambon, P., & Davidson, I. (1993). Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1. The EMBO Journal, 12, 2337–2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lax, C., Cánovas-Márquez, J. T., Tahiri, G., Navarro, E., Garre, V., & Nicolás, F. E. (2022). Genetic manipulation in Mucorales and new developments to study mucormycosis. International Journal of Molecular Sciences, 23, 3454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lax, C., Pérez-Arques, C., Navarro-Mendoza, M. I., Cánovas-Márquez, J. T., Tahiri, G., Pérez-Ruiz, J. A., Osorio-Concepción, M., Murcia-Flores, L., Navarro, E., Garre, V., et al. (2020). Genes, pathways, and mechanisms involved in the virulence of Mucorales. Genes, 11, 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. C., Billmyre, R. B., Li, A., Carson, S., Sykes, S. M., Huh, E. Y., Mieczkowski, P., Ko, D. C., Cuomo, C. A., & Heitman, J. (2014). Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. Mbio, 5, e01390-e1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. C., Li, A., Calo, S., & Heitman, J. (2013). Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathogens, 9, e1003625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Ramírez, C. G., Sánchez-Arreguin, J. A., Cabrera-Ponce, J. L., Martínez-Soto, D., Ortiz-Castellanos, M. L., Aréchiga-Carvajal, E. T., Salazar-Chávez, M. F., Sánchez-Segura, L., & Ruiz-Herrera, J. (2022). Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis. International Microbiology, 25, 17–26.

    Article  PubMed  Google Scholar 

  • Ma, L. J., Ibrahim, A. S., Skory, C., Grabherr, M. G., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B. F., Sone, T., et al. (2009). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics, 5, e1000549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurer, E., Hörtnagl, C., Lackner, M., Grässle, D., Naschberger, V., Moser, P., Segal, E., Semis, M., Lass-Flörl, C., & Binder, U. (2019). Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Medical Mycology, 57, 351–362.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, M., Breum, J., Arnau, J., & Nielsen, J. (2002). Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Applied Microbiology and Biotechnology, 58, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Morin-Sardin, S., Nodet, P., Coton, E., & Jany, J. L. (2017). Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biology Reviews, 31, 12–32.

    Article  Google Scholar 

  • Muthu, V., Agarwal, R., Rudramurthy, S. M., Thangaraju, D., Shevkani, M. R., Patel, A. K., Shastri, P. S., Tayade, A., Bhandari, S., Gella, V., et al. (2023). Multicenter case-control study of COVID-19-associated Mucormycosis outbreak, India. Emerging Infectious Diseases, 29, 8–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Mendoza, M. I., Pérez-Arques, C., Murcia, L., Martínez-García, P., Lax, C., Sanchis, M., Capilla, J., Nicolás, F. E., & Garre, V. (2018). Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 8, 7660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Mendoza, M. I., Pérez-Arques, C., Panchal, S., Nicolás, F. E., Mondo, S. J., Ganguly, P., Pangilinan, J., Grigoriev, I. V., Heitman, J., Sanyal, K., Garre., et al. (2019). Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Current Biology, 29, 3791–3802.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski, M. (1991). Mucor dimorphism. Microbiological Reviews, 55, 234–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panariello, B. H. D., Klein, M. I., Pavarina, A. C., & Duarte, S. (2017). Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. Journal of Oral Microbiology, 9, 1385372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patiño-Medina, J. A., Maldonado-Herrera, G., Pérez-Arques, C., Alejandre-Castañeda, V., Reyes-Mares, N. Y., Valle-Maldonado, M. I., Campos-García, J., Ortiz-Alvarado, R., Jácome-Galarza, I. E., Ramírez-Díaz, M. I., et al. (2018). Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Current Genetics, 64, 853–869.

    Article  PubMed  Google Scholar 

  • Patiño-Medina, J. A., Valle-Maldonado, M. I., Maldonado-Herrera, G., Pérez-Arques, C., Jácome-Galarza, I. E., Díaz-Pérez, C., Díaz-Pérez, A. L., Araiza-Cervantes, C. A., Villagomez-Castro, J. C., Campos-García, J., et al. (2019). Role of Arf-like proteins (Arl1 and Arl2) of Mucor circinelloides in virulence and antifungal susceptibility. Fungal Genetics and Biology, 129, 40–51.

    Article  PubMed  Google Scholar 

  • Patiño-Medina, J. A., Valle-Maldonado, M. I., Vargas-Tejeda, D., Chávez-Jacobo, V. M., Corrales-Escobosa, A. R., Ramírez-Emiliano, J., Ruiz-Herrera, L. F., Ramírez-Díaz, M. I., Garre, V., & Meza-Carmen, V. (2020). Arf-like proteins (Arl1 and Arl2) are involved in mitochondrial homeostasis in Mucor circinelloides. Fungal Biology, 124, 619–628.

    Article  PubMed  Google Scholar 

  • Pearlman, S. M., Serber, Z., & Ferrell, J. E., Jr. (2011). A mechanism for the evolution of phosphorylation sites. Cell, 147, 934–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Arques, C., Navarro-Mendoza, M. I., Murcia, L., Lax, C., Martínez-García, P., Heitman, J., Nicolás, F. E., & Garre, V. (2019). Mucor circinelloides thrives inside the phagosome through an Atf-mediated germination pathway. Mbio, 10, e02765-e2818.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash, H., & Chakrabarti, A. (2019). Global epidemiology of mucormycosis. Journal of Fungi, 5, 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puerner, C., Vellanki, S., Strauch, J. L., & Cramer, R. A. (2023). Recent advances in understanding the human fungal pathogen hypoxia response in disease progression. Annual Review of Microbiology, 77, 403–425.

    Article  CAS  PubMed  Google Scholar 

  • Purohit, D., & Gajjar, D. (2022). Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata. International Microbiology, 25, 789–802.

    Article  CAS  PubMed  Google Scholar 

  • Qian, W., Wang, J., Roginskaya, V., McDermott, L. A., Edwards, R. P., Stolz, D. B., Llambi, F., Green, D. R., & Van Houten, B. (2014). Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget, 5, 4180–4194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangel-Porras, R. A., Díaz-Pérez, S. P., Mendoza-Hernández, J. M., Romo-Rodríguez, P., Alejandre-Castañeda, V., Valle-Maldonado, M. I., Torres-Guzmán, J. C., González-Hernández, G. A., Campos-Garcia, J., Arnau, J., et al. (2019). Alcohol dehydrogenase 1 participates in the Crabtree effect and connects fermentative and oxidative metabolism in the zygomycete Mucor circinelloides. Journal of Microbiology, 57, 606–617.

    Article  CAS  PubMed  Google Scholar 

  • Renvall, S., & Niinikoski, J. (1980). Kinetics of oxygen in peritoneal cavity. Effects of chemical peritonitis and intraperitoneally administered colloids in rats. Journal of Surgical Research, 28, 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Rupp, S., Summers, E., Lo, H. J., Madhani, H., & Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. The EMBO Journal, 18, 1257–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salcedo-Hernández, R., & Ruiz-Herrera, J. (1993). Isolation and characterization of a mycelial cytochrome aa3-deficient mutant and the role of mitochondria in dimorphism of Mucor rouxii. Experimental Mycology, 17, 142–154.

    Article  Google Scholar 

  • Schwartze, V. U., Winter, S., Shelest, E., Marcet-Houben, M., Horn, F., Wehner, S., Linde, J., Valiante, V., Sammeth, M., Riege, K., et al. (2014). Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina). PLOS Genetics, 10, e1004496.

    Article  Google Scholar 

  • Schweizer, A., Rupp, S., Taylor, B. N., Röllinghoff, M., & Schröppel, K. (2000). The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular Microbiology, 38, 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C., & Lee, S. C. (2022). Current treatments against mucormycosis and future directions. PLoS Pathogens, 18, e1010858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stichternoth, C., & Ernst, J. F. (2009). Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Applied and Environmental Microbiology, 75, 3663–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle-Maldonado, M. I., Jácome-Galarza, I. E., Díaz-Pérez, A. L., Martínez-Cadena, G., Campos-García, J., Ramírez-Díaz, M. I., Reyes-De la Cruz, H., Riveros-Rosas, H., Díaz-Pérez, C., & Meza-Carmen, V. (2015). Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biology, 119, 1179–1193.

    Article  CAS  PubMed  Google Scholar 

  • Valle-Maldonado, M. I., Patiño-Medina, J. A., Pérez-Arques, C., Reyes-Mares, N. Y., Jácome-Galarza, I. E., Ortíz-Alvarado, R., Vellanki, S., Ramírez-Díaz, M. I., Lee, S. C., Garre, V., et al. (2020). The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cellular Microbiology, 22, e13236.

    Article  CAS  PubMed  Google Scholar 

  • Vellanki, S., Billmyre, R. B., Lorenzen, A., Campbell, M., Turner, B., Huh, E. Y., Heitman, J., & Lee, S. C. (2020). A novel resistance pathway for calcineurin inhibitors in the human-pathogenic mucorales Mucor circinelloides. Mbio, 11, e02949-e3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lin, Y., Kemper, T., Chen, J., Yuan, Z., Liu, S., Zhu, Y., Broering, R., & Lu, M. (2020). AMPK and Akt/mTOR signalling pathways participate in glucose-mediated regulation of hepatitis B virus replication and cellular autophagy. Cellular Microbiology, 22, e13131.

    Article  CAS  PubMed  Google Scholar 

  • WHO, World Health Organization. (2022). WHO fungal priority pathogens list to guide research, development, and public health action. World Health Organization.

    Google Scholar 

  • Wolff, A. M., & Arnau, J. (2002). Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (Syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fungal Genetics and Biology, 35, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X. F., Li, M., Li, Y. Q., Chen, X. D., & Gao, X. D. (2013). The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Research, 13, 50–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank to the Coordinación de la Investigación Científica de la Universidad Michoacana de San Nicolás de Hidalgo for their funding of this work (Grant number 2.36). V. A-C. and J.A. P-M. were postgraduate students supported by CONAHCyT scholarships. We would like to express our gratitude to the Laboratorio Estatal de Salud Pública del Estado de Michoacán, Secretaría de Salud de Michoacán for providing technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VM-C. Supervision: VM-C. Methodology: VA-C, JAP-M, MIV-M, AG, RO-A, KVC-C, JR-E, MIR-D, SCL and VG. Writing—original draft preparation: VM-C. Writing—review and editing: VA-C, JAP-M, MIV-M, KVC-C, JR-E, MIR-D, SCL, VG, and VM-C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Víctor Meza-Carmen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alejandre-Castañeda, V., Patiño-Medina, J.A., Valle-Maldonado, M.I. et al. Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism. J Microbiol. 61, 1043–1062 (2023). https://doi.org/10.1007/s12275-023-00096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00096-8

Keywords

Navigation