Skip to main content

Advertisement

Log in

Antiviral Activity Against SARS-CoV-2 Variants Using in Silico and in Vitro Approaches

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from protein–protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus, and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates, fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential therapy for COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding authors (kimera@konkuk.ac.kr and mj0411@konkuk.ac.kr) on reasonable request.

References

  • Batchuluun, B., Pinkosky, S. L., & Steinberg, G. R. (2022). Lipogenesis inhibitors: Therapeutic opportunities and challenges. Nature Reviews Drug Discovery, 21, 283–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschard, K. (2020). Fenofibrate increases the amount of sulfatide which seems beneficial against Covid-19. Medical Hypotheses, 143, 110127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy, G., & Lee, S. S. (2021). The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Frontiers in Pharmacology, 12, 704205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, R., Bhattacharje, G., Baral, J., Manna, B., Mullick, J., Mathapati, B. S., Abraham, P. J. M., Hasija, Y., & Ghosh, A. (2022). In-silico screening and in-vitro assay show the antiviral effect of Indomethacin against SARS-CoV-2. Computers in Biology and Medicine, 147, 105788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, J. F., Lau, S. K., To, K. K., Cheng, V. C., Woo, P. C., & Yuen, K. Y. (2015). Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clinical Microbiology Reviews, 28, 465–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, J. F., Kok, K. H., Zhu, Z., Chu, H., To, K. K., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9, 221–236.

    Article  CAS  Google Scholar 

  • Chan, W. K. B., Olson, K. M., Wotring, J. W., Sexton, J. Z., Carlson, H. A., & Traynor, J. R. (2022). In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Scientific Reports, 12, 5320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews, 20, 660–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirinos, J. A., Lopez-Jaramillo, P., Giamarellos-Bourboulis, E. J., Dávila-del-Carpio, G. H., Bizri, A. R., Andrade-Villanueva, J. F., Salman, O., Cure-Cure, C., Rosado-Santander, N. R., Giraldo, C., M. P., et al. (2022). A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nature Metabolism, 4, 1847–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, S., Malik, Y. S., & Tomar, S. (2020). Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Frontiers in Immunology, 11, 1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crakes, K. R., Pires, J., Quach, N., Ellis-Reis, R. E., Greathouse, R., Chittum, K. A., Steiner, J. M., Pesavento, P., Marks, S. L., Dandekar, S., et al. (2021). Fenofibrate promotes PPARα-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Scientific Reports, 11, 13454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, J., Wang, H., Liao, Y., Tan, L., Sun, Y., Song, C., Liu, W., Qiu, X., & Ding, C. (2022). Coronavirus infection and cholesterol metabolism. Frontiers in Immunology, 13, 791267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, S. P., Mycroft-West, C. J., Pagani, I., Hill, H. J., Chen, Y. H., Karlsson, R., Bagdonaite, I., Guimond, S. E., Stamataki, Z., De Lima, M. A., et al. (2021). The hyperlipidaemic drug fenofibrate significantly reduces infection by SARS-CoV-2 in cell culture models. Frontiers in Pharmacology, 12, 660490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastman, R. T., Roth, J. S., Brimacombe, K. R., Simeonov, A., Shen, M., Patnaik, S., & Hall, M. D. (2020). Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Central Science, 6, 672–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich, A., Ioannidis, K., Nasar, M., Abu Alkian, I., Daskal, Y., Atari, N., Kliker, L., Rainy, N., Hofree, M., Tikva, S., et al. (2023). Efficacy and safety of metabolic interventions for the treatment of severe COVID-19: In vitro, observational, and non-randomized open-label interventional study. eLife, 12, e79946.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein, S. E., Zhou, Y. F., & Zhu, J. (1999). Infection and atherosclerosis: Emerging mechanistic paradigms. Circulation, 100, e20–e28.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, I., Scotto, R., Schiano Moriello, N., Pinchera, B., Villari, R., Trucillo, E., Federico Ii Covid Team. (2022). Nirmatrelvir/ritonavir and molnupiravir in the treatment of mild/moderate COVID-19: results of a real-life study. Vaccines, 10, 1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glitscher, M., & Hildt, E. (2021). Endosomal cholesterol in viral infections—a common denominator? Frontiers in Physiology, 12, 750544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295, 6785–6797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, N., Hwang, W., Tzelepis, K., Schmerer, P., Yankova, E., MacMahon, M., Lei, W. M., Katritsis, N., Liu, A., Felgenhauer, U., et al. (2021). Identification of SARS-CoV-2-induced pathways reveals drug repurposing strategies. Science Advances, 7, eabh3032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam, T., Hasan, M., Rahman, M. S., & Islam, M. R. (2022). Comparative evaluation of authorized drugs for treating Covid-19 patients. Health Science Reports, 5, e671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences of the USA, 118, e2024302118.

  • Maffucci, I., & Contini, A. (2020). In silico drug repurposing for SARS-CoV-2 main proteinase and spike proteins. Journal of Proteome Research, 19, 4637–4648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magro, P., Zanella, I., Pescarolo, M., Castelli, F., & Quiros-Roldan, E. (2021). Lopinavir/ritonavir: Repurposing an old drug for HIV infection in COVID-19 treatment. Biomed Journal, 44, 43–53.

    Article  CAS  Google Scholar 

  • Malin, J. J., Suárez, I., Priesner, V., Fatkenheuer, G., & Rybniker, J. (2020). Remdesivir against COVID-19 and other viral Diseases. Clinical Microbiology Reviews, 34, e00162–20.

  • Mirmohammadi, S., Kianmehr, A., Sabbaghian, A., Mohebbi, A., Shahbazmohammadi, H., Sheykharabi, M., & Bazzi, Z. (2022). In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19. Infection, Genetics and Evolution, 103, 105318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo, J., Shukla, A. M., Chamarthi, G., & Gupte, A. (2020). The journey of remdesivir: From Ebola to COVID-19. Drugs in Context, 9, 2020–2024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad, G. S., Govardhan, P., Deepika, G., Vakdevi, V., & Sashidhar, R. B. (2018). Anti-inflammatory activity of anti-hyperlipidemic drug, fenofibrate, and its phase-I metabolite fenofibric acid: in silico, in vitro, and in vivo studies. Inflammopharmacology, 26, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, L., Bento Cunha, R., Vassilevskaia, T., Viveiros, M., & Cunha, C. (2022). Drug repurposing for COVID-19: A review and a novel strategy to identify new targets and potential drug candidates. Molecules, 27, 2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal, N., Cao, Z., Gundrum, J., Sianis, J., & Safo, S. (2020). Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. JAMA Network Open, 3, e2029058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal, N., Kumawat, K. L., Basu, A., & Ravindranath, V. (2012). Fenofibrate reduces mortality and precludes neurological deficits in survivors in murine model of japanese encephalitis viral infection. PLoS ONE, 7, e35427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu, G., & Tripp, J. (2022). Fenofibrate. Treasure Island (FL). StatPearls Publishing.

  • Stolarz, A. J., Farris, R. A., Wiley, C. A., O’Brien, C. E., & Price, E. T. (2015). Fenofibrate attenuates neutrophilic inflammation in airway epithelia: Potential drug repurposing for cystic fibrosis. Clinical Translational Science, 8, 696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, L., Dryden, P., Lowe, A., Wang, G., Achuthkumar, A., Chang, T., & Reese, T. A. (2023). WY14643 increases herpesvirus replication and inhibits IFNβ production independently of PPARα expression. Microbiology Spectrum, 11, e0233722.

    Article  PubMed  Google Scholar 

  • Theken, K. N., Tang, S. Y., Sengupta, S., & FitzGerald, G. A. (2021). The roles of lipids in SARS-CoV-2 viral replication and the host immune response. Journal of Lipid Research, 62, 100129. https://doi.org/10.1016/j.jlr.2021.100129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30, 269–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Cao, Y., Zhang, H., Wang, Z., Man, C. H., Yang, Y., Chen, L., Xu, S., Yan, X., Zheng, Q., et al. (2022). COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm, 3, e157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, W., Chen, C., Tang, J., Wang, C., Zhou, M., Cheng, Y., Zhou, X., Wu, Q., Zhang, X., Feng, Z., et al. (2022). Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and paxlovid) for COVID-19: A meta-analysis. Annals of Medicine, 54, 516–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. Journal Of The American Medical Association, 324, 782–793.

    Article  CAS  PubMed  Google Scholar 

  • Wong, C. K. H., Au, I. C. H., Lau, K. T. K., Lau, E. H. Y., Cowling, B. J., & Leung, G. M. (2022). Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet, 400, 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, W., Luo, X., & Ren, M. (2021). Clearance or hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Frontiers in Cellular and Infection Microbiology, 11, 786348.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, P. T., Wang, L. C., Chang, S. W., Yang, W. S., Yang, C. M., & Yang, C. H. (2019). Effect of fenofibrate on the expression of inflammatory mediators in a diabetic rat model. Current Eye Research, 44, 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Pan, Y., Xu, Y., Zhang, W., Ma, W., Ibrahim, Y. M., Werid, G. M., Zhang, H., Xia, C., Wei, P., et al. (2022). Paraoxonase-1 facilitates PRRSV replication by interacting with viral nonstructural protein-9 and inhibiting type I interferon pathway. Viruses, 14, 1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (21182MFDS280, 22183MFDS443, and 22212MFDS254) from the Ministry of Food and Drug Safety.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minjee Kim or Young Bong Kim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Choi, H., Nowakowska, A. et al. Antiviral Activity Against SARS-CoV-2 Variants Using in Silico and in Vitro Approaches. J Microbiol. 61, 703–711 (2023). https://doi.org/10.1007/s12275-023-00062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00062-4

Keywords

Navigation