Skip to main content
Log in

Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The statistics for NlpE NTD (PF04170) architecture from the website for the Pfam database and supplementary figures are available upon request.

References

  • Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399, 629–655.

    Article  Google Scholar 

  • Asmar, A. T., & Collet, J. F. (2018). Lpp, the braun lipoprotein, turns 50-major achievements and remaining issues. FEMS Microbiology Letters, 365, fny199.

    Article  CAS  Google Scholar 

  • Asmar, A. T., Ferreira, J. L., Cohen, E. J., Cho, S. H., Beeby, M., Hughes, K. T., & Collet, J. F. (2017). Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biology, 15, e2004303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bader, M., Muse, W., Ballou, D. P., Gassner, C., & Bardwell, J. C. (1999). Oxidative protein folding is driven by the electron transport system. Cell, 98, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Barchinger, S. E., & Ades, S. E. (2013). Regulated proteolysis: Control of the Escherichia coli σE-dependent cell envelope stress response. In D. Dougan (Ed.), Regulated proteolysis in microorganisms. Subcellular biochemistry (Vol. 66, pp. 129–160). Springer.

    Chapter  Google Scholar 

  • Bei, W., Luo, Q., Shi, H., Zhou, H., Zhou, M., Zhang, X., & Huang, Y. (2022). Cryo-EM structures of LolCDE reveal the molecular mechanism of bacterial lipoprotein sorting in Escherichia coli. PLoS Biology, 20, e3001823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernal-Cabas, M., Ayala, J. A., & Raivio, T. L. (2015). The Cpx envelope stress response modifies peptidoglycan cross-linking via the L, D-transpeptidase LdtD and the novel protein YgaU. Journal of Bacteriology, 197, 603–614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363, fnw002.

    Article  PubMed  Google Scholar 

  • Boulanger, A., Francez-Charlot, A., Conter, A., Castanie-Cornet, M. P., Cam, K., & Gutierrez, C. (2005). Multistress regulation in Escherichia coli: Expression of osmB involves two independent promoters responding either to σS or to the RcsCDB His-Asp phosphorelay. Journal of Bacteriology, 187, 3282–3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, V., & Rehn, K. (1969). Chemical characterization, spatial distribution and function of a lipoprotein (Murein-lipoprotein) of the E. coli cell wall. European Journal of Biochemistry, 10, 426–438.

    Article  CAS  PubMed  Google Scholar 

  • Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25, 1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buelow, D. R., & Raivio, T. L. (2005). Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. Journal of Bacteriology, 187, 6622–6630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano, D. A., Domínguez-Bernal, G., Tierrez, A., Garcia-Del Portillo, F., & Casadesus, J. (2002). Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics, 162, 1513–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, Y., & Vogel, J. (2016). A 3’ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Molecular Cell, 61, 352–363.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S. H., Szewczyk, J., Pesavento, C., Zietek, M., Banzhaf, M., Roszczenko, P., Asmar, A., Laloux, G., Hov, A. K., Leverrier, P., et al. (2014). Detecting envelope stress by monitoring β-barrel assembly. Cell, 159, 1652–1664.

    Article  CAS  PubMed  Google Scholar 

  • Cho, T. H. S., Wang, J., & Raivio, T. L. (2022). NlpE is an OmpA-associated outer membrane sensor of the Cpx envelope stress response. bioRxiv. https://doi.org/10.1101/2022.10.18.512811

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, E. J., Ferreira, J. L., Ladinsky, M. S., Beeby, M., & Hughes, K. T. (2017). Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science, 356, 197–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese, P. N., Pratt, L. A., & Kolter, R. (2000). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of Bacteriology, 182, 3593–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese, P. N., & Silhavy, T. J. (1997). The σE and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes and Development, 11, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  • Danese, P. N., & Silhavy, T. J. (1998). CpxP, a stress-combative member of the Cpx regulon. Journal of Bacteriology, 180, 831–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J., & Silhavy, T. J. (1995). The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes and Development, 9, 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Davalos-Garcia, M., Conter, A., Toesca, I., Gutierrez, C., & Cam, K. (2001). Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. Journal of Bacteriology, 183, 5870–5876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wulf, P., Kwon, O., & Lin, E. C. (1999). The cpxra signal transduction system of Escherichia coli: Growth-related autoactivation and control of unanticipated target operons. Journal of Bacteriology, 181, 6772–6778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekoninck, K., Létoquart, J., Laguri, C., Demange, P., Bevernaegie, R., Simorre, J. P., Dehu, O., Iorga, B. I., Elias, B., Cho, S. H., & Collet, J. F. (2020). Defining the function of OmpA in the Rcs stress response. eLife, 9, e60861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaye, A., Collet, J. F., & Laloux, G. (2016). Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio, 7, e00047-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delhaye, A., Laloux, G., & Collet, J. F. (2019). The lipoprotein NlpE is a cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope. Journal of Bacteriology, 201, e00611-e618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiGiuseppe, P. A., & Silhavy, T. J. (2003). Signal detection and target gene induction by the CpxRA two-component system. Journal of Bacteriology, 185, 2432–2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglass, M. V., McLean, A. B., & Trent, M. S. (2022). Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genetics, 18, e1010096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Rayes, J., Szewczyk, J., Deghelt, M., Csoma, N., Matagne, A., Iorga, B. I., Cho, S. H., & Collet, J. F. (2021). Disorder is a critical component of lipoprotein sorting in Gram-negative bacteria. Nature Chemical Biology, 17, 1093–1100.

    Article  PubMed  Google Scholar 

  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., et al. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47, D427–D432.

    Article  CAS  PubMed  Google Scholar 

  • Evans, K. L., Kannan, S., Li, G., de Pedro, M. A., & Young, K. D. (2013). Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay and Cpx stress responses in Escherichia coli. Journal of Bacteriology, 195, 4415–4424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris, C., Sanowar, S., Bader, M. W., Pfuetzner, R., & Miller, S. I. (2010). Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. Journal of Bacteriology, 192, 4894–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischer, R., Heermann, R., Jung, K., & Hunke, S. (2007). Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. The Journal of Biological Chemistry, 282, 8583–8593.

    Article  CAS  PubMed  Google Scholar 

  • Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanié-Cornet, M. P., Gutierrez, C., & Cam, K. (2003). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Molecular Microbiology, 49, 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman, S., Trisler, P., & Torres-Cabassa, A. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli k-12: Characterization of three regulatory genes. Journal of Bacteriology, 162, 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowicz, M., Koren, D., & Silhavy, T. J. (2016). The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. mBio, 7, e00312-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabowicz, M., & Silhavy, T. J. (2017). Envelope stress responses: An interconnected safety net. Trends in Biochemical Sciences, 42, 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, J., Shi, H., Wang, W., Mitchell, A. M., Wingreen, N. S., Huang, K. C., & Silhavy, T. J. (2020). The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 117, 26907–26914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, S. D., Lee, B. T., Camakaris, J., & Wu, H. C. (1995). Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. Journal of Bacteriology, 177, 4207–4215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, E. M., Gupta, M., Wühr, M., & Silhavy, T. J. (2019a). The synthetic phenotype of ΔbamB ΔbamE double mutants results from a lethal jamming of the Bam complex by the lipoprotein RcsF. mBio, 10, e00662-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart, E. M., Mitchell, A. M., Konovalova, A., Grabowicz, M., Sheng, J., Han, X., Rodriguez-Rivera, F. P., Schwaid, A. G., Malinverni, J. C., Balibar, C. J., et al. (2019b). A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proceedings of the National Academy of Sciences of the United States of America, 116, 21748–21757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano, Y., Hossain, M. M., Takeda, K., Tokuda, H., & Miki, K. (2007). Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure, 15, 963–976.

    Article  CAS  PubMed  Google Scholar 

  • Höltje, J. V. (1998). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews, 62, 181–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Housden, N. G., Hopper, J. T., Lukoyanova, N., Rodriguez-Larrea, D., Wojdyla, J. A., Klein, A., Kaminska, R., Bayley, H., Saibil, H. R., Robinson, C. V., & Kleanthous, C. (2013). Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science, 340, 1570–1574.

    Article  CAS  PubMed  Google Scholar 

  • Hung, D. L., Raivio, T. L., Jones, C. H., Silhavy, T. J., & Hultgren, S. J. (2001). Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. The EMBO Journal, 20, 1508–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein, N. A., Cho, S. H., Laloux, G., Siam, R., & Collet, J. F. (2018). Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the rcs phosphorelay across subcellular compartments. PLoS Genetics, 14, e1007398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai, Y., Meyer, K. J., Iinishi, A., Favre-Godal, Q., Green, R., Manuse, S., Caboni, M., Mori, M., Niles, S., Ghiglieri, M., et al. (2019). A new antibiotic selectively kills Gram-negative pathogens. Nature, 576, 459–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaac, D. D., Pinkner, J. S., Hultgren, S. J., & Silhavy, T. J. (2005). The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proceedings of the National Academy of Sciences of the United States of America, 102, 17775–17779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itou, A., Matsumoto, K., & Hara, H. (2012). Activation of the Cpx phosphorelay signal transduction system in acidic phospholipid-deficient pgsA mutant cells of Escherichia coli. Biochemical and Biophysical Research Communications, 421, 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Jaswal, K., Shrivastava, M., & Chaba, R. (2021). Revisiting long-chain fatty acid metabolism in Escherichia coli: Integration with stress responses. Current Genetics, 67, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Jubelin, G., Vianney, A., Beloin, C., Ghigo, J. M., Lazzaroni, J. C., Lejeune, P., & Dorel, C. (2005). CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. Journal of Bacteriology, 187, 2038–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, H., Jakob, R. P., Marzinek, J. K., Green, R., Imai, Y., Bolla, J. R., Agustoni, E., Robinson, C. V., Bond, P. J., Lewis, K., et al. (2021). The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 593, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Konovalova, A., Kahne, D. E., & Silhavy, T. J. (2017). Outer membrane biogenesis. Annual Review of Microbiology, 71, 539–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konovalova, A., Mitchell, A. M., & Silhavy, T. J. (2016). A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife, 5, e15276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konovalova, A., Perlman, D. H., Cowles, C. E., & Silhavy, T. J. (2014). Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins. Proceedings of the National Academy of Sciences of the United States of America, 111, E4350–E4358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lach, S. R., Kumar, S., Kim, S., Im, W., & Konovalova, A. (2023). Conformational rearrangements in the sensory RcsF/OMP complex mediate signal transduction across the bacterial cell envelope. PLoS Genetics, 19, e1010601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laubacher, M. E., & Ades, S. E. (2008). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. Journal of Bacteriology, 190, 2065–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leverrier, P., Declercq, J. P., Denoncin, K., Vertommen, D., Hiniker, A., Cho, S. H., & Collet, J. F. (2011). Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. Journal of Biological Chemistry, 286, 16734–16742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G. W., Burkhardt, D., Gross, C., & Weissman, J. S. (2014). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell, 157, 624–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, S., Guo, M. S., Chaba, R., Gross, C. A., & Sauer, R. T. (2013). Dual molecular signals mediate the bacterial response to outer-membrane stress. Science, 340, 837–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luther, A., Urfer, M., Zahn, M., Muller, M., Wang, S. Y., Mondal, M., Vitale, A., Hartmann, J. B., Sharpe, T., Monte, F. L., et al. (2019). Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature, 576, 452–458.

    Article  CAS  PubMed  Google Scholar 

  • Majdalani, N., & Gottesman, S. (2005). The Rcs phosphorelay: A complex signal transduction system. Annual Review of Microbiology, 59, 379–405.

    Article  CAS  PubMed  Google Scholar 

  • Majdalani, N., Hernandez, D., & Gottesman, S. (2002). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Molecular Microbiology, 46, 813–826.

    Article  CAS  PubMed  Google Scholar 

  • Mamou, G., Corona, F., Cohen-Khait, R., Housden, N. G., Yeung, V., Sun, D., Sridhar, P., Pazos, M., Knowles, T. J., Kleanthous, C., et al. (2022). Peptidoglycan maturation controls outer membrane protein assembly. Nature, 606, 953–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May, K. L., Lehman, K. M., Mitchell, A. M., & Grabowicz, M. (2019). A stress response monitoring lipoprotein trafficking to the outer membrane. mBio, 10, e00618-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, J., Young, G., & Chen, J. (2021). The Rcs system in Enterobacteriaceae: Envelope stress responses and virulence regulation. Frontiers in Microbiology, 12, 627104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, A. M., & Silhavy, T. J. (2019). Envelope stress responses: Balancing damage repair and toxicity. Nature Reviews Microbiology, 17, 417–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita, S. I., & Tokuda, H. (2017). Bacterial lipoproteins; biogenesis, sorting and quality control. BBA Molecular and Cell Biology of Lipids, 1862, 1414–1423.

    Article  CAS  PubMed  Google Scholar 

  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67, 593–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noinaj, N., Gumbart, J. C., & Buchanan, S. K. (2017). The beta-barrel assembly machinery in motion. Nature Reviews Microbiology, 15, 197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda, S., & Tokuda, H. (2011). Lipoprotein sorting in bacteria. Annual Review of Microbiology, 65, 239–259.

    Article  CAS  PubMed  Google Scholar 

  • O'Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance.

  • Otto, K., & Silhavy, T. J. (2002). Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 99, 2287–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, C. T., Kloser, A. W., Schnaitman, C. A., Stein, M. A., Gottesman, S., & Gibson, B. W. (1992). Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. Journal of Bacteriology, 174, 2525–2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogliano, J., Lynch, A. S., Belin, D., Lin, E. C., & Beckwith, J. (1997). Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes and Development, 11, 1169–1182.

    Article  CAS  PubMed  Google Scholar 

  • Raivio, T. L. (2014). Everything old is new again: An update on current research on the Cpx envelope stress response. BBA Molecular Cell Research, 1843, 1529–1541.

    CAS  PubMed  Google Scholar 

  • Raivio, T. L., Popkin, D. L., & Silhavy, T. J. (1999). The Cpx envelope stress response is controlled by amplification and feedback inhibition. Journal of Bacteriology, 181, 5263–5272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusch, R. N. (2012). Insights into the structure and assembly of Escherichia coli outer membrane protein A. The FEBS Journal., 279, 894–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci, D. P., Hagan, C. L., Kahne, D., & Silhavy, T. J. (2012). Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proceedings of the National Academy of Sciences of the United States of America, 109, 3487–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigel, N. W., Ricci, D. P., & Silhavy, T. J. (2013). Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 110, 5151–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigel, N. W., Schwalm, J., Ricci, D. P., & Silhavy, T. J. (2012). BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. Journal of Bacteriology, 194, 1002–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Alonso, R., Létoquart, J., Nguyen, V. S., Louis, G., Calabrese, A. N., Iorga, B. I., Radford, S. E., Cho, S. H., Remaut, H., & Collet, J. F. (2020). Structural insight into the formation of lipoprotein-β-barrel complexes. Nature Chemical Biology, 16, 1019–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogov, V. V., Rogova, N. Y., Bernhard, F., Lohr, F., & Dotsch, V. (2011). A disulfide bridge network within the soluble periplasmic domain determines structure and function of the outer membrane protein RcsF. The Journal of Biological Chemistry, 286, 18775–18783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas, E. R., Billings, G., Odermatt, P. D., Auer, G. K., Zhu, L., Miguel, A., Chang, F., Weibel, D. B., Theriot, J. A., & Huang, K. C. (2018). The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature, 559, 617–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, N., Davis, R. M., & Kumar, S. (2021). Yhdp, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the Gram-negative outer membrane. mBio, 12, e0271421.

    Article  PubMed  Google Scholar 

  • Ruiz, N., Kahne, D., & Silhavy, T. J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology, 4, 57–66.

    Article  PubMed  Google Scholar 

  • Samsudin, F., Ortiz-Suarez, M. L., Piggot, T. J., Bond, P. J., & Khalid, S. (2016). OmpA: A flexible clamp for bacterial cell wall attachment. Structure, 24, 2227–2235.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Zhou, R., Wan, L., Feng, S., Song, K., Xu, C., Li, Y., & Liao, M. (2021). Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins. Nature Communications, 12, 4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, T., Ichimura, K., & Noda, M. (2016). The surface sensor NlpE of enterohemorrhagic Escherichia coli contributes to regulation of the type III secretion system and Flagella by the Cpx response to adhesion. Infection and Immunity, 84, 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sledjeski, D. D., & Gottesman, S. (1996). Osmotic shock induction of capsule synthesis in Escherichia coli K-12. Journal of Bacteriology, 178, 1204–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, W. B., Davis, L. J., Danese, P. N., Cosma, C. L., & Silhavy, T. J. (1995). Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. Journal of Bacteriology, 177, 4216–4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhuis, M., Corona, F., Ten Hagen-Jongman, C. M., Vollmer, W., Lambin, D., Selhorst, P., Klaassen, H., Versele, M., Chaltin, P., & Luirink, J. (2021). Combining cell envelope stress reporter assays in a screening approach to identify BAM complex inhibitors. ACS Infectious Diseases, 7, 2250–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Rutherford, S. T., Silhavy, T. J., & Huang, K. C. (2022). Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 20, 236–248.

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18, 318–327.

    Article  PubMed  Google Scholar 

  • Tang, X., Chang, S., Zhang, K., Luo, Q., Zhang, Z., Wang, T., Qiao, W., Wang, C., Shen, C., Zhang, Z., et al. (2021). Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nature Structural & Molecular Biology, 28, 347–355.

    Article  CAS  Google Scholar 

  • Tata, M., & Konovalova, A. (2019). Improper coordination of BamA and BamD results in bam complex jamming by a lipoprotein substrate. mBio, 10, e00660-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tata, M., Kumar, S., Lach, S. R., Saha, S., Hart, E. M., & Konovalova, A. (2021). High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100369118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuda, H. (2009). Biogenesis of outer membranes in Gram-negative bacteria. Bioscience, Biotechnology, Biochemistry, 73, 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Typas, A., Banzhaf, M., Gross, C. A., & Vollmer, W. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 10, 123–136.

    Article  CAS  Google Scholar 

  • Umekawa, M., Miyagawa, H., Kondo, D., Matsuoka, S., Matsumoto, K., & Hara, H. (2013). Importance of the proline-rich region for the regulatory function of RcsF, an outer membrane lipoprotein component of the Escherichia coli Rcs signal transduction system. Microbiology, 159, 1818–1827.

    Article  CAS  PubMed  Google Scholar 

  • United Nations Environment Programme, UNEP. (2023). Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance.

  • Vogt, S. L., Evans, A. D., Guest, R. L., & Raivio, T. L. (2014). The Cpx envelope stress response regulates and is regulated by small noncoding RNAs. Journal of Bacteriology, 196, 4229–4238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wall, E., Majdalani, N., & Gottesman, S. (2018). The complex Rcs regulatory cascade. Annual Review of Microbiology, 72, 111–139.

    Article  CAS  PubMed  Google Scholar 

  • Wall, E. A., Majdalani, N., & Gottesman, S. (2020). IgaA negatively regulates the Rcs phosphorelay via contact with the RcsD phosphotransfer protein. PLoS Genetics, 16, e1008610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weatherspoon-Griffin, N., Zhao, G., Kong, W., Kong, Y., Morigen, Andrews-Polymenis, H., McClelland, M., & Shi, Y. (2011). The CpxR/CpxA two-component system up-regulates two tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. The Journal of Biological Chemistry, 286, 5529–5539.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T. J., & Kahne, D. (2005). Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell, 121, 235–245.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, K., & Ishihama, A. (2006). Characterization of copper-inducible promoters regulated by Cpxa/Cpxr in Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 70, 1688–1695.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by WELBIO (Grant no. WELBIO-CR-20190-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hyun Cho.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 416 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SH., Dekoninck, K. & Collet, JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol. 61, 317–329 (2023). https://doi.org/10.1007/s12275-023-00030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00030-y

Keywords

Navigation