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MINIREVIEW

Overview: Replication of Porcine Reproductive and Respiratory 
Syndrome Virus

Porcine reproductive and respiratory syndrome virus (PRRSV), 
an arterivirus that causes significant losses in the pig industry, 
is one of the most important animal pathogens of global 
significance. Since the discovery of the virus, significant pro-
gress has been made in understanding its epidemiology and 
transmission, but no adequate control measures are yet avail-
able to eliminate infection with this pathogen. The genome 
replication of PRRSV is required to reproduce, within a few 
hours of infection, the millions of progeny virions that esta-
blish, disseminate, and maintain infection. Replication of the 
viral RNA genome is a multistep process involving a repli-
cation complex that is formed not only from components 
of viral and cellular origin but also from the viral genomic 
RNA template; this replication complex is embedded within 
particular virus-induced membrane vesicles. PRRSV RNA 
replication is directed by at least 14 replicase proteins that 
have both common enzymatic activities, including viral RNA 
polymerase, and also unusual and poorly understood RNA- 
processing functions. In this review, we summarize our 
current understanding of PRRSV replication, which is im-
portant for developing a successful strategy for the preven-
tion and control of this pathogen.
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Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) 
is the etiologic agent of PRRS (Terpstra et al., 1991; Wensvoort 
et al., 1991; Benfield et al., 1992; Collins et al., 1992), an eco-
nomically devastating, pandemic disease of swine that is 
typically characterized by reproductive failure in breeding 
herds and respiratory problems and growth retardation in 

growing pigs (Done and Paton, 1995; Botner, 1997; Van 
Reeth, 1997; Zimmerman et al., 1997; Rossow, 1998; Suarez, 
2000; Rowland, 2010). Two PRRS outbreaks were first re-
ported in the late 1980s in North America (Keffaber, 1989; 
Hill, 1990) and central Europe (Paton et al., 1991). The dis-
ease is now found in most pig-producing countries and affects 
the swine industry and food safety worldwide (Albina, 1997; 
Blaha, 2000; Lunney et al., 2010; Shi et al., 2010a), causing 
enormous economic losses each year (Brouwer et al., 1994; 
Garner et al., 2001; Zimmerman et al., 2006; Nieuwenhuis 
et al., 2012). In the US, the annual loss due to PRRS is esti-
mated to exceed $500 million (Neumann et al., 2005). In 
particular, the emergence of highly pathogenic PRRSVs in 
China and Vietnam in 2006 (Li et al., 2007; Tian et al., 2007; 
Feng et al., 2008; Zhou et al., 2008; An et al., 2010b) and 
their rapid spread to several neighboring Asian countries 
(An et al., 2011) have raised a growing concern that new 
pathogenic PRRSVs can spread throughout the world, posing 
a significant threat to the global agricultural community 
(Normile, 2007; Lunney and Chen, 2010; Murtaugh et al., 
2010; Zhou and Yang, 2010). Because of the current burden 
of PRRS and the emergence of highly pathogenic forms of 
PRRSV on a global level, control of this virus remains a re-
search priority in all pig-producing countries.

Classification
PRRSV belongs to the family Arteriviridae in the order 
Nidovirales, which also includes two other families, the 
Coronaviridae and Roniviridae (Gorbalenya et al., 2006; de 
Groot et al., 2011). Within the Arteriviridae family, PRRSV 
forms a single genus Arterivirus, together with equine arter-
itis virus (EAV), lactate dehydrogenase-elevating virus, and 
simian hemorrhagic fever virus (Plagemann and Moennig, 
1992; Cavanagh, 1997; de Vries et al., 1997; Faaberg et al., 
2011). Like other arteriviruses, PRRSV is an enveloped virus 
(Dokland, 2010) containing a non-isometric nucleocapsid 
core (Spilman et al., 2009) that encapsidates a plus-strand 
genomic RNA of ~15 kb in length (Meulenberg et al., 1993). 
This genomic RNA consists of a 5 -untranslated region (UTR), 
10 open reading frames (ORFs), and a 3 -UTR (Snijder and 
Spaan, 2007; Britton and Cavanagh, 2008; Firth et al., 2011; 
Johnson et al., 2011) (Fig. 1).

Genetic heterogeneity
Based on its genetic diversity and geographic distribution, 
PRRSV is divided into two major genotypes (Murtaugh et al., 
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Fig. 1. Expression of the PRRSV genomic 
RNA. (A) Synthesis of the viral nonstruc-
tural proteins (NSPs) from the genomic 
RNA. The ~15-kb plus-strand genomic 
RNA of PRRSV is shown on top. Two long 
5 -proximal ORFs (ORF1a and ORF1b) are 
translated into two large polyprotein pre-
cursors, pp1a and pp1ab; the latter is syn-
thesized by a -1 ribosomal frameshift. The 
two polyproteins are cleaved into at least 
14 NSPs: 10 encoded in ORF1a (NSP1α, 
NSP1β, NSP2 to NSP6, NSP7α, NSP7β, and
NSP8) and 4 encoded in ORF1b (NSP9 to 
NSP12). This proteolysis is regulated by 
four viral proteases, namely NSP1α, NSP1β,
NSP2, and NSP4. An additional protein de-
signated NSP2TF is translated by a -2 ribo-
somal frameshift in the NSP2-coding region.
(B) Synthesis of the viral structural proteins
from the six subgenomic mRNAs. Eight 
short 3 -proximal ORFs are translated from
a nested set of six major subgenomic mRNAs:
ORF2a (GP2/2a), ORF2b (E, envelope), 
ORF3 (GP3), ORF4 (GP4), ORF5 (GP5), 
ORF6 (M, membrane), ORF7 (N, nucleo-
capsid), and a newly discovered protein en-
coded in ORF5a that overlaps with the 5 - 
end of ORF5.

2010; Shi et al., 2010a): Type 1, represented by the European 
prototype Lelystad strain (Wensvoort et al., 1991); and Type 
2, exemplified by the North American prototype VR-2332 
strain (Benfield et al., 1992; Collins et al., 1992). Interestingly, 
despite their concurrent emergence and similar clinical sym-
ptoms (Halbur et al., 1995), the two genotypes show ~40% 
genetic divergence (Mardassi et al., 1994; Kapur et al., 1996; 
Allende et al., 1999; Nelsen et al., 1999; Meng, 2000; Olek-
siewicz et al., 2000; Forsberg et al., 2002), with a high degree 
of antigenic variation (Wensvoort et al., 1992; Nelson et al., 
1993; Drew et al., 1995; Wootton et al., 1998). Over the last 
decade, this genetic/antigenic diversity has expanded con-
tinuously and rapidly (Murtaugh et al., 2001; Stadejek et al., 
2002; Mateu et al., 2003; Pesch et al., 2005; Han et al., 2006; 
Stadejek et al., 2006, 2008; Balka et al., 2008; Li et al., 2009, 
2011; Shi et al., 2010b), highlighting the dynamic nature of 
PRRSV evolution and epidemiology. At present, a larger num-
ber of genetically heterogeneous PRRSVs are widely co-cir-
culating throughout the world than ever before (Dewey et 
al., 2000; Goldberg et al., 2003; Ropp et al., 2004; Thana-
wongnuwech et al., 2004; Fang et al., 2007), posing a sig-
nificant challenge for the diagnosis, prevention, and control 
of PRRSV infection.

Transmission
PRRSV is transmitted both horizontally (pig-to-pig infection) 
and vertically (transplacental infection) to fetuses during 
mid-to-late gestation (Christianson et al., 1992, 1993; Yaeger 
et al., 1993); horizontal transmission occurs through both 
direct and indirect contact (Cho and Dee, 2006; Zimmerman 
et al., 2006). Direct contact is the most efficient route of 
PRRSV transmission, via a variety of porcine secretions from 
infected animals in which the virus has been detected: e.g., 
saliva (Wills et al., 1997a; Prickett et al., 2008), milk (Wagst-
rom et al., 2001), nasal fluids (Rossow et al., 1994), and se-

men (Swenson et al., 1994; Christopher-Hennings et al., 
1995). Although its mechanism(s) remains elusive (Mateu 
and Diaz, 2008; Lunney and Chen, 2010; Yoo et al., 2010; 
Murtaugh and Genzow, 2011), PRRSV persistence in pigs 
plays an important role in viral transmission because the 
virus is present at low levels in the infected animals (Wills 
et al., 1997b, 2003; Allende et al., 2000; Bierk et al., 2001; 
Batista et al., 2002, 2004; Horter et al., 2002). In addition to 
these direct routes of PRRSV transmission, indirect routes 
of a particular concern include contaminated fomites (Dee 
et al., 2002, 2003; Otake et al., 2002b), needles (Otake et al., 
2002c), transport vehicles (Dee et al., 2004), aerosols (Torre-
morell et al., 1997; Brockmeier and Lager, 2002; Mortensen 
et al., 2002; Otake et al., 2002a, 2010; Kristensen et al., 2004; 
Trincado et al., 2004; Fano et al., 2005; Dee et al., 2009; 
Pitkin et al., 2009), and insects as a mechanical vector (Otake 
et al., 2002d, 2003a, 2003b; Schurrer et al., 2004, 2005).

Replication cycle
PRRSV infection is initiated by the attachment of the virions 
to the highly sulfated, negatively charged glycosaminoglycans 
on the surface of susceptible cells (Jusa et al., 1997; Van-
derheijden et al., 2001; Delputte et al., 2002), followed by 
binding to CD169 (Duan et al., 1998a, 1998b; Vanderheijden 
et al., 2003; Delputte and Nauwynck, 2004; Delputte et al., 
2005, 2007; An et al., 2010a; Van Breedam et al., 2010b), 
which triggers receptor-mediated clathrin-dependent endo-
cytosis (Kreutz and Ackermann, 1996; Nauwynck et al., 
1999; Vanderheijden et al., 2003). At the early endosomes, 
the viral genome is released into the cytoplasm through a 
reaction mediated by CD163 (Calvert et al., 2007; Van Gorp 
et al., 2008, 2009; Das et al., 2010; Van Gorp et al., 2010) and 
presumably other cellular factors (Misinzo et al., 2008).
  Once the genome enters the cytoplasm, ORF1a and ORF1b, 
located in the 5 -proximal three-quarters of the viral genome, 
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are translated to produce two large polyproteins, pp1a and 
pp1ab (Snijder and Meulenberg, 1998; Snijder and Spaan, 
2007), with the expression of pp1ab controlled by a -1 ribo-
somal frameshift (Brierley et al., 1989; den Boon et al., 1991) 
(Fig. 1A). Autocatalytic processing of these precursors gen-
erates at least 14 nonstructural proteins (NSPs) (Ziebuhr et 
al., 2000; Van Hemert and Snijder, 2008; Fang and Snijder, 
2010): 10 encoded in ORF1a (NSP1α, NSP1β, NSP2 to NSP6, 
NSP7α, NSP7β, and NSP8) and 4 encoded in ORF1b (NSP9 
to NSP12) (Snijder et al., 1992, 1994; den Boon et al., 1995; 
van Dinten et al., 1996; Wassenaar et al., 1997; Chen et al., 
2010a; Li et al., 2012). This proteolytic processing is medi-
ated by four viral proteases residing in NSP1α, NSP1β, NSP2, 
and NSP4 (den Boon et al., 1995; Snijder et al., 1996; van 
Aken et al., 2006b). Also, an additional viral protein is syn-
thesized by a -2 ribosomal frameshift in the NSP2-coding 
region, yielding a transframe fusion NSP2TF with the N- 
terminal two-thirds of NSP2 (Fang et al., 2012). Most, if not 
all, of the NSPs assemble into a replication and transcrip-
tion complex (RTC) that accumulates at the virus-induced 
ER-derived double-membrane vesicles (van der Meer et al., 
1998; Pedersen et al., 1999; Kroese et al., 2008). The RTC 
directs both genome amplification (“replication”) and sub-
genomic mRNA synthesis (“transcription”) (Fang and Snijder, 
2010); the latter, a hallmark of all nidoviruses (Pasternak et 
al., 2006; Sawicki et al., 2007; Snijder and Spaan, 2007), 
produces a nested set of six major subgenomic mRNAs that 
are both 5 - and 3 -coterminal with the genomic RNA and 
thus consist of nucleotide sequences that are non-contiguous 
in the genomic RNA (de Vries et al., 1990).
  Through the six subgenomic mRNAs, eight mostly over-
lapping ORFs situated in the 3 -proximal region of the viral 
genome are expressed, presumably by utilizing each sub-
genomic mRNA for the translation of one or two of its most 
5 -proximal ORFs (Conzelmann et al., 1993; Meng et al., 
1996) (Fig. 1B). These ORFs encode eight structural proteins 
that constitute the infectious virion (Snijder and Meulenberg, 
1998; Snijder and Spaan, 2007; Dokland, 2010): i.e., four 
minor components encoded in ORF2a (GP2/2a), ORF2b 
(E, envelope), ORF3 (GP3), and ORF4 (GP4); three major 
components encoded in ORF5 (GP5), ORF6 (M, membrane), 
and ORF7 (N, nucleocapsid) (Meulenberg et al., 1995; Meu-
lenberg and Petersen-den Besten, 1996; van Nieuwstadt et 
al., 1996; Snijder et al., 1999; Wu et al., 2001); and a re-
cently identified protein encoded in ORF5a that overlaps 
with the 5 -end of ORF5 (Firth et al., 2011; Johnson et al., 
2011).
  At the late stage of viral replication, multiple copies of the 
N proteins bind to the newly synthesized genomic RNA to 
form a nucleocapsid complex (Tijms et al., 2002), which 
buds into the lumen of the smooth ER and/or Golgi com-
plex (Wood et al., 1970; Stueckemann et al., 1982; Dea et 
al., 1995; Weiland et al., 1995; Pol et al., 1997) and acquires 
the six viral envelope proteins, i.e., E, M, and GP2 to GP5 
(Snijder et al., 2003b; Wieringa et al., 2004; Zevenhoven- 
Dobbe et al., 2004; Wissink et al., 2005). In this event, the 
role of the protein product of ORF5a is unclear. Finally, the 
progeny virions accumulated in the intracellular membrane 
compartments are released into the extracellular space 
through exocytosis (Dea et al., 1995).

Viral nonstructural proteins
Although considerable research has been focused on PRRSV, 
little is known about the proteolytic processing pathway and 
the structure and function of most of the PRRSV NSPs. The 
initial functional assignments of the PRRSV NSPs have pri-
marily been based on the experimental data of EAV, the ar-
terivirus prototype (Fig. 1A).
  NSP1α and NSP1β: PRRSV NSP1α and NSP1β each con-
tain a cysteine protease domain responsible for autocatalytic 
processing at the NSP1α/1β (den Boon et al., 1995; Sun et 
al., 2009; Chen et al., 2010a) and NSP1β/2 (den Boon et al., 
1995; Chen et al., 2010a) junctions, respectively. The atomic 
structure of PRRSV NSP1α reveals three domains (Sun et al., 
2009): (i) a N-terminal zinc-finger domain, (ii) a papain- 
like cysteine protease (PCPα) domain with a zinc ion bound 
at the active site that is required for its proteolytic activity, 
and (iii) a C-terminal extension bound to the substrate bin-
ding site of the PCPα domain. Similarly, the crystal struc-
ture of PRRSV NSP1β reveals four domains (Xue et al., 2010): 
(i) an N-terminal metal-dependent nuclease domain, (ii) a 
linker domain, (iii) a papain-like cysteine protease (PCPβ) 
domain, and (iv) a C-terminal extension bound to the sub-
strate binding site of the PCPβ domain, as observed for 
PRRSV NSP1α. In the case of both NSP1α and NSP1β, their 
C-terminal extensions occupy the protease active site after 
their release from the polyprotein, suggesting that they func-
tion in cis (Sun et al., 2009; Xue et al., 2010). In PRRSV, in-
activation of the PCPα activity in NSP1α blocks subgenomic 
mRNA synthesis without altering genome replication, whereas 
when PCPβ activity is eliminated in NSP1β, no sign of viral 
RNA synthesis is seen; therefore, both PCP protease activities 
are apparently required for productive viral RNA synthesis 
(Kroese et al., 2008). Similarly, mutagenesis studies have 
shown that EAV NSP1 (which contains a tandem of the PCPα 
and PCPβ domains, with PCPα having lost its enzymatic 
activity) is involved in regulating the accumulation of minus- 
strand templates to control the relative abundance of viral 
mRNAs, thereby coordinating genome replication, subge-
nomic mRNA synthesis, and virus production (Tijms et al., 
2001, 2007; Nedialkova et al., 2010). Both PRRSV NSP1α/1β 
(Chen et al., 2010a) and EAV NSP1 (Tijms et al., 2002) are 
translocated to the nucleus in infected cells, but no consensus 
nuclear localization signal has yet been found. The interac-
tion of EAV NSP1 with the cellular transcription co-factor 
p100 suggests that it might be important for viral and/or 
cellular transcription (Tijms and Snijder, 2003).
  NSP2 and NSP3: PRRSV NSP2 is predicted to have four 
domains: (i) an N-terminal cysteine protease domain, (ii) a 
large hypervariable domain, (iii) a transmembrane domain, 
and (iv) a C-terminal tail (Han et al., 2009). The cysteine 
protease belongs to the mammalian ovarian tumor domain 
(OTU)-containing protein superfamily (Makarova et al., 
2000; Han et al., 2009); it cleaves at the NSP2/3 junction 
that functions both in cis and in trans (Snijder et al., 1995; 
Han et al., 2009) and is crucial for the viral replication cycle 
(Han et al., 2009). In EAV-infected cells, NSP2 is localized 
to the perinuclear membranes, which are presumably de-
rived from the ER and are involved in the formation of the 
membrane-bound RTC, where viral RNA synthesis occurs 
(van der Meer et al., 1998; Pedersen et al., 1999). In the ab-
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sence of EAV replication, the co-expression of EAV NSP2 
and NSP3 is both necessary and sufficient to modify host 
cell membranes during the formation of the RTC (Snijder 
et al., 2001). Also, EAV NSP2 interacts with NSP3 (Snijder 
et al., 1994), and NSP3 has been implicated in the process 
of remodeling intracellular membranes (Posthuma et al., 
2008). Biochemical and morphologic studies of EAV repli-
cation have shown that the NSPs containing transmembrane 
domains (e.g., NSP2, NSP3, and NSP5) are part of the mem-
brane-bound RTC, suggesting that they play an important 
role in recruiting other viral components of the RTC that 
lack the membrane-spanning domains (van der Meer et al., 
1998). In vitro, the EAV RTCs isolated from infected cells 
require a cytosolic host factor for viral RNA synthesis, which 
reproduces the synthesis of both viral genome and subgeno-
mic mRNAs (van Hemert et al., 2008). Interestingly, PRRSV 
NSP2 contains a cluster of linear B-cell epitopes that are 
dispensable for virus replication (Oleksiewicz et al., 2001; 
Chen et al., 2010b) but capable of modulating the host im-
mune response (Chen et al., 2010b; Li et al., 2010).
  NSP4: PRRSV NSP4 contains the main protease (3C-like 
serine proteinase) (Snijder et al., 1996) responsible for all 
NSP processing, except for the NSP1α/1β, NSP1β/2, and 
NSP2/3 junctions (van Dinten et al., 1999; Ziebuhr et al., 
2000). Cleavages at the NSP3/4, NSP4/5, and NSP11/12 junc-
tions have been confirmed experimentally by the use of re-
combinant PRRSV NSP4 (Tian et al., 2009). The crystal 
structure of both PRRSV and EAV NSP4s reveals a chymo-
trypsin-like fold with a canonical catalytic triad (S-H-D), as 
well as a novel α/β C-terminal extension (Barrette-Ng et al., 
2002; Tian et al., 2009) that may be involved in regulating 
viral polyprotein processing (van Aken et al., 2006a).
  NSP9: Arterivirus NSP9 includes the viral RNA-dependent 
RNA polymerase (RdRp) (den Boon et al., 1991). In PRRSV, 
the RdRp domain is located in the C-terminal region, which 
contains an upstream N-terminal region of unknown func-
tion (Gorbalenya et al., 2006; Fang and Snijder, 2010). Enzy-
matically active EAV RdRp can be purified from E. coli and 
initiates RNA synthesis by a de novo mechanism on homo-
polymeric templates in a template-dependent fashion (Beerens 
et al., 2007).
  NSP10: PRRSV NSP10 is predicted to have three domains 
(Gorbalenya et al., 2006; Fang and Snijder, 2010): (i) an 
N-terminal zinc-binding domain, (ii) a linker domain, and 
(iii) a nucleotide triphosphate binding or helicase domain 
(den Boon et al., 1991). Bacterially expressed PRRSV and 
EAV NSP10s possess ATPase activity and can unwind dsRNA 
and dsDNA in a 5 -to-3 direction (Bautista et al., 2002; 
Seybert et al., 2005). The zinc-binding domain of EAV NSP10 
is also critical for this activity (Seybert et al., 2005). In EAV, 
the zinc-binding domain contains a set of 13 conserved Cys 
and His residues and is critical for viral RNA synthesis (van 
Dinten et al., 2000). The linker domain (S2429P) has been 
implicated in subgenomic mRNA synthesis (van Dinten et 
al., 1997; van Marle et al., 1999b).
  NSP11: Arterivirus NSP11 contains the uridylate-specific 
endoribonuclease (NendoU) domain, which is a major ge-
netic marker unique to nidoviruses (Snijder et al., 2003a; 
Gorbalenya et al., 2006; Fang and Snijder, 2010). Bacterially 
expressed NSP11 has been used to show that the endoribo-

nuclease activity of both PRRSV and EAV NendoUs exhibits 
broad substrate specificity in vitro, but its function in in-
fected cells is elusive (Nedialkova et al., 2009). Viruses with 
mutations in the EAV NendoU active site are viable but have 
a defect in subgenomic mRNA synthesis (Posthuma et al., 
2006). Recently, IFN-mediated host innate immunity has 
been shown to be modulated by a panel of PRRSV NSPs 
(i.e., NSP1α, NSP1β, NSP2, NSP4, and NSP11) with different 
intensities (Beura et al., 2010; Chen et al., 2010a; Li et al., 
2010). In the case of PRRSV NSP2, the OTU domain-con-
taining cysteine protease has been shown to possess deubi-
quitinating and interferon antagonism activity, thereby eva-
ding ubiquitin- and ISG15-dependent innate immunity 
(Frias-Staheli et al., 2007; Sun et al., 2010).
  Other NSPs: To date, no specific functions have been de-
monstrated for the other PRRSV NSPs (NSP5, NSP6, NSP7α, 
NSP7β, NSP8, and NSP12). Also, it should be noted that 
during the proteolytic processing of EAV NSPs, many clea-
vage intermediates of unknown function have been observed 
(Snijder et al., 1994; van Dinten et al., 1996), and alternative 
major and minor processing pathways have also been char-
acterized (Wassenaar et al., 1997).

Viral structural proteins
Based on the “discontinuous RNA transcription” model 
(Sawicki and Sawicki, 1995), the plus-strand genomic RNA 
of PRRSV is thought to serve as a template for either (i) 
continuous minus-strand RNA synthesis, which produces 
the genome-length minus-strand template for genome rep-
lication; or (ii) discontinuous minus-strand RNA synthesis, 
which generates a nested set of six major subgenome-length 
minus-strand templates, one for each subgenomic mRNA 
synthesis. All the subgenomic mRNAs are both 5 - and 3 - 
coterminal with the genomic RNA, with a common short 
“leader” sequence corresponding to the 5 -proximal region 
of the genome joined to different “body” segments that are 
co-linear with its 3 -proximal region (Pasternak et al., 2006; 
Sawicki et al., 2007). This leader-body joining is guided by 
regulatory transcription-regulating sequences (TRSs); in 
the genomic RNA, these RNA motifs are located at the 3 -end 
of the leader sequence (leader TRS) and upstream of each 
structural protein-coding region (body TRS) (van Marle et 
al., 1999a; Pasternak et al., 2001; Van Den Born et al., 2004). 
In PRRSV, the 5 -proximal one or two ORFs of each sub-
genomic mRNA are translated to produce eight viral struc-
tural proteins that constitute an infectious virion (Meulenberg 
et al., 1995; Meulenberg and Petersen-den Besten, 1996; van 
Nieuwstadt et al., 1996; Snijder et al., 1999; Dea et al., 2000; 
Molenkamp et al., 2000; Wu et al., 2001; Johnson et al., 
2011): GP2 (GP2a), E, GP3, GP4, GP5, M, N, and a protein 
product of ORF5a (Fig. 1B).
  The viral envelope contains the two major (GP5 and M) 
and four minor (E, GP2, GP3, and GP4) membrane pro-
teins that are all required for the production and infectivity 
of infectious virions; however, the four minor proteins are 
dispensable for virus assembly (Wieringa et al., 2004; Wissink 
et al., 2005). E protein has an ion channel protein-like pro-
perty and is embedded in the viral membrane, presumably 
promoting uncoating of the virion and release of the viral 
genome into the cytoplasm (Lee and Yoo, 2006). GP3 is 
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heavily glycosylated (Dea et al., 2000; Das et al., 2011), and 
its glycans on the viral surface prevent the recognition of 
epitopes by neutralizing antibodies (Vu et al., 2011); a sub-
set of the GP3 proteins is secreted from the cells as a non- 
virion-associated soluble form (Mardassi et al., 1998). GP4 
has a neutralizing epitope in the hypervariable region (Meu-
lenberg et al., 1997) that might be associated with the E, 
GP2, and GP3 proteins through non-covalent interactions 
(Wieringa et al., 2004; Wissink et al., 2005; Das et al., 2010). 
GP5 is a triple membrane-spanning protein with a short 
ectodomain (~40 aa) and a long cytoplasmic tail (~50–70 
aa) (Meulenberg et al., 1995; Mardassi et al., 1996), which 
contains major neutralizing epitopes (Wissink et al., 2003; 
Ansari et al., 2006). M is the most conserved membrane pro-
tein and has a membrane topology similar to that of GP5 
(Dea et al., 2000). N is a serine phosphoprotein that forms 
a dimer and is distributed in the cytoplasm and the nucleus 
(Rowland and Yoo, 2003; You et al., 2008). In the viral mem-
brane, the GP5 and M proteins are embedded as disulfide- 
linked heterodimers, whereas the E, GP2, GP3, and GP4 
proteins are associated with each other through non-co-
valent interactions (Meulenberg et al., 1993, 1995; Mardassi 
et al., 1995, 1996; Meulenberg and Petersen-den Besten, 
1996; van Nieuwstadt et al., 1996; Wu et al., 2001; Wissink 
et al., 2005).
  PRRSV has a very restricted cell tropism. In vivo, it targets 
specific subsets of porcine macrophages, primarily alveolar 
macrophages (Lawson et al., 1997; Duan et al., 1997a, 1997b; 
Teifke et al., 2001); in vitro, it can also infect monocyte- or 
bone marrow-derived porcine dendritic cells when stimu-
lated with GM-CSF/IL-4 (Loving et al., 2007; Wang et al., 
2007; Chang et al., 2008; Flores-Mendoza et al., 2008; Silva- 
Campa et al., 2009), but not lung dendritic cells (Loving et 
al., 2007). PRRSV entry into porcine macrophages is the first 
step in a highly coordinated process of virus-host interactions. 
Based on recent findings (Welch and Calvert, 2010; Van 
Breedam et al., 2010a), highly sulfated, negatively charged 
glycosaminoglycans such as heparan sulfates can be used as 
low-affinity attachment factors that concentrate virus par-
ticles on the cell surface (Jusa et al., 1997; Vanderheijden et 
al., 2001; Delputte et al., 2002, 2005). Once this interaction 
has taken place, the viral GP5/M complex binds to the N- 
terminal portion of CD169 (also called sialoadhesin or si-
glec-1) (Duan et al., 1998a, 1998b; Vanderheijden et al., 
2003; Delputte et al., 2005; Van Gorp et al., 2008; An et al., 
2010a; Van Breedam et al., 2010b). This interaction is di-
rected by the sialic acid-binding domain at the N-terminus 
of CD169 and sialic acids on the virion surface (Delputte and 
Nauwynck, 2004; Delputte et al., 2007; Van Breedam et al., 
2010b), which trigger receptor-mediated, clathrin-dependent 
endocytosis (Kreutz and Ackermann, 1996; Nauwynck et al., 
1999; Vanderheijden et al., 2003). Once internalized, the 
particles are transported to early endosomes, where the viral 
genome is released into the cytoplasm in a reaction that de-
pends on both the acidic environment and scavenger re-
ceptor CD163 (Nauwynck et al., 1999; Calvert et al., 2007; 
Van Gorp et al., 2008, 2009). The role of CD163 is mediated 
through its cysteine-rich domain 5 (Van Gorp et al., 2010) 
and by interaction with GP2 and GP4 (Das et al., 2010). 
The protease cathepsin E and an additional serine protease 

are also implicated in this process (Misinzo et al., 2008). 
Other host factors, such as simian vimentin (Kim et al., 2006) 
and CD151 (Shanmukhappa et al., 2007), have been identi-
fied in MARC-145 cells, a cell line susceptible to PRRSV 
infection (Kreutz, 1998).

Vaccines
PRRS is controlled by several different strategies, including 
management (e.g., herd depopulation/repopulation, herd 
closure, and regional elimination), biosecurity, and vacci-
nation (Corzo et al., 2010; Thanawongnuwech and Suradhat, 
2010). Of these strategies, vaccination is the most cost-effec-
tive for controlling PRRS, but it does not completely pre-
vent PRRSV infection. Two types of PRRSV vaccines are 
commercially available: modified-live virus (MLV) and killed 
virus (KV) vaccines (Yoo et al., 2004; Charerntantanakul, 
2009; Kimman et al., 2009; Cruz et al., 2010; Huang and 
Meng, 2010). The MLV vaccine confers effective protection 
against genetically homologous PRRSVs but only partial 
protection against genetically heterologous PRRSVs (Meng, 
2000; Murtaugh et al., 2002; Labarque et al., 2003; Okuda 
et al., 2008); it is of particular concern that the live vaccine 
viruses have the potential to spontaneously revert to viru-
lence and spread the disease (Botner et al., 1997; Madsen et 
al., 1998; Mengeling et al., 1999; Storgaard et al., 1999; Wesley 
et al., 1999; Nielsen et al., 2001; Opriessnig et al., 2002; 
Amonsin et al., 2009; grosse Beilage et al., 2009; Li et al., 
2009). The KV vaccine, on the other hand, is safe but offers 
limited protection at best against either homologous or 
heterologous PRRSVs (Scortti et al., 2007; Zuckermann et 
al., 2007; Vanhee et al., 2009). Thus, the current vaccines 
fail to provide sustainable disease control and prevention, 
particularly against the genetically heterologous PRRSVs 
(Cano et al., 2007a, 2007b), making it difficult to achieve 
global eradication.

Conclusion

Although significant progress has been made in understan-
ding the routes of PRRSV transmission and in developing 
and implementing control measures for PRRSV infection, 
there is clearly an urgent need for novel strategies that may 
be applicable to the development of a safer, more effective 
vaccine against PRRSV. Despite the clinical importance of 
PRRSV in animal health, only limited information is avail-
able to date regarding the biological functions of the viral 
nonstructural and structural proteins in replication and 
pathogenesis. In particular, the molecular characterization 
of the 14 replicase proteins and their roles in PRRSV RNA 
synthesis have represented a major challenge in PRRSV 
biology. We and others have established a reverse genetics 
system for PRRSV by constructing a full-length infectious 
cDNA that allows genetic manipulation of the viral genome 
and from which molecularly cloned viruses can be rescued. 
This system offers a unique opportunity to address some of 
the key questions in PRRSV biology. New information will 
give us a better understanding of the molecular and genetic 
basis of PRRSV replication and pathogenesis, a prerequisite 
for the development of new and promising strategies to 
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control and eliminate this pathogen.
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