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NOTE

Biological and Genetic Properties of SA14-14-2, a Live-Attenuated 
Japanese Encephalitis Vaccine That Is Currently Available for Humans

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, 
is a major cause of acute encephalitis, a disease of significance 
for global public health. In the absence of antiviral therapy to 
treat JEV infection, vaccination is the most effective method of 
preventing the disease. In JE-endemic areas, the most widely 
used vaccine to date is SA14-14-2, a live-attenuated virus de-
rived from its virulent parent SA14. In this study, we describe 
the biological properties of SA14-14-2, both in vitro and in 
vivo, and report the genetic characteristics of its genomic 
RNA. In BHK-21 (hamster kidney) cells, SA14-14-2 displayed 
a slight delay in plaque formation and growth kinetics when 
compared to a virulent JEV strain, CNU/LP2, with no de-
crease in maximum virus production. The delay in viral 
growth was also observed in two other cell lines, SH-SY5Y 
(human neuroblastoma) and C6/36 (mosquito larva), which 
are potentially relevant to JEV pathogenesis and transmission. 
In 3-week-old ICR mice, SA14-14-2 did not cause any symp-
toms or death after either intracerebral or peripheral in-
oculation with a maximum dose of up to 1.5×103 plaque- 
forming units (PFU) per mouse. The SA14-14-2 genome con-
sisted of 10977 nucleotides, one nucleotide longer than all 
the previously reported genomes of SA14-14-2, SA14 and two 
other SA14-derived attenuated viruses. This difference was 
due to an insertion of one G nucleotide at position 10701 in 
the 3 noncoding region. Also, we noted a significant number 
of nucleotide and/or amino acid substitutions throughout 
the genome of SA14-14-2, except for the prM protein-coding 
region, that differed from SA14 and/or the other two atte-
nuated viruses. Our results, together with others’, provide a 
foundation not only for the study of JEV virulence but also 
for the development of new and improved vaccines for JEV.

Keywords: Japanese encephalitis virus, SA14-14-2, complete 
genome, virulence, pathogenesis

Japanese encephalitis virus (JEV) is the causative agent of 
JE, the most important form of viral encephalitis that affects 
~25 countries in Asia (Burke and Leake, 1988; Endy and 
Nisalak, 2002; Halstead and Jacobsen, 2008). Over the past 
two decades, JEV has also spread to new geographic locations 
such as Australia (Hanna et al., 1996, 1999; Mackenzie et 
al., 2002b), Pakistan (Igarashi et al., 1994), and Saipan (Paul 
et al., 1993); thus, this virus is now recognized as an emerging 
pathogen of global public health significance (Mackenzie et 
al., 2004; Weaver and Barrett, 2004; Mackenzie et al., 2007; 
Erlanger et al., 2009; van den Hurk et al., 2009; Weaver and 
Reisen, 2010). JEV is naturally transmitted to humans through 
the bite of an infected culicine mosquito, most often Culex 
tritaeniorhynchus, and maintained in an enzootic cycle be-
tween mosquito vectors and vertebrate amplifying hosts/res-
ervoirs, primarily domestic pigs and wild birds (Rosen, 1986; 
Burke and Leake, 1988; Endy and Nisalak, 2002; Gubler et al., 
2007; Halstead and Jacobsen, 2008). The global incidence of 
JE is largely unknown, because the current surveillance and 
detection systems vary significantly throughout the world 
(Monath, 2002; Solomon and Vaughn, 2002; Solomon and 
Winter, 2004). Although a minor portion of JEV infections 
develop into encephalitis, the annual occurrence of JE in 
Asia is estimated to be in a range of approximately 50,000 
to 175,000 cases, depending on age, geographic location, 
and vaccination status (Burke and Leake, 1988; Tsai, 2000; 
Campbell et al., 2011). About a quarter of clinical cases are 
fatal, and up to half of survivors live with permanent neuro-
psychiatric complications (Tsai, 2000; Solomon, 2006; WHO, 
2006).
  JEV is a member of the genus Flavivirus in the family 
Flaviviridae. Within the genus, JEV represents the JEV se-
rological group that also includes several neurotropic flavi-
viruses, e.g., West Nile (WN), Murray Valley encephalitis, 
and St. Louis encephalitis viruses, and shows a close genetic 
relationship with other human pathogens, such as dengue 
(DEN), yellow fever (YF), and tick-borne encephalitis viruses 
(Mackenzie et al., 2002a; Calisher and Gould, 2003; Thiel et 
al., 2005). JEV is an enveloped virus with an ~11-kb, linear 
plus-strand genomic RNA that contains a 5 cap structure 
but lacks a 3 poly(A) tail (Rice et al., 1985; Sumiyoshi et 
al., 1987; Yun et al., 2003a). The genome encodes a single 
long open reading frame (ORF) flanked by short noncoding 
regions at its 5 and 3 ends (Lindenbach and Rice, 2003; 



JEV SA14-14-2 699

Fig. 1. Replication of JEV SA14-14-2 and CNU/LP2 strains 
in BHK-21 cells. (A) Detection of JEV proteins. Cells were 
mock-infected or infected with SA14-14-2 or CNU/LP2; 20 h 
later, they were fixed and stained with a primary antibody, 
either JEV-specific mouse hyperimmune ascites (α-JEV) or a 
polyclonal rabbit anti-NS3 antiserum (α-NS3), and subse-
quently with a secondary antibody, either an FITC-conjugated
goat anti-mouse IgG (green fluorescence) or Cy3-conjugated 
goat anti-rabbit IgG (red fluorescence). Cell nuclei were vi-
sualized by staining with DAPI (blue fluorescence). Images 
were obtained with a LSM-710 confocal microscope. Merged 
images are also provided. (B) Expression of JEV structural 
proteins. Cells were mock-infected or infected at an m.o.i of 
1 PFU/cell with SA14-14-2 or CNU/LP2 for 20 h. In each case, 
an equal portion of total cell lysate was separated on 15% 
Tricine-SDS-PAGE (for the detection of both C and prM 
proteins) or 10% glycine-SDS-PAGE (for the detection of E 
protein). Viral proteins were visualized by immunoblotting 
with a panel of three polyclonal rabbit antisera, each specific 
for JEV C, prM, and E proteins, followed by an AP-conjugated
goat anti-rabbit IgG. Viral proteins were stained by incubating
with a mixture of BCIP and NBT as a substrate. (C) Morpho-
logy of JEV foci/plaques. Cells were infected with SA14-14-2 
or CNU/LP2 and overlaid with agarose for 4 days. Following 
fixation, cells were immunostained with JEV-specific mouse 
hyperimmune ascites and a peroxidase-conjugated goat anti-
mouse IgG, and stained with diaminobenzidine substrate. (D)
Kinetics of JEV growth. Cells were infected at an m.o.i of 1 
with SA14-14-2 or CNU/LP2. Cell culture supernatants were 
collected at the indicated time points, and virus titers were 
determined by plaque assays on BHK-21 cells. The growth 
curve represents one of two independent experiments yielding
similar results.

Yun and Lee, 2006; Lindenbach et al., 2007). Our under-
standing of JEV genome replication and expression is largely 
based on previous work with other flaviviruses, i.e., YFV, 
WNV, and DENV. Upon viral entry into susceptible cells, 
the genomic RNA is translated to yield a polyprotein, which 
is processed by viral and cellular proteases into at least 10 
functional proteins: three structural (C, prM, and E) and 
seven nonstructural proteins (NS1, 2A, 2B, 3, 4A, 4B, and 5) 
(Chambers et al., 1990; Yun and Lee, 2006). The structural 
proteins constitute an infectious virion (Kuhn et al., 2002; 
Mukhopadhyay et al., 2003; Zhang et al., 2003) and partic-
ipate in viral entry and assembly (Mukhopadhyay et al., 2005; 
Harrison, 2008). The nonstructural proteins function in viral 
RNA replication (Brinton, 2002; Westaway et al., 2002; Markoff, 
2003; Villordo and Gamarnik, 2009; Paranjape and Harris, 
2010), viral assembly (Kümmerer and Rice, 2002; Liu et al., 
2003; Pijlman et al., 2006; Leung et al., 2008; Patkar and Kuhn, 
2008), and/or evasion of host innate immunity (Muñoz-Jordan 
et al., 2003, 2005; Guo et al., 2005; Liu et al., 2005; Diamond, 
2009; Robertson et al., 2009). For RNA replication, the two 
largest nonstructural proteins possess multiple enzymatic 
activities: NS3 acts as a serine protease (together with its 
cofactor NS2B) (Chambers et al., 1991; Falgout et al., 1993), 
an RNA-stimulated nucleoside triphosphatase (Wengler and 
Wengler, 1991), an RNA helicase (Li et al., 1999), and an 
RNA triphosphatase (Wengler and Wengler, 1993). NS5 
functions as a methyltransferase (Egloff et al., 2002; Ray et 
al., 2006), an RNA guanylyltransferase (Issur et al., 2009), 
and an RNA-dependent RNA polymerase (Tan et al., 1996; 
Ackermann and Padmanabhan, 2001).
  Four types of JE vaccines are in local use in different re-
gions of the world (Monath, 2002; Beasley et al., 2008; Jelinek, 

2008; Halstead and Thomas, 2010; Wilder-Smith and Halstead, 
2010; Halstead and Thomas, 2011): (i) the inactivated mouse 
brain-derived vaccine based on the Nakayama or Beijing-1 
strain, (ii) the inactivated cell culture-derived vaccine based 
on the Beijing-3 or SA14-14-2 strain, (iii) the live-attenuated 
cell culture-derived vaccine based on the SA14-14-2 strain, 
and (iv) the live chimeric vaccine (Lai and Monath, 2003) 
based on a recombinant YFV 17D in which the prM and E 
protein-coding region of YFV 17D has been replaced with 
the corresponding region of JEV SA14-14-2 (Chambers et al., 
1999; Guirakhoo et al., 1999; Monath et al., 1999; Monath 
et al., 2000; Arroyo et al., 2001). Of these, only two are cur-
rently licensed internationally: the formalin-inactivated 
Nakayama and live-attenuated SA14-14-2 vaccines. The in-
activated Nakayama vaccine was produced in many Asian 
countries, but its production has now been scaled down or 
discontinued (Fischer et al., 2010) because of the availability 
of new and improved JE vaccines (Sakaguchi et al., 2001; 
Plesner, 2003; Solomon, 2006). To date, the live SA14-14-2 
vaccine is the only internationally licensed vaccine avail-
able in sufficient quantity, constituting more than 50% of 
the total global production (WHO, 2005). The SA14-14-2 
vaccine virus was developed empirically by serial passage 
of its virulent parental virus, SA14, in cell cultures (e.g., pri-
mary hamster kidney cells) and in animals (e.g., mice and 
hamsters) (Yu, 2010). Since its initial licensure in China in 
1989, this vaccine has been administered to >300 million 
children in China and several Asian countries as well (i.e., 
Nepal, South Korea, India, Sri Lanka, and Thailand), with 
no report of vaccine-related adverse JE cases (Xin et al., 1988; 
Liu et al., 1997; Sohn et al., 1999). The immunogenicity, 
safety, and long-term protective efficacy of the SA14-14-2 
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Table 1. Pathogenicity of JEV SA14-14-2 and CNU/LP2 strains in 3-week-old ICR mice

Virus Inoculum
(PFU/mouse)

i.c i.m
Alive Dead Total LD50 (PFU) Alive Dead Total LD50 (PFU)

CNU/LP2 1.5×103 0 10 10       <1.5 0 10 10       <1.5
1.5×102 0 10 10 0 10 10
1.5×101 0 10 10 2 8 10

1.5 2 8 10 3 7 10
SA14-14-2 1.5×103 10 0 10 >1.5×103  10 0 10 >1.5×103

1.5×102 10 0 10 10 0 10
1.5×101 10 0 10 10 0 10

1.5 10 0 10 10 0 10

vaccine are reported to be promising for its extended use in 
global immunization (Hennessy et al., 1996; Tsai et al., 
1998; Sohn et al., 1999; Bista et al., 2001; Ohrr et al., 2005; 
Tandan et al., 2007; Sohn et al., 2008; Liu et al., 2011). In 
South Korea, the SA14-14-2 vaccine was introduced in 2002, 
with a recommended immunization schedule of two doses 
administered 12 months apart in children aged 1–2 years 
and a booster at 6 years of age (WHO, 2008).
  In this work, we aimed to characterize the biological prop-
erties of SA14-14-2, both in vitro and in vivo, and to define 
the genetic characteristics of its genomic RNA. A stock of 
SA14-14-2 virus was retrieved directly from a batch of com-
mercial vaccine vials and used throughout the entire course 
of this study, in order to avoid any potential for its adapta-
tion that could occur during propagation in cell cultures. 
Initially, we analyzed the virological properties of SA14-14-2 
in vitro, in parallel with a highly virulent JEV strain CNU/LP2 
(Yun et al., 2003b; Kang et al., 2004; Kim et al., 2008), in 
cell culture systems. In BHK-21 (baby Syrian hamster kid-
ney) cells, confocal microscopy with JEV-specific mouse 
hyperimmune ascites revealed that at 20 h post-infection 
(hpi), the viral proteins expressed in SA14-14-2-infected 
cells were predominantly localized around the perinuclear 
membranes, and their localization was indistinguishable 
from that of the virus in CNU/LP2-infected cells (Fig. 1A, 
α-JEV). Identical results were obtained with a polyclonal 
rabbit antiserum specific for the JEV NS3 protein (Fig. 1A, 
α-NS3). Also, immunoblot analyses with a panel of three 
polyclonal rabbit antisera, each recognizing JEV C (α-C), 
prM (α-pr), and E (α-E) proteins, showed that the three vi-
ral structural proteins accumulated in SA14-14-2-infected 
cells at 20 hpi were all comparable in size and amount to 
those produced in CNU/LP2-infected cells (Fig. 1B). On 
the other hand, direct staining of cell monolayers with the 
JEV-specific mouse hyperimmune ascites indicated that at 
4 days post-infection (dpi), the size of foci/plaques formed 
by SA14-14-2 was on average ~35% smaller than that of fo-
ci/plaques produced by CNU/LP2 (Fig. 1C). Consistent with 
this finding, the viral growth of SA14-14-2 was slightly slower 
than that of CNU/LP2, with no decrease in maximum virus 
production, when cells were infected at a multiplicity of in-
fection (m.o.i) of 1 with each virus (Fig. 1D). The delay in 
viral growth was also observed in two other cell lines, 
SH-SY5Y (human neuroblastoma) and C6/36 (Aedes albo-
pictus mosquito larvae), which are potentially relevant to JEV 
pathogenesis and transmission, respectively (data not 
shown).

  We next examined the virulence of SA14-14-2 in vivo, by 
estimating the 50% lethal dose (LD50) in a murine infection 
model system. The LD50 values of the SA14-14-2 and CNU/LP2 
(reference) viruses were determined by inoculating groups 
of 3-week-old female ICR mice (n=10 per group) by either 
the intracerebral (i.c) or the intramuscular (i.m) route as 
described previously (Kim et al., 2008). Each virus stock was 
serially diluted 10-fold in minimal essential medium (MEM), 
and 20 µl (for i.c) or 50 µl (for i.m) of each dilution was used 
to inoculate each mouse. For each route, a control group 
(n=10) was inoculated with an equivalent volume of MEM. 
Mice were observed every 12 h for 24 days for the develop-
ment of any JEV-induced clinical signs (ruffled fur, hunched 
posture, tremors, and hind limb paralysis) and death. In 
agreement with our previous findings (Kim et al., 2008), 
CNU/LP2 was highly neurovirulent and neuroinvasive, yield-
ing an LD50 of <1.5 PFU for both the i.c and i.m routes of 
inoculation (Table 1, CNU/LP2). All dead mice developed 
the symptoms of JEV infection, and viral replication in their 
brain tissues was confirmed by virus titration after the experi-
ment (data not shown). In contrast, SA14-14-2 was highly 
attenuated, as shown by the observation that all the infected 
mice remained healthy and showed no clinical signs of viral 
infection after either the i.c or i.m route of inoculation with a 
maximum dose of up to 1.5×103 PFU/mouse (Table 1, SA14- 
14-2). In the case of five mice inoculated by the i.c route with 
a dose of 1.5×103 PFU, we performed immunohistochemical 
staining with a polyclonal rabbit antiserum specific for the 
JEV NS1 protein and found that only a small number, if 
any, of the NS1-immunoreactive neurons were localized in 
any region of the brain infected with SA14-14-2 (Yun SI 
and Lee YM, manuscript in preparation). As expected, the 
control groups of mock-infected mice all survived with no 
signs of disease (data not shown).
  In an effort to characterize the genetic properties of SA14- 
14-2, we determined the complete nucleotide sequence of 
its genomic RNA. Template RNA was extracted directly 
from a batch of the commercial vaccine vials distributed in 
South Korea in 2005. Each of the vials was estimated to 
contain ~1×105 PFU by plaque titration on BHK-21 cells. 
The extracted RNA was subjected to cDNA synthesis and 
PCR amplification according to our previously established 
protocols (Yun et al., 2003a, 2003b). In sum, a total of three 
overlapping cDNA fragments that covered the entire viral 
genome except the utmost 5 and 3 termini were amplified 
and directly sequenced on both strands. The 3 -terminal 
sequences were identified by a 3 RACE protocol, ligating a 
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Table 2. Genome organization of JEV SA14-14-2 strain

Locus/Protein
Nucleotidea Amino acidb

Start End Length (nt)c Start End Length (aa)c

5 NCR 1 95 95
C 96 476 381 1 127 127
prM 477 977 501 128 294 167
E 978 2477 1500 295 794 500
NS1 2478 3533 1056 795 1146 352
NS2A 3534 4214 681 1147 1373 227
NS2B 4215 4607 393 1374 1504 131
NS3 4608 6464 1857 1505 2123 619
NS4A 6465 6911 447 2124 2272 149
NS4B 6912 7676 765 2273 2527 255
NS5 7677 10394 2718 2528 3433 906
3 NCR 10395 10977 583
Total 10977 3433

a Nucleotide positions refer to the complete genome sequence of JEV SA14-14-2 (GenBank accession no. JN604986).
b Amino acid positions refer to the precursor polyprotein sequence of JEV SA14-14-2 (GenBank accession no. JN604986). 
c nt, nucleotide; aa, amino acid.

synthetic oligonucleotide to the 3 -end of the genomic RNA 
to provide a specific primer-binding site during RT-PCR. 
The 5 -terminal sequences were identified by self-ligation of 
the genomic RNA and RT-PCR amplification of the ligated 
3 -5 region. In both termini, the consensus sequences were 
determined by cloning of the cDNA amplicons and se-
quencing of >40 randomly picked independent clones. The 
full genome consensus sequence of SA14-14-2 was deposited 
in GenBank with the accession number JN604986. As sum-
marized in Table 2, the SA14-14-2 genomic RNA is 10977 
nucleotides in length and consists of a 95-nucleotide 5 NCR, 
a 10299-nucleotide ORF, and a 583-nucleotide 3 NCR. The 
ORF has a coding capacity of 3433 amino acids (including 
the stop codon). The genetic loci of the three structural and 
seven nonstructural proteins were predicted by comparing 
the deduced amino acid sequences with the known cleav-
age sites of other flaviviruses (Chambers et al., 1990).
  Finally, we compared the complete nucleotide and deduced 
amino acid sequences of the genomes between the virulent 
parent SA14 and three SA14-derived attenuated viruses (i.e., 
SA14-2-8, SA14-12-1-7, and SA14-14-2). Of particular concern 
was the fact that the genomes of both SA14 and SA14-14-2 
have been sequenced by several independent groups, and 
their nucleotide sequences are not identical, mainly be-
cause of variations in the cultivation history of the viruses. 
In our comparative sequence analyses, we therefore included 
a total of eight genomic sequences currently retrievable from 
GenBank: (i) three for SA14, designated SA14 Seq1 (M55506; 
Nitayaphan et al., 1990), SA14 Seq2 (D90194; Aihara et al., 
1991), and SA14 Seq3 (U14163; Ni et al., 1994, 1995); (ii) one 
for SA14-2-8 (U15763; Ni et al., 1995); (iii) one for SA14-12- 
1-7 (AF416457); and (iv) three for SA14-14-2, designated 
SA14-14-2 Seq1 (AF315119), SA14-14-2 Seq2 (D90195; Aihara 
et al., 1991), and SA14-14-2 Seq3 (JN604986, this study). 
Nucleotide and amino acid sequence alignments were car-
ried out using Clustal W. The nucleotide and amino acid 
sequence differences between the genomes of SA14 and three 
SA14-derived attenuated viruses are summarized in Table 3. 
One unexpected finding is that the 10977-nucleotide genome 

of SA14-14-2 determined in the present study was one nu-
cleotide longer than any previously reported genomes of 
SA14, SA14-2-8, SA14-12-1-7, and SA14-14-2 (which are all 
10976 nucleotides). This difference was due to an insertion 
of one G nucleotide at position 10701 in the 3 NCR. In ad-
dition, we also noted a total of 123 nucleotides (59 amino 
acids, solid squares) that vary in one or more of the eight 
genomic sequences we used for analysis; they were distributed 
throughout the entire genome of SA14-14-2, except for the 
prM protein-coding region. Of these, a panel of 39 nucleo-
tides (16 amino acids, open squares) was invariably different 
between the genomes of SA14 and SA14-14-2, regardless of 
which version of the genomic sequences was used for com-
parison: 1 in the 5 NCR (39A); 1 in C (292C [66S]); 7 in E 
(1061C, 1296U [401F], 1389A [432K], 1503G [470V], 1506G [471A], 
1769U [558H], and 1813U [573M]); 1 in NS1 (3528C [1145H]); 3 in 
NS2A (3776U, 3801U, and 4106G); 2 in NS2B (4403U [1436D] and 
4408G [1438G]); 6 in NS3 (4782G [1563V], 4825A [1577K], 4921G 
[1609G], 4922C [1609G], 6008U, and 6425G); 1 in NS4A (6728A); 4 
in NS4B (6944G, 7121U, 7193U, and 7227G [2378V]); 12 in NS5 
(7736U, 8099U, 8394U, 8832U [2913Y], 8882U, 8891U, 9688C [3198A], 
9695A, 9818U, 10046A, 10139U, and 10217C); and 1 in the 3 NCR 
(10428C). Given their consistency, a subset of these nucleo-
tide and/or amino acid changes is presumably responsible 
for the attenuation phenotype of SA14-14-2; however, other 
genetic changes found in one or more of the eight genomic 
sequences might also be associated with the attenuation of 
SA14-14-2.
  In this work, we report the biological and genetic properties 
of SA14-14-2, a live-attenuated JE vaccine that is currently 
available for humans in China and five other Asian countries. 
We found that SA14-14-2 replicated with a high efficiency 
but exhibited a delay in viral growth in three different cell 
lines (i.e., BHK-21, SH-SY5Y, and C6/36), relative to the 
highly virulent JEV strain CNU/LP2. The delayed viral 
growth was more evident in the appearance of foci/plaques. 
In BHK-21 cells, the focus/plaque sizes for SA14-14-2 were 
significantly smaller than those produced by CNU/LP2. 
These results are in agreement with previous reports (Eckels 
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et al., 1988; Aihara et al., 1991; Yu, 2010). In mice, we con-
firmed that SA14-14-2 was highly attenuated, both in neu-
rovirulence and in neuroinvasiveness, in accordance with 
earlier studies using mice and rhesus monkeys (Eckels et al., 
1988; Aihara et al., 1991; Hase et al., 1993). On the other hand, 
in an independent pilot experiment with a high dose of 
SA14-14-2 (i.e., 1.5×104 and 1.5×105 PFU/mouse), we found 
that ~10–20% of the infected mice developed the typical 
signs of JEV infection and death when inoculated via the 
i.c route, but not via the i.m route (Song BH, Yun SI, and 
Lee YM, unpublished data). One important issue with SA14- 
14-2 remains a risk for reversion of the virus to high virulence. 
In recent years, SA14-14-2 has been used to produce a new 
Vero cell-derived inactivated vaccine that has been approved 
in the US, Europe, Canada, and Australia (Jelinek, 2009; 
Kollaritsch et al., 2009; Fischer et al., 2010; CDC, 2011). 
Also, the prM and E genes of SA14-14-2 have been used to 
replace the corresponding genes of YFV 17D (Chambers et 
al., 1999), engineering a live-attenuated chimeric YF/JE vac-
cine (Guirakhoo et al., 1999; Monath et al., 1999, 2000) that 
has been licensed in Australia since 2010 (Halstead and 
Thomas, 2011). Despite the increasing application of SA14- 
14-2 to vaccine development and production, it is striking 
that the molecular basis for its attenuation remains largely 
unknown.
  In seeking to understand the genetic basis for the attenu-
ation of SA14-14-2, several groups have independently de-
termined the partial or complete nucleotide sequences of the 
genomes of both the SA14 and SA14-14-2 viruses (Nitayaphan 
et al., 1990; Aihara et al., 1991; Ni et al., 1994, 1995). These 
comparative sequence analyses have indicated that during a 
series of attenuation processes, SA14-14-2 acquires a large 
number of single point mutations, i.e., 47–64 nucleotide 
substitutions (17–27 amino acid changes), scattered through-
out the entire viral genome (Nitayaphan et al., 1990; Aihara 
et al., 1991; Ni et al., 1995). Interestingly, there are some 
variations in the number of reported mutations, which are 
most likely dependent upon the cultivation history of the 
viruses used for sequencing. In the present study, we have 
determined the complete nucleotide sequence of the genomic 
RNA of SA14-14-2, using viral RNA extracted directly from 
the commercial vaccine vials. In our hands, the genomic 
RNA of SA14-14-2 is 10977 nucleotides long, one nucleotide 
longer than all the previously reported genomes of SA14-14-2, 
SA14 and two other SA14-derived attenuated viruses. This 
discrepancy is due to the insertion of one G nucleotide at 
position 10701 in the 3 NCR; the biological importance of 
this insertion needs to be tested experimentally. By com-
paring all available full-length genomic sequences of both 
SA14 and SA14-14-2 (three different versions for each virus), 
we have now identified a set of 39 nucleotide substitutions 
(16 amino acid changes) that differ between the genomes of 
SA14 and SA14-14-2. This SA14/SA14-14-2 system will pro-
vide us a unique opportunity to investigate the molecular 
mechanisms of JEV virulence, potentially promoting the 
development of new and improved JEV vaccines.
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