Skip to main content
Log in

Identification of enriched conjugated linoleic acid isomers in cultures of ruminal microorganisms after dosing with 1-13C-linoleic acid

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Most studies of linoleic acid biohydrogenation propose that it converts to stearic acid through the production of cis-9 trans-11 CLA and trans-11 C18:1. However, several other CLA have been identified in ruminai contents, suggesting additional pathways may exist. To explore this possibility, this research investigated the linoleic acid biohydrogenation pathway to identify CLA isomers in cultures of ruminai microorganisms after dosing with a 13C stable isotope. The 13C enrichment was calculated as [(M+1/M)×100] in labeled minus unlabeled cultures. After 48 h incubation, significant 13C enrichment was observed in seven CLA isomers, indicating their formation from linoleic acid. All enriched CLA isomers had double bonds in either the 9,11 or 10,12 position except for trans-9 cis-11 CLA. The cis-9 trans-11 CLA exhibited the highest enrichment (30.65%), followed by enrichments from 21.06 to 23.08% for trans-10 cis-12, cis-10 trans-12, trans-9 trans-11, and trans-10 trans-12 CLA. The remaining two CLA (cis-9 cis-11 and cis-10 cis-12 CLA) exhibited enrichments of 18.38 and 19.29%, respectively. The results of this study verified the formation of cis-9 trans-11 and trans-10 cis-12 CLA isomers from linoleic acid biohydrogenation. An additional five CLA isomers also contained carbons originating from linoleic acid, indicating that pathways of linoleic acid biohydrogenation are more complex than previously described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beam, T.M., T.C. Jenkins, P.J. Moate, R.A. Kohn, and D.L. Palmquist. 2000. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 83, 2564–2573.

    Article  PubMed  CAS  Google Scholar 

  • Coakley, M., M.C. Johnson, E. McGrath, S. Rahman, R.P. Ross, G.F. Fitzgerald, R. Devery, and C. Stanton. 2006. Intestinal Bifidobacteria that produce trans-9, trans-11 conjugated linoleic acid: a fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutr. Cancer 56, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • DeLany, J.P. and D.B. West. 2000. Changes in body composition with conjugated linoleic acid. J. Am. Coo. Nutr. 19, 487S–493S.

    CAS  Google Scholar 

  • Duckett, S.K., J.G. Andrae, and F.N. Owens. 2002. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation of beef steers fed finishing diets. J. Anim. Sci. 80, 3353–3360.

    PubMed  CAS  Google Scholar 

  • Goering, H.K. and P.J. Van Soest. 1970. Forage fiber analysis. Agric. Handbook No. 379. ARS, USDA, Washington, DC, USA.

    Google Scholar 

  • Griinari, J.M. and D.E. Bauman. 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants, Vol. 1., pp. 180–200 in Advances in Conjugated Linoleic Acid Research, In M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, and G.J. Nelson (ed.). AOCS Press, Champaign, IL, USA.

    Google Scholar 

  • Griinari, J.M., B.A. Corl, S.H. Lacy, P.Y. Chouinard, K.V. Nurmela, and D.E. Bauman. 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ(9)-desaturase, J. Nutr. 130, 2285–2291.

    PubMed  CAS  Google Scholar 

  • Harfoot, C.G. and G.P. Hazlewood. 1997. Lipid metabolism in the rumen. In P.N. Hobson and C.S. Stewart (eds.), The rumen microbial ecosystem, pp. 382–426. Chapman and Hall, London, UK.

    Google Scholar 

  • Ip, C., S. Banni, E. Angioni, G. Carta, J. McGinley, H.J. Thompson, D. Barbano, and D.E. Bauman. 1999. Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J. Nutr. 129, 2135–2142.

    PubMed  CAS  Google Scholar 

  • Jenkins, T.C., R.J. Wallace, P.J. Moate, and E.E. Mosley. 2008. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86, 397–412.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., L. Bjorck, and R. Fonden. 1998. Production of conjugated linoleic acid by dairy starter cultures. J. Appl. Microbiol. 85, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Kellens, M.J., H.L. Goderis, and P.P. Tobback. 1986. Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen microorganisms. Biotechnol. Bioeng. 28, 1268–1276.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, P., R.W. White, and D.L. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90, 100–114.

    PubMed  CAS  Google Scholar 

  • Kim, Y.J., R.H. Liu, D.R. Bond, and J.B. Russell. 2000. Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Appl. Environ. Microbiol. 66, 5226–5230.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.J., R.H. Liu, K.L. Rychlik, and J.B. Russell. 2002. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Microbiol. 92, 976–982.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, J.K.G., V. Fellner, M.E.R. Dugan, F.D. Sauer, M.M. Mossoba, and M.P. Yurawecz. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32, 1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, P. and J.T. Brenna. 2006. Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters. Anal. Chem. 78, 1312–1317.

    Article  PubMed  CAS  Google Scholar 

  • Liavonchanka, A., E. Hornung, I. Feussner, and M.G. Rudolph. 2006. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Proc. Natl. Acad. Sci. USA 103, 2576–2581.

    Article  PubMed  CAS  Google Scholar 

  • Maia, M.R.G., L.C. Chaudhary, L. Figueres, and R.J. Wallace. 2006. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91, 303–314.

    Article  PubMed  Google Scholar 

  • Michaud, A.L., G.Y. Diau, R. Abril, and J.T. Brenna. 2002. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal. Biochem. 307, 348–360.

    Article  PubMed  CAS  Google Scholar 

  • Michaud, A.L., M.P. Yurawecz, P. Delmonte, B.A. Corl, D.E. Bauman, and J.T. Brenna. 2003. Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitril chemical ionization tandem mass spectrometry. Anal. Chem. 75, 4925–4930.

    Article  PubMed  CAS  Google Scholar 

  • Mosley, E.E., G.L. Powell, M.B. Riley, and T.C. Jenkins. 2002. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 43, 290–296.

    PubMed  CAS  Google Scholar 

  • Nam, I.S. and P.C. Garnsworthy. 2007a. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Nam, I.S. and P.C. Garnsworthy. 2007b. Factors influencing biohydrogenation and conjugated linoleic acid production by mixed rumen fungi. J. Microbiol. 45, 199–204.

    PubMed  CAS  Google Scholar 

  • Ogawa, J., J. Matsumura, S. Kishino, Y. Omura, and S. Shimizu. 2001. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl. Environ. Microbiol. 67, 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Pariza, M.W. 2004. Perspective on the safety and effectiveness of conjugated linoleic acid. Am. J. Clin. Nutr. 79, 1132–1136.

    Google Scholar 

  • Piperova, L.S., J. Sampugna, B.B. Teter, K.F. Kalscheur, M.P. Yurawecz, Y. Ku, K.M. Morehouse, and R.A. Erdman. 2002. Duodenal and milk trans octadecenoic acid and conjuaged linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. J. Nutr. 132, 1235–1241.

    PubMed  CAS  Google Scholar 

  • Proell, J.M., E.E. Mosley, G.L. Powell, and T.C. Jenkins. 2002. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by rumincl microbes. J. Lipid Res. 43, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, J.W., C.P. Portocarrero, X.M. Song, L. Cui, and M. Yu. 2001. Isomer specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action and UCP-2 gene expression. Diabetes 50, 1149–1157.

    Article  PubMed  CAS  Google Scholar 

  • Shingfield, K.J., S. Ahvenjarvi, V. Toivonen, A. Arola, K.V.V. Nurmela, P. Huhtanen, and J.M. Griinari. 2003. Effect of fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 77, 165–179.

    CAS  Google Scholar 

  • Van Pelt, C.K. and J.T. Brenna. 1999. Acetonitrile chemical ionization tandem mass spectrometry to locate double bonds in polyunsaturated fatty acid methyl esters. Anal. Chem. 71, 1981–1989.

    Article  PubMed  Google Scholar 

  • Van Nevel, C. and D.I. Demeryer. 1996. Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod. Nutr. Dev. 36, 53–63.

    Article  PubMed  Google Scholar 

  • Wahle, K.W., S.D. Heys, and D. Rotondo. 2004. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 43, 553–587.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., O.A. Ohajuruka, and D.L. Palmquist. 1991. Ruminal synthesis, biohydrogenation, and digestibilities of fatty acids by dairy cows. J. Dairy Sci. 74, 3025–3034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Jenkins, T.C. Identification of enriched conjugated linoleic acid isomers in cultures of ruminal microorganisms after dosing with 1-13C-linoleic acid. J Microbiol. 49, 622–627 (2011). https://doi.org/10.1007/s12275-011-0415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0415-8

Keywords

Navigation