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ABSTRACT

A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely
and appropriate countermeasures against viral infections. In this study, conductive polymer-based nanoparticles have been
developed as a tool for rapid diagnosis of influenza A (H1N1) virus. The distinctive property of a conductive polymer that
transduces stimulus to respond, enabled immediate optical signal processing for the specific recognition of H1N1 virus.
Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles, functionalized with peptides, were fabricated for the specific
recognition of H1N1 virus. The low solubility of conductive polymers was successfully improved by employing vesicles consisting
of amphiphilic copolymers, facilitating the viral titer-dependent production of the optical response. The optical response of the
detection system to the binding event with HIN1, a mechanical stimulation, was extensively analyzed and provided concordant
information on viral titers of H1N1 virus in 15 min. The specificity toward the H1N1 virus was experimentally demonstrated via a
negative optical response against the control group, H3N2. Therefore, the designed system that transduces the optical response
to the target-specific binding can be a rapid tool for the diagnosis of H1N1.
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1 Introduction

Public health has faced a serious challenge by the recent
coronavirus disease (COVID-19) pandemic caused by infections
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). The number of confirmed cases is more than 85 million
globally, and over millions of death cases have been reported to
the World Health Organization (WHO) as of January 6, 2021. The
present viral outbreak is not the only one that has threatened
public health. There have been incidences of recurrent viral
infections, such as dengue, Zika, SARS, Middle East respiratory
syndrome (MERS), and influenza viral infections worldwide
[1-3]. The history of recurrent viral outbreaks implies that
evolving viruses with an unpredictable nature may continuously
arise. Moreover, various types of viruses frequently mutate their
genomic information, which increases the uncertainty in the
prevention of the spread of infectious diseases [4-7]. WHO
underlined the need to improve emergency preparedness due to
the fatality of outbreaks in urban environments with increased
population mobility. Thus, countermeasures against the spread of
viral infections in an early stage are very important, and the
development of rapid diagnostics technologies is highly
required [8, 9].

Conventional diagnostic techniques such as enzyme-linked
immunosorbent assay (ELISA) and real-time quantitative
polymerase chain reaction (qQPCR) have been used to detect
pathogens. ELISA can be utilized to detect a wide range of
pathogens; however, it requires time-consuming multiple steps
from preparation to detection [10-15]. Although real-time qPCR
analysis is regarded as the gold standard due to its high sensitivity
and accuracy, the accessibility of the technique is limited to test
experts in the laboratory. Thus, a rapid and simple diagnostic test
to address the early stage of viral infections is needed to assist in
scenarios of urgency [16, 17].

To date, conductive polymers have been employed as simple
and effective tools for analytical investigations because transitions
in the charge distribution, orientation, and electronic structure of
conductive polymers are immediately presented by significant
changes in physicochemical properties [18-21]. The instantaneous
transduction of stimuli into response enabled conductive
polymers to be applied as a rapid detection assay that responded
to the intermolecular interaction of the target and corresponding
biorecognition elements, such as antibodies, enzymes, and
proteins [22-24]. Polyaniline (PANI) is a conductive polymer that
exhibits electrochemical stability, excellent biocompatibility, high
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conductivity, and electro-optical properties [25-27]. PANI is
highly responsive to -7 interactions induced by diverse external
stimuli, such as light, chemical doping, pH, redox, and binding
effects. Among the physicochemical properties of PANI that
transduce stimulus into detectable signals, an optical response
(O.R) can be an optimal candidate for biosensors because
detection via an optical detector is simple and does not require
expensive instrumentation, which meets crucial conditions in
point-of-care diagnostics [28-34].

In this study, a simple and rapid assay for the detection of
influenza A (HINI1) virus was designed with the resonance
structure of a conductive polymer [poly(aniline-co-pyrrole)]
encapsulated vesicle (CPV) (Fig.1). CPV nanostructures with
amphiphilic polymers overcome the poor water dispersion of
conductive polymers and enable stable detection of aqueous target
virus specimens [35,36]. CPVs expose distinctive absorbance
spectrums responding to different distances between CPVs
because the strength of m-m interactions is dependent on the
distance [37]. We combined the CPVs with a peptide having a
specificity toward hemagglutinin, which is the target moiety of the
influenza virus [38]. In the presence of HINI virus, the peptide-
conjugated CPV (PCPV) specifically binds to the virus, reducing
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the distance between the CPVs. The agglomeration of PCPV with
selective recognition of the target virus functioned as a mechanical
stimulation, shifting m—m interactions, and triggered an optical
response that facilitates the quantitative detection of HIN1 virus
[39-41]. PCPV can execute user-friendly and rapid detection in 15
min via simple mixing with the specimen, corresponding with the
diagnostic criteria to develop suitable sensing materials and
strategies [42, 43]. This sensing strategy puts weight on the optical
properties of conductive polymers and provides a novel
perspective on the development of biosensors that deviate from
prevalent electrochemical sensors, contributing to advances in
diagnostic procedures that could help control viral spread.

2 Experimental section

2.1 Materials

Triphosgene was purchased from Tokyo Chemical Industry Co.,
Ltd. a-Methoxy-w-amino-poly(ethylene glycol) (mPEG-NH,),
with a molecular weight of 2,000 g-mol”, was purchased from

Laysan Bio Inc. L-Phenylalanine (Phe), pyrrole, aniline,
tetrahydrofuran  (THF), N,N-dimethylformamide (DMF),
dimethyl sulfoxide (DMSO), 1-ethyl-3-(3-dimethylamino-
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propyl)carbodiimide  hydrochloride (EDC-HCI), and N-
hydroxysulfosuccinimide (Sulfo-NHS) were purchased from
Sigma-Aldrich, MO. Diethyl ether, chloroform, n-hexane, and
toluene were purchased from DUKSAN. Peptide for HIN1 virus-
specific interaction (Fmoc-ARLSPTMVHPNGAQP-NH,) was
conjugated from PEPTRON (Daejeon, Republic of Korea). All
other chemicals and reagents were of analytical grade.

2.2 Synthesis of methoxyl poly(ethylene glycol) block
polyphenylalanine (mPEG-b-pPhe) and CM(Carboxy-
methyl)-PEG-b-pPhe

mPEG-b-pPhe and CM-PEG-b-pPhe were synthesized by ring-
opening polymerization of phenylalanine N-carboxyanhydride
(Phe-NCA), initiated by mPEG-NH, and CM-PEG-NH,,
respectively (Fig.S1 in the Electronic Supplementary Material
(ESM)). First, Phe-NCA was synthesized and later reacted with
mPEG-NH, to form mPEG-b-pPhe and CM-PEG-NH, to form
CM-PEG-b-pPhe. Phenylalanine (3 g, 18.16 mmol) was dissolved
in 100 mL of THF in a 3-neck round flask to synthesize phe-NCA.
Triphosgene (2.8 g, 9.34 mmol) dissolved in 10 mL of THF was
added dropwise to the above solution at a constant rate. The
solution was allowed to react under stirring for 3 h under a
nitrogen atmosphere at 50 °C. The resultant product was filtered
and precipitated in ice-cold hexane. The product was stored
overnight at =20 °C. Phe-NCA was filtered under a vacuum and
washed with n-hexane three times. To synthesize mPEG-b-pPhe
and CM-PEG-b-pPhe, 0.5 g of 0.25 mmol mPEG-NH, and CM-
PEG-b-pPhe were dissolved in 5 mL of DMF in a 3-neck round
bottom flask and 0.5 g, 3.03 mmol solution of Phe-NCA, dissolved
in 5 mL of DMF, was introduced, respectively. The solution was
reacted for 24 h in a water bath while stirring at 37 °C. The
resultant products were precipitated using a mixture of diethyl
ether/DMF and filtered under a vacuum.

2.3 Preparation of CPV

CPV was synthesized via self-assembly of amphiphilic block co-
polymers, mPEG-b-pPhe, and CM-PEG-b-pPhe, which were
synthesized in the same way. mPEG-b-pPhe (2.5 mg) and CM-
PEG-b-pPhe (2.5 mg) were dissolved in chloroform (1 mL), which
is highly volatile, and the solution was poured into 10 mL of
deionized water. The chloroform was evaporated while stirring for
24 h. Aniline (40 pL, 0.45 mmol) and pyrrole (3.5 pL, 0.05 mmol)
were added, in order, to the solution. The mixture was stirred for
30 min and ultrasonicated for 10 min to load aniline and pyrrole
into the polymer vesicle, which self-assembled during the process.
As a reducing agent, ammonium persulfate (APS) solution (1.1 M,
0.25 mL) was added to the mixture. After 1 min, the stirring
process was stopped and the mixture was kept at 4 °C for 48 h to
produce mature polyaniline and polypyrrole in the vesicles. The
final product was purified using centrifugation.

24 Characterization of the synthesized polymers and
CPVs

The chemical structures of Phe-NCA and the block copolymer
were evaluated by Fourier transform infrared (FT-IR)
spectroscopy  (PerkinElmer, UATR Two), confirming the
existence of the characteristic bands. The characteristic peaks of
Phe-NCA in the FT-IR spectra are as follows: anhydride C=O
peaks at 1,854 and 1,760 cm™. The characteristic peaks of mPEG-b-
pPhe and CM-PEG-b-pPhe in the FT-IR spectra are as follows:
N-H stretching vibration at 3,300 cm™; C=0O stretching vibration
at 1,624 cm™; N-H bending and C-N stretching vibration (amide
IT) at 1,521 cm™ (Fig. S2(a) in the ESM). In addition, the polymer
dispensed in deuterated dimethyl sulfoxide-d, (DMSO-d,) was
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loaded onto a 400 MHz 'H-NMR spectrometer (Avance II, Bruker
Biospin) to confirm the polymerization process. 'H NMR (400
MHz, DMSO-dg) &: 9.08 (-NH- of Phe-NCA), 7.16-7.28 (-CH-
of pPhe), 3.38 (-OCH;- of mPEG) (Fig. S2(b) in the ESM). The
distinctive optical properties of CPV were evaluated under various
pH conditions with adjusted pH conditions with 1 M HCl or 1 M
NaOH using a multimode microplate reader (SpectraMax i3x,
Molecular Devices).

25 Conjugation of CPV and peptide having specific
binding to hemagglutinin

CPV and a peptide having specific binding to hemagglutinin were
conjugated using EDC-NHS coupling. The carboxyl groups of
CM-PEG-b-pPhe (0.4 mg-mL™) in the CPV (0.5 mg-mL™) were
coupled to the amine groups of the peptide terminal via peptide
bond formation. To facilitate the process sufficiently, excessive
EDC and Sulfo-NHS in 10:1 and 20:1 molar ratios to CM-PEG-b-
pPhe, respectively, were used. The mixture was stirred for 2 h at
room temperature. The peptide (1 mgmL™) in 20% DMSO
(0.2 mL) was added to 1 mL of CPVs and stirred for 4 h. The
product was purified using centrifugation. The conjugation of the
peptide with CPV was confirmed using a 400 MHz 'H-NMR
spectrometer (Avance II, Bruker Biospin). 'H NMR (400 MHz,
DMSO-dy) 8: 1.05 (-CH;- of peptide) (Fig. S3 in the ESM).

2.6 Analysis of absorbance spectrum of the system and
calculation of optical response

The absorbance spectrum of CPV, CPV-liner, and PCPV was
analyzed using a multimode microplate reader (SpectraMax i3x,
Molecular Devices), in a range of wavelengths from 400 to 800
nm. We adopted an optical response as a parameter of the relative
deviation from the standard, and the parameter can be calculated
by summation of the difference in absorbance intensity between
the specimen (A*) and standard (A) at 430 and 630 nm,
respectively (Eq. (1)). In a study to confirm the optical response
against mechanical stimulation, the standard point of the
absorbance intensity was at a concentration of 0.25 mg-mL™ for
CPV and CPV-L and the same concentration of PCPV was the
standard point in virus detection.

Optical response (O.R.) = (A}, —A%y) + (Asy —AL,) (1)

2.7 Viruses

Human influenza HIN1 (A/California/04/2009), canine influenza
virus (CIV) H3N2 (A/canine/Korea/01/2007 (H3N2)), and
Newcastle disease virus (NDV), were propagated in the allantoic
cavity of 11-day-old embryonated chicken eggs. Each virus stock
(100 pL) was inoculated into the allantoic cavities of chicken eggs.
After 72-h incubation at 37 °C, eggs were chilled overnight at 4 °C.
The allantoic fluid containing the propagated viruses was
harvested and purified by centrifugation at 4,000 rpm for 20 min.
The supernatant was frozen at —80 °C for long-term storage and
direct use in the assay. Porcine epidemic diarrhea virus (PEDV)
and canine distemper virus (CDV) were propagated in Vero cells,
and porcine reproductive and respiratory syndrome (PRRS) and
infectious canine hepatitis virus (ICHV) were propagated in
MARC-145 and Madin-Darby canine kidney (MDCK) cell lines
respectively. After 72-h incubation at 37 °C, the cells were chilled
overnight at 4 °C. The fluid containing the propagated viruses was
harvested and purified by centrifugation at 4,000 rpm for 20 min.
The supernatant was frozen at —80 °C for long-term storage and
direct use in the assay. In turn, differents typse of virus were
prepared such as NDV (10° EID5/mL), HIN1 (10° TCID5y/mL),
H3N2 (10 TCIDs/mL), PRRS (10° TCIDs/mL), ICHV (10°
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TCID,y/mL),
TCID,y/mL).

PEDV (10° TCIDy/mL), and CDV (10!

2.8 Virus detection method

The virus detection procedure was conducted by simply adding
the viral strains in various viral titer (50 uL) into 50 pL PCPVs at a
concentration of 0.0625 mg:mL™ in a 96-well plate. The mixture
was incubated for 15 min at room temperature, and the optical
response of the PCPVs against the viral strain was evaluated.

3 Results and discussion

3.1 Fabrication and characterization of CPV

To fabricate polyaniline and polypyrrole encapsulated vesicles,
block copolymers mPEG-b-pPhe and CM-PEG-b-pPhe were
synthesized via ring-opening polymerization  processes.
Polymerization was confirmed using 'H NMR and FT-IR.
Polymeric vesicles consisting of the block copolymers were
prepared by the emulsion solvent evaporation method and by
loading aniline and pyrrole on the vesicles by simple mixing.
Aniline and pyrrole loaded in the polymeric vesicles were oxidized
with ammonium persulfate, while the absorbance of the particles
was measured by time interval. One of controllable factors in
synthesis of the systems based on conductive polymers is
polymerization time, determining electrical or optical property
responding to the stimulation [44]. By increasing polymerization
time, the chain length of conductive polymer is changed, showing
different spectra to physicochemical environment. After 24 h of
oxidation, the characteristic absorbance spectra of CPVs were
indistinguishable through pH variation (Fig.2(a)). CPV
polymerized for 48 h shows distinctive absorbance spectrum
responding to various pH conditions, signaling an optical
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response to the impetus. Further investigation of polymerization
time of CPV in longer period exposes insignificant difference from
48 h (Fig. $4 in the ESM). Ideally, the oxidation process should be
conducted for at least 48 h to retain an optical property, enabling a
sufficient optical response to the impetus (Fig. 2(b)). The
morphology of CPVs was analyzed by dynamic light scattering
(DLS) (Fig.2(c)) and transmission electron microscopy (TEM)
(Fig. 2(d)). The hydrodynamic diameter of the polymeric vesicles
was 218 nm and maintained a spherical shape during oxidation of
the conductive polymers. The oxidation time of the conductive
polymers in the vesicles was determined to be 48 h for the CPVs
to become available to transduce exterior stimulations to optical
signals and maintain a stable structure. The stable nanostructure
of CPV was explained by the contribution of the interaction
between the aromatic rings belonging to polyaniline, polypyrrole,
and polyphenyl in mPEG-b-pPhe, in accordance with a previous
report [45]. Furthermore, CPV was stable in aqueous solution
because amphiphilic block copolymers had enclosed the highly
hydrophobic polyaniline and polypyrrole.

3.2 Analysis of optical response of CPV to mechanical
stimulus

One of the characteristics of conductive polymers is their unique
optical properties that are caused by electron distribution. CPV
consisting of PANT has a distinctive absorption range because it
absorbs the photon energy that matches the energy gap between
the low energy level and the high energy level [46, 47]. This energy
gap could be shifted by intermolecular interactions, such as steric
effects, when the distance of each molecule is sufficiently close
[48, 49]. Steric effects in response to the distance between particles
can be demonstrated by the double layer force equation describing
the repulsive interaction energy W(D); due to electric
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Figure2 Ultraviolet-visible (UV-vis) absorbance spectrum of CPV, wherein polyaniline and polypyrrole were polymerized for (a) 24 h and (b) 48 h. Absorbance
spectrum was measured in pH range from 1 to 13. Morphology of CPV was analyzed by (c) DLC (d) TEM.
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repulsion [50]
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Where k; is the boltzmann constant, R is the radius of particle,
p.. is the number density of ion in the bulk solution, y is the
surface tension, k is the Debye screening length, and D is the
distance between two spherical particles. From Eq. (2), we can see
that the electric repulsion has an exponential decay correlation
with the distance between the particles. Therefore, in the case of
CPV aggregation, the distance between particles could be regarded
as a mechanical factor for inducing a shift in their energy gap,
involving a transition of the absorption spectrum. As a tool for
verifying a mechanical stimulation that induces an optical
response, we adopted a concentration of particles with a
dependence on the mean distance in the disperse system [51].

Absorbance spectra of CPVs at various concentration were
measured to confirm the optical response to the mechanical
stimulus, ie., the distance between CPVs (Fig.3(a)). As the
concentration of CPVs increased, the absorption intensity of
CPVs near 430 nm increased, while the absorption intensity near
630 nm decreased. The transition of the absorbance spectrum
could be explained by the increase in intermolecular interaction
between CPVs at a short distance, which elevates the transition of
the energy state of CPVs. When CPVs were held together using a
linker, hexamethylenediamine, the absorbance spectrum showed a
relatively weak shift upon varying the concentration of CPVs from
lower to higher (Fig. 3(b)). The result exposed the suppression of
the absorbance spectrum shift by limiting the distance change
between CPV, especially at lower concentrations. Intermolecular
interaction between CPV particles was highly affected by the
distance between CPVs, and this was elucidated by the transition
of the absorbance spectrum; therefore, mechanical stimulus could
be introduced by optical signals (Fig. 3(c)).

(a) (b)

Conc. of CPV (mg-mL™)
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To analyze the shift of absorbance spectrum of CPVs by the
mechanical stimulus, a new calculation method based on
absorption intensity was used to transduce the variance into
quantitative data, and the calculated value, optical response, was
plotted against concentration (Fig. 3(d)). The optical response of
CPVs increased as the mean distance between CPVs increased by
2-fold serial dilution from an initial concentration of 025
mg-mL". When the CPVs were forced to bind to each other via
conjugation with a linker (CPV-L), the optical response induced
by the same serial dilution was restricted compared to CPV
without linkage, especially in the lower concentration range. The
difference between the optical response of CPV and CPV-L was
maximal at 0.03125 mgmL™. The broader size distribution of
CPV-L compared to CPV can be explained by the linkage between
CPVs by the hexamethylenediamine-induced stack of the
nanoparticles in CPV-L (Fig. 2(e)).

To optimize the optical response of CPV, triggered by the
binding effect of influenza virus, the ratio of the surface functional
group was assessed. We prepared various CPVs with different
percentages of functional groups (20%, 50%, 80%, and 100%) by
mixing block copolymers mPEG-b-pPhe and CM-PEG-b-pPhe.
The optical response of CPV and CPV-L at different percentages
of functional groups was presented (Fig. S5 in the ESM). When
the percentage of the function group is higher, the difference in
optical response between linked and non-linked CPVs is larger
(Fig. 4(a)). The optimal percentage of functional groups in CPVs
is 80%, exposing maximal optical response to binding effect
(Fig. 4(b)), and the optimal concentration exhibiting the highest
ratio of optical responses of CPV and CPV-L was 0.03125
mg-mL™ (Fig. 4(c)). Optimal hydrophilic and hydrophobic ratio (f-
value) of CPV-L was evaluted at 0.36, 0.49, and 0.58 and
determined to 0.49 exposing the most restricted optical response
by linkage (Fig.S5(a) in the ESM). According to a coherent
experimental data, it could be said that CPVs have optical
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Figure 3 Characterization of the mechanism of response of CPVs to mechanical stimuli and the transduction into optical signals. UV-vis absorbance spectrum of (a)
CPV and (b) CPV-L, a CPV conjugated by a linker (hexamethylenediamine). Serial dilution (2-fold) was performed to measure UV-vis absorbance. (c) Schematic
representation of intermolecular interaction of CPV determined by the distance between nanoparticles. Quantification of absorbance change at 430 and 630 nm was
calculated using the formula for optical response and fitted with (d) sigmoidal curve. (e) Size distributions of CPV and CPV-L were measured by DLS. Data represent

mean * standard deviation (1 = 3).
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Figure4 (a) Optical responses of CPV and CPV-L synthesized with CM-PEG-pPhe containing different percentages functional groups (20%, 50%, 80%, and 100%)
were calculated in various concentrations diluted by 2-fold and fitted to a sigmoidal curve. (b) Optical responses of CPV and CPV-L synthesized with CM-PEG-pPhe
containing different percentages of functional groups are compared. (c) The ratio of optical response of CPV and CPV-L containing 80% of CM-PEG-b-pPhe has been
presented for various concentrations. Data represent mean + standard deviation (n = 3).

response to mechanical stimulus but also, the degree of response is
controllable. The aggregation phenomena of CPV by linker were
further analyzed by scanning electron microscopy (SEM). The
image of CPV-L exposes linked morphology whereas measured
image of CPV shows individually distributed particles with sizes
around 200 nm. (Fig. S6 in the ESM).

3.3 HIN1 virus detection by PCPV

PCPV was prepared by conjugating CPV and peptide specifically
binding to HIN1 virus. PCPV (0.0625 mg-mL™) was mixed with
the same volume of HINT1 virus stocks in different viral titers and
incubated for 15 min at room temperature. Specific binding of
influenza virus with peptide tethered on the surface of PCPV
induced agglomeration of the bound complexes, which was a
mechanical stimulation eliciting a shift of n-m interactions
between CPVs [52]. Absorbance spectra were measured using
UV-vis spectroscopy. As shown in Fig.5(a), the response of
PCPV to the stimulus corresponded to a shift in the absorbance
spectrum, increasing the absorbance intensity at approximately
430 and decreasing absorbance intensity at approximately 630 nm.
In the case of PCPV binding to the virus, the distance between
particles was close enough to enable m-m interactions in the
conductive polymers [53-55]. The binding event of PCPV and
HIN1 was visualized by TEM (Fig. S7 in the ESM). On the other
hand, CPV showed scarce absorbance change when mixed with
HIN1 virus (Fig.5(b)). Considering PCPV showed a lack of
difference in particle characterization result with CPV, the
existence of peptides on the surface of the PCPV is essential for
the selective binding of PCPV and virus (Fig. S7(a) in the ESM).
To analyze the degree of response of PCPV to the target virus, in
terms of absorbance, the optical response was calculated by
adopting an inventive calculation method combining the relative
absorption change at 430 nm and 630 nm, with respect to the

blank (Fig. 5(c)). The optical response of PCPV against HIN1
showed robust linear dependence, indicating that the designed
biosensor successfully transduced the mechanical stimulation to
the optical response for rapid quantitative detection of the target
virus. The correlation between the measured optical response of
PCPV and viral titer was evaluated, and the results showed a
broad dynamic range from 5.20 to 3.39 log,, TCIDs,/mL of HIN1
with a correlation coefficient (R?) of 0.9493. The limit of detection
was determined to be 3.37 log;, TCIDsy/mL, proving the feasibility
of the designed platform as a biosensor for HIN1 virus. Optical f-
value of PCPV was evaluated at 036, 049, and 0.58 and
determined to 0.49 exposing the maximal optical response toward
HINT1 virus (Fig. S8(b) in the ESM).

34 Cross-reactivity test of PCPV

Specificity is an essential element for diagnostic assays because
generation of false-negative results can decrease the reliability of
the assay, despite having an ultra-low sensitivity [56]. To confirm
the specificity of the designed system, we conducted cross-
reactivity test of PCPV against the target HIN1 virus and different
species of viruses such as NDV, ICHV, PEDV, PRRS, CDV, and
other subtype of influenza virus, H3N2. Absorbance peak of cell-
culture media was observed at 560nm in ICHV, PEDV, PPRS, and
CDV but, making a limited impact on the analysis of optical
response of PCPV against testing viruses.

The absorbance spectrum of PCPV incubated with non-target
viruses showed negligible transition, and the optical response of
the system exhibited no quantitative signal transduction, in
contrast with the target virus HIN1, which elicited a distinctive
signal transduction (Fig. 6). The designed diagnostic platform with
specific molecular recognition successfully identified the HIN1
virus, enabling rapid and selective detection of the target virus.
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4 Conclusions

Herein, we developed a rapid detection platform for specifically
transducing the binding of the target virus into an optical response
by adopting polymeric vesicles comprising conductive polymers.
The unique property of the system to generate an optical response
by mechanical stimulation was carefully evaluated. This detection
system elicited a quantitative optical response against various titers
of HIN1 in 15 min, demonstrating the advantage of the platform
in enabling a rapid and quantitative detection of the target virus.
We achieved a limit of detection of 10*” TCIDs,/mL and showed a
wide dynamic range for the second power of ten in the
TCIDsy/mL. The designed system not only possesses a sufficient
level of limit of detection and dynamic range but also target-
responsive  signal transduction, establishing specificity by
employing a peptide having a molecular recognition to
hemagglutinin. Consequently, this platform was demonstrated to
meet the fundamental aspects of diagnostics. In addition, the
simple process of detection provides less burden to operators
because of reduced requirements, such as skilled operation
techniques and additional equipment. Thus, we believe that the
designed system can be used as a complementary platform for the
rapid detection of the target viruses, and further expanding its
application will contribute to the prompt execution of preventative
measures against the spread of viral infections.
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